表面活性剂发展历史

表面活性剂发展历史
表面活性剂发展历史

表面活性剂发展历史

①公元前2500年——1850年羊油和草木灰制造肥皂

羊油——三羧酸酯简称三甘酯,经碱水解→羧酸盐+单甘酯+二甘酯+甘油

19世纪中叶

一方面肥皂开始实现工业化大生产,另一方面,也出现了化学合成的表面活性剂②土耳其红油的出现:

土耳其红油即蓖麻油与硫酸反应的产物,蓖麻油为蓖麻油酸的三甘酯

深度磺化,耐酸耐硬水

③19世纪初,矿物原料制备洗涤剂

石油工业的发展→石油硫酸(绿油)

蜡和茶的磺化混合物,溶于酸中,呈绿黑色,用碱中和制得。

石油磺酸皂具有良好的水溶性,称绿钠(第一个矿物原料制得的洗涤剂)

第一次世界大战期间,油脂出现

煤炭产量→煤化工业发→短链烷基、奈磺酸盐类表面活性剂

如丙基奈磺酸盐、丁基奈磺酸盐

1920——1930 脂肪醇硫酸化→烷基硫酸盐

20世纪30年代,长链烷基、苯基出现于美国

第一次世界大战后,德国开发乙二醇衍生物,如聚乙二醇衍生物产品,聚乙二醇与各种有机化合物(包括醇、酸、酯、胺、酰胺)等结合,形成多种优良性能的非离子表面活性剂。

表面活性剂和合成洗涤剂形成一门工业得追溯到本世纪30年代,以石油化工原料衍生的合成表面活性剂和洗涤剂打破了肥皂一统天下的局面。经过60余年的发展,1995年世界洗涤剂总产量达到4300万吨,其中肥皂900万吨。据专家预测,全世界人口从2000年到2050年将翻一番,洗涤剂总量将从5000万吨增加到12000万吨,凈增1.4培,这是一个令人鼓舞的数字。

中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。其中合成洗涤剂的生产量从1980年的40万吨上升到1995年的230万吨,凈增4.7倍,并以年平均增长率大于10%的速度增长。据中国权威部门预测,2000年洗涤

用品总量将达到360万吨,其中合成洗涤剂将达到65.5万吨。其中产量超万吨的表面活性剂品种计有:直链烷基苯磺酸钠(LAS)、脂肪醇聚氧乙烯醚硫酸钠(AES)、脂肪醇聚氧乙烯醚硫酸铵(AESA)、月桂醇硫酸钠(K12或SDS)、壬基酚聚氧乙烯(10)醚(TX-10)、平平加O、二乙醇酰胺(6501)硬脂酸甘油单酯、木质素磺酸盐、重烷基苯磺酸盐、烷基磺酸盐(石油磺酸盐)、扩散剂NNO、扩散剂MF、烷基聚醚(PO-EO共聚物)、脂肪醇聚氧乙烯(3)醚(AEO-3)等。

表面活性剂简介及主要发展方向

表面活性剂简介及近年研究进展 一.【关键词】表面活性剂不对称结构双亲化合物界面张力表面张力吸附性能酰胺基脂肽生物微生物高分子非离子型高粘度高表面活性糖基类表面活性剂临界胶束浓度戊糖基两性表面活性剂壳聚糖基表面活性剂酶法合成果糖醋酶法合成成糖醛酸内酯 二.【文摘】表面活性剂是这样一类物质,它在加入很少量时即能大大降低溶剂的表面张力(一般以水为标准溶剂)和液-液界面张力,并具有一定特殊结构、亲水亲油特性和特殊吸附性能的物质。表面活性剂分子都是双亲化合物,分子具有不对称结构。其分子由易溶于水的亲水基(如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等)和不溶于水而易溶于油的亲油基(即疏水基,常为非极性烃链,如8个碳原子以上烃链)组成。 表面活性剂概述: 三.【简介】 1.概念:表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性,非极性烃链: 8个碳原子以上烃链,极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性:溶液中的正吸附:增加润湿性、乳化性、起泡性,固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。 4.表面活性剂的分类 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类:1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠;2、阳离子表面活性剂:季铵化物; 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型;4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 四.【表面活性剂研究进展】 现在社会,表面活性剂的应用日益广泛,下面介绍几种对现行的几种表面活性剂及其应用进行了初步的探索。 1. 脂肽生物表面活性剂 自从Fleming发现微生物产生青霉素以来,微生物成为生物活性物质的一个重要来源,为天然合成化学品提供了丰富资源。生物表面活性剂是微生物在一定条件下培养时,在其代谢过程申分泌出来的具有一定表面活性的代谢产物,如糖脂、多糖蛋白脂、脂肪、磷脂利脂肪酸中性类脂衍生物。它们与一般表面活性剂分子在结构上类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,同时也含有极性的亲水基。 生物表面活性剂的早期研究见于1946年,1965年之后,微生物对烃类乳化机制的研究引起人们的关注。微生物产生的表面活性剂是微生物提高石油采收率的重要机制之一。用微生物生产表面活性剂成为生物技术领域中的一个新课题。1968

表面活性剂的综述

表 面 活 性 剂 的 文 献 综 述 学院:化学化工学院 专业:应用化学 姓名:XX 2016年1月1日

表面活性剂的文献综述 摘要:本文介绍了表面活性剂的基本概念和应用以及表面活性剂中胶束的形成,阐述了表面活性剂溶液的多种性质,并简要分析了胶束催化的原理。对阳离子表面活性剂的分类进行了归纳,并说明阳离子表面活性剂的用途和实例应用。 关键词:表面活性剂、溶液、胶束、阳离子表面活性剂 Abstract: this paper introduces the basic concept and application of the surfactant and surfactant micelle formation, this paper expounds the various properties of surfactant solution, and briefly analyzes the principle of micellar catalysis.Has carried on the induction, the categorization of cationic surfactant and explains the use and application of cationic surfactant. Keywords: surfactant, solvent, micelle, cationic surfactant 一、前言 近年来,随着化学相关领域的不断发展,使得我们在表面活性剂的研究和应用发展方面有了很大的进步。表面活性剂主要是改变相应溶液的各种性质来达到预期的效果,以完成其作用。阳离子表面活性剂中,大部分是含氮的有机化合物,即有机胺的衍生物。简单的胺的盐酸(或者它的无机酸)盐及醋酸盐等(碳8~18),可在酸性水溶液中用作乳化、分散、润湿剂,也常用作矿物浮选剂,以及用作颜料粉末表面的疏水剂。 二、表面活性剂基本概论 2.1表面活性剂的概念 表面活性剂是有两种基团的分子:亲水基和亲油基。表面活性剂分子作用于水溶液与气相或油层形成的界面,亲水性基团插入水溶液,亲油基团则朝向空气或油层形成一定形式的排列。当表面活性剂到达一定的浓度后,可以形成紧密的单分子层,具有降低表面张力的作用。 2.2表面活性剂分类及举例 当表面活性剂溶解于水后,根据是否生成离子,分为离子型表面活性剂和非离子型表面活性剂,离子型表面活性剂还可以根据电性,更具体地分为阴离子型(如硬脂酸、肥皂、十二烷基苯磺酸钠等)、阳离子型(如带有季铵离子的长链

表面活性剂发展方向

表面活性剂发展方向 1.新一代表面活性剂Gemini 目前已经合成的低聚表面活性剂有二聚体、三聚体和四聚体等,其中最引人注目的是二聚体,结构示意图见图1,二聚表面活性剂最早被合成于1971年[4-5],后因其结构上的特点而被形象地命名为Gemini (英文是双子星之意)表面活性剂。 表面活性剂Gemini(或称dimeric)是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成,因而阻抑了表面活性剂有序聚集过程中的头基分离力,极大地提高了表面活性。与当前为提高表面活性而进行的大量尝试,如添加盐类、提高温度或将阴离子表面活性剂与阴离子表面活性剂混合相比较,Gemini表面活性剂是概念上 的突破,因而被誉为新一代的表面括性剂。 在Gemini表面活性剂中,两个离子头基是靠联接基团通过化学键而 连接的,由此造成了两个表面活性剂单体离子相当紧密的连接,致使其碳氢链间更容易产生强相互作用,即加强了碳氢链问的疏水结合力,而且离子头基间的排斥倾向受制于化学键力而被大大削弱,这就是Gemlrd表面活性剂和单链单头基表面括性剂相比较,具有高表面括 性的根本原因。另一方面。在两个离子头基问的化学键联接不破坏其亲水性,从而为高表面活性的C~mini表面活性剂的广泛应用提供了 基础。通过化学键联接方法提高表面活性和以往通常应用的物理方法不同,在概念上是一个突破。 图2 炔醇类Gemini表面活性剂

Genfini表面活性剂的优良性质: 实验表明,在保持每个亲水基团联接的碳原子数相等条件下,与单烷烃链和单离子头基组成的普通表面活性剂相比,离子型Gemini表面活性剂具有如下特征性质: (1)更易吸附在气/液表面,从而更有效地降低水溶液表面张力。(2)更易聚集生成胶团。 (3)Gemini降低水溶液表面张力的倾向远大于聚集生成胶团的倾向,降低水溶液表面张力的效率是相当突出的。 (4)具有很低的Krat~相转移点。 (5)对水溶液表面张力的降低能力和降低效率而言,Gemini和普通表面活性剂尤其是和非离子表面活性剂的复配能产生更大的协同效应。 (6)具有良好的钙皂分散性质。 (7)在很多场合,是优良的润湿剂。 从理论上讲,在极性头基区的化学键合阻抑了原先单链单头基表面活性荆彼此头基之间的分离力,因而必定增强碳链之间的结合。实验证明这是提高表面活性的一个重要突破,而且为实际应用开辟了新的途径。另一方面,由于键合产生的新分子几何形状的改变,带来了若干新形态的分子聚集体,这大大丰富了两亲分子自组织现象,通过揭示新分子结构和自组织行为间的联系有助于深刻认识两亲分子自组织 机理。为此Gemini表面活性剂正在成为世界胶体和界面科学领域各主要小组的研究方向。

聚氨酯胶粘剂

聚氨酯胶粘剂 一.组成 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基(-NCO)的胶粘剂。聚氨酯胶粘剂分为多异氰酸酯和聚氨酯两大类。多异氰酸酯分子链中含有异氰基(-NCO)和氨基甲酸酯基(-NH-COO-),故聚氨酯胶粘剂表现出高度的活性与极性。与含有活泼氢的基材,如泡沫、塑料、木材、皮革、织物、纸张、陶瓷等多孔材料,以及金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘接力。 二.发展历史 1937年,德国化学家Bayer—聚氨酯工业的奠基人,与其同事发现异氰酸酯能与含活泼氢的化合物发生反应,如二异氰酸酯与二元胺反应能制成有强度的聚合物,从而奠定了聚氨酯化学基础,并首次利用异氰酸酯与多元醇化合物制得聚氨酯树脂。 第二次世界大战期间,德国拜耳公司用4,4‘,4’‘—三苯基甲烷三异氰酸酯胶接金属和合成橡胶获得成功,应用于坦克的履带上,使聚氨酯胶黏剂首次工业化。该公司还首先以三异氰酸酯和聚酯多元醇为原料开发了商品名为Polystal的系列双组分溶剂型聚氨酯胶黏剂。为日后聚氨酯胶黏剂工业的发展奠定了基础。

美国第二次世界大战后于1953年引进德国技术,开发了以蓖麻油和聚醚多元醇为原料的聚氨酯胶黏剂。1968年,Goodyear公司开发了无溶剂型聚氨酯结构胶黏剂“,并成功地应用于汽车用玻璃纤维增强塑料的胶接。1978年又开发了单组分湿固化型聚氨酯胶黏剂,1984年美国市场上又出现了反应型热熔聚氨酯胶黏剂。 日本于1954年引进德国和美国聚氨酯技术,1960年生产聚氨酯原料,1966年开始生产聚氨酯胶黏剂。1975年日本光洋公司开发成功“乙烯类聚氨酯”水性胶黏剂,于1981年投入工业化生产。目前日本聚氨酯胶黏剂的研究与生产十分活跃,与美国、西欧一起成为聚氨酯生产、出口大国。 三.聚氨酯胶粘剂的制备与配方 1.多异氰酸酯胶粘剂(单组分) 1.配制:将多异氰酸酯单体与溶剂按一定比例混合均匀,即可配制成多异氰酸酯胶粘剂(单组分)。 2.固化原理:—NCO与被粘物表面—OH作用,可在常温或高温下固化。 3.多异氰酸树脂胶粘剂的特点: 1)多异氰酸酯分子量低,渗透力强,且反应后性高,故粘结力很强; 2)固化后,耐热、耐溶剂性能好。

化妆品中常用的表面活性剂综述

化妆品中常用的表面活 性剂综述 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

题目:综述化妆品中常用的表面活性剂 阴离子AAS

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。 用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐 一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用作乳化剂。一般与其它AAS(阴、两性、非离子)复配。

安全性:与AS相近,但刺激性略低于AS。 磺酸盐 用途:去污力太强,因此在化妆品中应用不广泛,主要用于洗衣粉。 安全性:对皮肤中等刺激,容易脱脂而变得干燥粗糙,用三乙醇胺盐复配可降低刺激性。 用途:成本低,稳定性好,刺激性地,去污能力好,很有前途的AAS。 安全性:对皮肤无致敏作用。 阳离子AAS 烷基咪唑啉盐 用途:用于香波、护发素和一些护肤品中,用作调理剂、乳化剂、抗静电剂和抗菌剂等。 安全性:pH值较高,对皮肤和眼睛有较大刺激性。制成盐后刺激性大大降低。 乙氧基化胺类 氨基上的氢被乙氧基取代。 用途:乳化剂和调理剂 安全性:浓液对眼睛和皮肤有刺激,但作为调理剂加入到化妆品中是安全的。 季铵盐 是应用最广的阳离子AAS。取代基可以是亲水基或亲油基,因此其润湿、发泡、乳化作用差别很大。季铵盐碱性较强,在酸碱中都稳定,热稳定性也好。 突出特性:对有负电荷的固体表面的吸附和杀菌消毒作用。 复配时禁配阴离子AAS、氧化物、柠檬酸钠蛋白质或一些高分子化合物等。

双组分聚氨酯胶粘剂概述讲解

双组分聚氨酯胶粘剂概述 双组分聚氨酯胶粘剂是聚氨酯胶粘剂中最重要的一个大类,用途广,用量大。通常由甲、乙两个组分组成,两个组分是分开包装的,使用前按一定比例配制即可。甲组分(主剂)为羟基组分,乙组分(固化剂)为含游离异氰酸酯基团的组分。也有的主剂为端基NCO的聚氨酯预聚体,固化剂为低分子量多元醇或多元胺,甲组分和乙组分按一定比例混合生成聚氨酯树脂。 双组分聚氨酯胶粘剂具有以下特点。 (1)属反应性的胶粘剂在两个组分混合后,发生交联反应,产生固化产物。 (2)制备时,可以调节两组分的原料组成和分子量,使之在室温下有合适的粘度,可制成高固含量或无溶剂双组分胶粘剂。 (3)通常可室温固化,通过选择制备胶粘剂的原料或加入催化剂可凋节固化速度。一般,双组分聚氨酯胶粘剂有较大的初粘合力,叫加热固化,其最终粘合强度比单组分胶粘剂大,可以满足结构胶粘剂的要求。 (4)两个组分的用量可在一定范围内调节,一般存在着一定容忍度。两组分的NCO/OH摩尔比在一般情况下大于或等于l,当固化时,一部分NCO基团参与胶的固化反应,产生化学粘合力,多余的NC0基团在加热固化时,还可产生脲基甲酸酯、缩二脲等,增加交联度,提高了胶层的内聚强度和耐热性。对于无溶剂双组分聚氨酯胶粘剂来说,因各组分起始分子量不大,一般来说NCO/OH摩尔比等于或稍大于l,有利于固化完全,特别在粘合密封件时,注意NCO组分不能过量太多。而对于溶剂型双组分胶粘剂来说,其主剂分子量较大,初粘性能较好,两组分的用量可在较大范围内调节,NCO/OH摩尔比可小于1或大于1的数倍。

当NCO组分(固化剂)过量较多的场合,多异氰酸酯自聚形成坚韧的胶粘层,适合于硬材料的粘接;在NCO组分用量少的场合,则胶层柔软,可用于皮革、织物等软材料的粘接。 双组分聚氨酯胶粘剂自问世以来,由于具有性能可调节性、粘合强度大、粘接范围广等优点,已成为聚氨酯胶粘剂中品种最多、产量最大的产品。 通用型双组分聚氨酯胶粘剂 通用型聚氨酯胶粘剂是以聚己二酸乙二醇酯为原料、以溶剂聚氨酯树脂为主成分(甲组分),以三羟甲基丙烷—T1)I加成物为固化剂(乙组分)的双组分聚氨酯胶粘剂。通用型双组分聚氨酯胶粘剂亦称101-聚氨酯胶粘剂,是上海新光化工厂最早投入工业化生产、至今仍是国内生产量最大的聚氨酯胶粘剂,国内用户达千家以上,主要用于绝缘材料、包装材料、复合膜、多孔材料、深冷保护材料等的粘接。 1.产品规格 通用型双组分聚氨酯胶粘剂要制订国家标准,目前正在起草行业标准,其主要技术指标见表。 表通用型双组分聚氨酯胶粘剂产品的规格

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 阴离子AAS

名称简称用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制 品、含药化妆品、香皂和添 加剂等…没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏 霜或乳液。主要用作皂基、 各种乳液和膏霜基体。呈碱性,稍微有刺激的感觉 硫酸(酯)盐 烷基硫酸酯盐AS很广泛,O/W型乳化剂、润 湿剂和悬浮剂,常在香波和 皮肤清洁制品使用。一般与 其它AAS复配来增加泡沫 的稳定性和粘度,并降低对 皮肤的脱脂能力。高浓度时有刺激性。但在化妆品的使用条件下是安全的

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。

用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐

一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用

表面活性剂的现状及发展趋势

表面活性剂的现状及发展趋势 摘要 表面活性剂的应用范围涵盖了人类生活和工作的各个方面。本文主要介绍了表面活性剂的概念、分类及简单的应用,还有表面活性剂在国内外的现状及发展情况。 关键词:表面活性剂分类发展现状

一、简介 表面活性剂,是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂是一类重要的精细化学品,通常具有清洗、发泡、润湿、乳化、增溶、分散等多种复合功能,广泛应用于工业、农业、医药、精细化工、化学合成和日常生活等领域,素有工业味精之称,已形成了一个独立的工业生产部门。 表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO 衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。人们一般都认为按照它的化学结构来分比较合适。即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为离子型表面活性剂和非离子型表面活性剂,其中离子型又分为阴离子、阳离子和两性表面活性剂,共四类: 1.阴离子表面活性剂亲水基团带有负电荷。主要有磺酸盐、硫酸盐、磷酸盐、羧酸盐。 2.非离子表面活性剂在分子中并没有带电荷的基团,而其水溶性来自于分子中的聚氧乙烯醚基和端羟基。 3.阳离子表面活性剂亲水基团带有正电荷。主要有季铵盐和咪唑啉系。 4.两性表面活性剂在分子中同时具有溶于水的正电荷和负电荷基团。 二、国内外发展趋势及应用 目前,发达国家在表面活性剂领域的研究已具备了完整的体系,能够实现产品研究开发多样化、系列化,开发力度非常大,并且开发理念已突破传统意义上的表面活性剂。 以表面活性剂在农药中应用为例,国外通过表面活性剂对除草剂活性作用的研究表明,表面活性剂并非只单纯地降低药液的表面张力,以提高药量而达到增效的目的,若针对各种药剂特性,采用适当种类和浓度的表面活性剂还可以促进药剂对植物的渗透作用,且对药剂具有增溶作用,可见有选择性地开发和应用

聚氨酯胶粘剂的应用与研究

聚氨酯胶粘剂的应用与研究 聚氨酯胶粘剂是指在分子链中含有氨基甲酸酯基团(-NHCOO-)或异氰酸酯基团(-NCO)的胶粘剂。其具有胶膜坚韧、耐冲击、挠曲性好、剥离强度高、有很好的耐超低温性、耐油性以及耐磨性等特点。 我国聚氨酯胶粘剂的研发起步于上世纪60年代。80年代以后,我国对水性聚氨酯胶粘剂的研究更为活跃,但与国外水性聚氨酯胶粘剂系列化大工业的水平相比,仍处于开发阶段。90年代,各行各业引进了众多的生产线,一大批三资企业相继建立,进口的产品迫切需要国产化,相关的科研院所和生产单位加大开发力度,新产品不断涌现。迄今为止,除了原有的胶粘剂品种外,无溶剂型聚氨酯结构胶粘剂、反应性聚氨酯热熔胶等国外有的胶粘剂品种我国现在也基本都有。 虽然我国聚氨酯工业已有相当规模,但与发达国家相比仍有很大差距,主要的差距是聚氨酯的总体产量不大,此外,技术水平也仍然落后于一些发达国家。因此,我国的聚氨酯产业仍有相当大的发展空间。 聚氨酯胶粘剂作为一种环保型胶粘剂,已进入工业、农业、交通、医学、国防和日常生活的各个领域,在国民经济中正发挥着越来越大的作用。那么,聚氨酯胶粘剂都具有哪些优良性能呢?下面,洛阳天江化工新材料有限公司为大家列举了聚氨酯胶粘剂的两个典型特性: 1、聚氨酯胶粘剂的粘结力强,适用范围广 由于聚氨酯胶粘剂的分子链中-NCO可以和多种含活泼氢的官能团反应,形成界面化学键结合。因此,对多种材料具有极强的粘附性能。不仅可以粘结多孔性的材料,如泡沫塑料、陶瓷、木材、织物等,而且可以粘接多种金属、无机材料、塑料、橡胶和皮革等,是一种适用范围很广的胶粘剂。 2、聚氨酯胶粘剂具有突出的耐低温性能 在极低的温度下,一般的高分子材料都转化为玻璃态而变脆,而聚氨酯胶粘剂即使在-250℃以下仍能保持较高的剥离强度,同时其剪切强度随着温度的降低反而大幅度上升。 虽然聚氨酯胶粘剂优点良多,但同时也存在着一些缺陷与不足,下面是聚氨酯胶粘剂常见的一些不足之处以及洛阳天江化工的专家针对这些不足之处提出的几点改进方法:

药物中使用的表面活性剂综述

表面活性剂应用 表面活性剂是一类能够改变溶液性质的表面活性物质。 表面活性剂能改变体系界面状态,从而产生润湿或反润湿、乳化或破乳、起泡或消泡以及增溶等一系列作用。 1. 口服制剂中作增溶剂 在难溶性药物的水溶液中加入非离子型表面活性剂可使药物增溶。 采用自乳化系统以改善脂溶性药物的生物利用度,在体内易形成良好的乳滴,可通过淋巴吸收,克服首过效应,适用于水溶性和脂溶性药物。 主要包括:聚乙二醇辛酸、葵酸甘油酯、聚乙二醇月桂酸甘油脂及聚乙二醇硬脂酸甘油酯。 2. 在混悬剂中做助悬剂 优点:载药量大、防止药物氧化水解、掩盖药物不良气味、易吞咽等。 例子:蜂蜡、卵磷脂、羟甲基纤维素 3. 乳剂、纳米乳中作乳化剂 烷基聚葡糖苷(APG)表面活性剂形成纳米乳 4. 在靶向制剂中的应用 在各种抗癌药剂中,表面活性剂的主要作用是乳化和增溶。 表面活性剂的双亲结构能显著降低药物与水相间的界面张力,利用其乳化作用增加药物在水中的溶解度,从而提高疗效。 许多药物仅利用表面活性剂的乳化作用,其浓度达不到治疗的要求,这时还需要利用表面活性剂的增溶作用。 抗癌制剂中表面活性剂:一般是非离子表面活性剂,如吐温、司盘。

一些非离子表面活性剂可单独使用或与其它脂质混和物形成非离子表面活性剂囊泡:单(双)烷基聚三醇醚类、司盘类、吐温类、苄泽类等。 5. 表面活性剂在经皮给药制剂中的应用 渗透促进剂 阴离子型的月桂酸钠、十二烷基硫酸钠; 阳离子型的苯扎溴胺; 非离子型的聚氧乙烯烷基醚、吐温、泊洛沙姆等。 表面活性剂在药物制剂中的应用 1. 在片剂中的应用 (1)片剂的润湿剂和粘合剂 片剂要求所用的药物能顺利流动,黏度不能太大,服用后在体液作用下又能迅速崩解、溶解和吸收。 粘合剂往往也是润湿剂 常用的表面活性剂润湿剂、粘合剂有羧甲基纤维素钠、聚乙二醇等 (2)崩解剂 片剂中加入适量的表面活性剂可提高片剂的润湿性能,加速水分的透入,增大药物的溶出速度,使片剂较快崩解 表面活性剂有月桂基硫酸钠、溴化十六烷基三甲胺、硬酯醇磺酸钠等 使用表面活性剂的方法:(a)溶于粘合剂中;(b)与崩解剂淀粉混合加于干颗粒中;(c)制成醇溶液喷在干颗粒上。 表面活性剂化学及其一般相行为 表面活性物质是有机分子当在溶剂中的浓度较低时它们易吸附于界面从而

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 AAS 类型 特点代表性产品应用 阴离 子 去污能力强,主要用于清洁 洗涤 脂肪酸皂(肥皂)、 十二烷基硫酸钠 清洁洗涤产品 阳离 子 较好的杀菌性与抗静电性, 应用于柔软去静电 高碳烷基的伯仲叔 季盐 洗发水、护发素 两性良好的洗涤作用,很温和,常与 阴或阳离子AAS搭配 椰油酰胺丙基甜菜 碱、咪唑啉 洗发水、洁面品 非离 子 安全温和,无刺激性,具有 良好的乳化、增溶等作用 失水山梨醇脂肪酸 酯(Span)和其环氧乙 烷加成物(Tween) 应用最广,常用于膏 霜、乳液中阴离子AAS 名称简 称 用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制品、 含药化妆品、香皂和添加剂等… 没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏霜 或乳液。主要用作皂基、各种乳液 和膏霜基体。 呈碱性,稍微有刺激的 感觉 硫酸(酯)盐 烷基硫酸酯盐A S 很广泛,O/W型乳化剂、润湿剂 和悬浮剂,常在香波和皮肤清洁制 品使用。一般与其它AAS复配来增 加泡沫的稳定性和粘度,并降低对 皮肤的脱脂能力。 高浓度时有刺激性。但在化 妆品的使用条件下是安全 的 烷基聚氧乙烯醚硫酸 酯盐 A ES 香波的主要表面活性剂,也用 于皮肤清洁和沐浴制品,较少用作 乳化剂。一般与其它AAS(阴、两性、 非离子)复配 与AS相近,但刺激性 略低于AS 磺酸盐 烷基苯磺酸盐L AS-Na 去污力太强,因此在化妆品中 应用不广泛,主要用于洗衣粉 对皮肤中等刺激,容易 脱脂而变得干燥粗糙,用三 乙醇胺盐复配可降低刺激

性。 烷基磺酸盐S AS 低成本,稳定性好,刺激性低, 去污能力好,很有前途的AAS 对皮肤无致敏作用 N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。 用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐 一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。

聚氨酯胶粘剂的发展史

聚氨酯胶粘剂的发展史 来源:阿里巴巴发布时间:2009-5-24 11:21:01 聚氨酯(PU)胶粘剂是分子链中含有氨酯基(--NHCOO--)和/或异氢酸酯基(--NCO)类的胶粘剂。聚氨酯胶粘剂由于性能优越,在国民经济中得到广泛应用,是八大合成胶粘剂中的重要品种之一。1940年德国法本公司(I.G.FarBen,Bayer公司的前身)的研究人员发现异氢酸酯具有特殊的粘合性能,并将三苯基甲烷-4,4',4"-三异氢酸酯成功地用于金属与冬钠橡胶的粘接,在第二次世界大战中使用到坦克履带上。50年代以后,Bayer公司开发了Desmodurs系列(二异氢酸酯和多异氢酸酯)和Desmophens系列(低分子量端羟基聚酯多元醇)。按一定量的Desmodurs和Desmophens配置成Polystal 系列商品(双组分溶剂型聚氨酯胶粘剂)。Polystal系列双组分聚氨酯胶粘剂具有可低温固化、粘合强度好以及耐水、耐溶剂、耐低温等优点,是当时最好的胶粘剂,为日后聚氨酯胶粘剂工业的发展奠定了基础。 美国于第二次世界大战后开始学习德国的聚氨酯工艺,1953年引进了聚氨酯胶粘剂技术,同时开发一蓖麻油和聚醚多醇为原料的聚氨酯胶粘剂,美国B.F.Goodrich公司也开发了聚酯型热塑性聚氨酯胶粘剂。1968年Goodyear公司开发了无溶剂型聚氨酯结构胶粘剂“Pliogrip”,成功地应用于汽车玻璃纤维增强塑料部件的粘接。1978年又开发了单组分湿固化型聚氨酯胶粘剂,并开始在其趁工业与建筑部门应用。1984年美国市场上又出现了反应型热熔聚氨酯胶粘剂,解决了聚氨酯胶粘剂使用时的公害问题。 日本于1954年引进德国和美国聚氨酯技术,1960年生产聚氨酯材料,1966年开始生产聚氨酯胶粘剂。1975年日本光洋公司开发成功“乙烯类聚氨酯”水性胶粘剂,并于1981年投入工业化生产。日前日本聚氨酯胶粘剂的研究与生产十分活跃,并与美国、西欧一起成为聚氨酯生产、出口大国。 我国大连染料厂于1956年最早研制并生产三苯基甲烷三异氢酸酯(列克纳胶),牌号定位JQ-1,很快又生产了甲苯二异氢酸酯(TDI),为我国聚氨酯工业打下了基础.上海合成树脂研究所首先研究成功双组分溶剂型聚氨酯胶粘剂,后又上海新光化工厂将该胶的制备工艺进行改进,于1966年开始投入生产,牌号定位铁锚-101,至今荏为我国聚氨酯胶粘剂中产量最大的品种.80年代以来,各工业部门陆续从国外引进许多先进的生产线和产品,其中需要大量进口的聚氨酯胶粘剂与其配套,因此,促进了国内研究单位加速聚氨酯胶粘剂的开发,特别是在1986年以后,我国聚氨酯工业进入许素发展时期.1994年国家正式批准成立"中国聚氨酯工业协会",下设"聚氨酯胶粘剂委员会",该委员会业已成为全国聚氨酯 胶粘剂技术与信息交流的中心。 国外聚氨酯胶粘剂的市场发展动态欧洲(主要是德、法、英三国)聚氨酯胶粘剂1988年产量为6.85万吨,1993年为7.2万吨;聚氨酯密封剂市场销量为1.5万吨,1993年增长到1.9万吨。年均增长率分别为1%和5%。生产聚氨酯胶粘剂的主要厂家有15个。 美国聚氨酯胶粘剂1990年消耗量为4.6万吨(100%固含量计),1995年达到5.9万吨,平均年增长率为4.8%,预计2000年将达到7.3万吨。聚氨酯密封胶1990年产量为2.8万吨,销售额为 1.24亿美元。美国聚氨酯胶粘剂生产厂家有115家,其中专业生产厂家有15个。主要消费市场是纺织、木材、包装。其中纺织与木材工业上的应用发展最快,纺织应用胶粘剂几乎占聚氨酯胶粘剂总量的1/2,主要用作地毯背衬胶粘剂。 日本聚氨酯胶粘剂1980年产量为5808吨,1990年达到3.3万吨,平均年增长率为20%。根据最近报道,日本生产的聚氨酯胶粘剂一半是用于食品包装复合薄膜,其次为制鞋与木材工业。聚氨酯密封胶1988年产量为2.3万吨,1990年达到2.8万吨。日本聚氨酯胶粘剂生产厂家有34个。 目前世界胶粘剂年总产量约为1000万吨,而聚氨酯胶粘剂仅有20万吨,因此聚氨酯胶粘剂是正在发展中的一类胶粘剂。 国外聚氨酯胶粘剂的技术发展动态 由于聚氨酯胶粘剂具有许多优异性能,在国外已广泛用于纺织、土木建筑、交通运输、电子元件、制

皮革表面活性剂的应用及发展概述

皮革表面活性剂的应用及发展概述 --返回-- 皮革表面活性剂的应用及发展 1.引言 表面活性剂(具体分类详见附1)按其分子量大小可分为低分子表面活性剂(主要是典型表面活性剂)和高分子表面活性剂(包括特种表面活性剂﹕含硅表面活性剂、含氟表面活性剂等),因其具有独特的两亲(亲水、亲油)分子结构,具有乳化、分散、润湿、渗透、增溶、匀染、抗静电、柔软等多种功能,广泛应用于各行各业,被誉为“工业味精”。在皮革行业,表面活性剂的应用贯穿于从生皮到成品的各个工序,是皮革制造中不可缺少的一类重要化工材料。其应用包括两个方面,一是直接在制革工艺中的应用,二是在皮革专用助剂制备过程中的应用。表面活性剂能够促进其中有效成分的渗透、扩散、吸收或铺展等,缩短生产周期,节约化工材料,提高皮革质量。

随着应用技术和复配技术的提高,表面活性剂已成为皮革专用助剂的一个重要组成部分。浸水助剂、浸灰助剂、浸酸助剂以及bc%c1">脱脂剂与加脂剂等许多助剂,都是以表面活性剂为主,与其它功能组分复配而成的产品﹔聚合物树脂复鞣剂、填充剂等则是通过乳液聚合(聚合时借助表面活性剂的乳化、分散和稳定作用)而成,或者在合成完成后再加入表面活性剂作为辅助材料,利用乳化、分散、渗透、增溶等性质来加强皮革专用助剂与皮革胶原纤维的作用。从某个角度讲,复鞣剂、填充剂以及聚合物加脂剂和具有复鞣、加脂与防水的多功能材料大多是水溶性或水分散性的高分子表面活性剂。它们的使用能赋予皮革特殊的性能,明显提高 皮革的档次。涂饰剂要在皮革表面良好成膜,表面活性剂的作用也非常突出。 皮革的湿加工是在水体系中进行,化工处理助剂的乳化、分散、渗透等起着非常关键的作用,是控制皮革质量的关键因素。可以说,在制革生产中,渗透与结合以及耐水(防水)与润湿始终是一对需要解决的矛盾。为此,合理选择和使用具有独特性能的表面活性剂是关键。现代皮革制品对制革工业提出了新的要求﹕服装、鞋面革的防水、防污、耐洗性要求﹔汽车座套革的高耐磨、高耐湿擦等高物性和低雾化性要求﹔国家对环保的严格要求和民众环保意识的觉醒,清洁化工程提到了议事日程,绿色皮革化工材料的研发和使用势在必行。如何开发一些具有高结合能力、多功能特性、可生物降解的专用表面活性剂,有效解决这些矛盾、满足这些新的要求,就是摆在表面活性剂工作者和皮革专用助剂工作者面前的一大课题。 本文主要以皮革制造工艺中各不同工序所使用的处理助剂为主线,联系它们对表面活性剂性能的不同要求,来讨论表面活性剂应用的发展动态和需要解决的问题。 2.鞣前处理助剂 皮革鞣前处理,包括浸水、脱脂、浸灰、脱灰到浸酸、软化等工序,每道工序都离不开表面活性剂的作用和贡献。 2.1浸水助剂 早期浸水常使用润湿渗透力强的渗透剂JFC和渗透 剂T等典型表面活性剂。而现代制革工艺中对于浸水助剂除要求具有良好的润湿、渗透、乳化、洗涤性能外,还要求具有杀菌、抗硬水、能生物降解等多种功能,并且它们所含的表面活性剂在完成使命后能够通过水洗基本除去。 为了满足要求,首选复配技术,可以优选出具有相关性能的表面活性剂,与杀菌剂或进行复配。如BASF公司的MollescalBW浸水剂为非离子表面活性剂聚醚有机化合物与杀菌剂的混合物。配合少量的纯碱,可以加速浸水效果,还具有脱脂和清洁皮面的效果。TFL公司的BorronA为阴离子表面活性剂,具有很好的回湿效果和分散、乳化能力,用于浸水也可用于浸灰,还具有高效乳化天然脂肪的能力。德赛尔公司的KF杀菌浸水剂为杀菌剂和阴离子表面活性剂的混合物,能加速浸水过程,使原皮内外层充水均匀一致,并具有乳化油脂、清除污垢的效果。 2.2bc%c1">脱脂剂 脱脂工序不仅要求bc%c1">脱脂剂具有乳化、去污、洗涤、增溶等作用,而且要求其能够深层脱脂,所以bc%c1">脱脂剂必须有强渗透力和破坏脂腺的功能。可见,惟有强的乳化性是不够的,这与其它领域应用时不同。 具有脱脂作用的材料有﹕碱、表面活性剂、溶剂和脂肪,它们各有特点。但现今通常使用的主要有两种﹕一是以表面活性剂为主成分,一是以脂肪为主成分。这里只讨论前者。脱脂实践发现,单独使用表面活性剂效果不理想。要么在制备bc%c1">脱脂剂时就复配少量的纯碱、小苏打或溶剂,要么在使用表面活性剂进行脱脂时加入少量的纯碱、小苏打或溶剂,这样可显示良好的协同作用。程凤侠等研究不同-EO-链长度的脂肪醇聚氧乙烯醚硫酸盐,发现中等链长者之乳化性、渗透性良好,而且以二乙醇胺盐最优。进行脱脂试验表明,当与适量纯碱结合使用时,脱脂效果最优。这是因为少量的NaHCO3或Na2CO3,能使油脂易于皂化和水解,并使皮革纤维适度膨胀,利于脱脂。有机溶剂因其溶解油脂能力强,具有深层脱脂效果,因此国内外都有将有机溶剂(如三氯乙烯或脱臭煤油)与非离子表面活性剂(如OP-7等)一起用于高油脂含量生皮脱脂的。但是,当今欧盟对使用短链氯化物和含有壬基酚、辛基酚的化料进行了限制。 研究表明,表面活性剂的疏水基结构与皮内油脂的分子结构越相近,脱脂效果越好﹔非离子表面活性剂比阴离子表面活性剂深层脱脂能

阴离子表面活性剂的生产现状及发展趋势

科学与财富 纤就可以虚拟成多根光纤使用,便于灵活调度,提高了业务开通速度,同时降低了开通成本。 (2)、建设阶段 在光缆建设中,根据之前的规划图,通过网管中心下发电子工单,施工人员在现场一次批量跳接,连接起所有共享光缆,由于所有光纤端口都有独一无二的ELD电子标签,可明确界定每根跳纤的连接关系,把所有光纤一步跳接到位,之后根据业务发展情况,可以做“加法”或“减法”,灵活适配光纤网络业务的发展,由于现场施工人员的每个动作都是在网管控制下进行,可确保资源数据的完全准确。 (3)、使用阶段 通过引入智能光纤管理系统,当某区域有业务需求时,运营商可直接从网管中心查找可用光路由进行挑选。读出适配情况选择合适的光路由,并从已连接好的共享光缆中选取吻合的光纤;之后由网管下发施工工单,仅在靠近用户侧和局端设备侧各进行一次跳接即可开通业务。中间无需任何跳接,大大缩短了响应时间,为快速抢占专线业务提供了有力支撑。 配合智能ODN网管,业务部门已经使用了哪些光纤链路,哪些链路目前闲置……这些实际数据,网管中心可随时提取。统计出光纤利用率等重要网络指标。如果某根光缆质量出现恶化,光纤衰减增大,光纤故障诊断系统会自动诊断并发出警告;网管收到告警信息,会重新分配一条新的光路由给受影响的用户;同时,精确定位故障点,指导运维快速修复故障。故障修复后,可大胆做“减法”。从网管上释放可用的光纤资源,化整为零重新整合再利用,从而提高光纤利用率。 (4)、调整阶段 光纤网络可灵活调整,动态匹配业务发展。由于业务发展的不平衡,当某一区域的业务量很大,前期规划的共享光缆即将使用完毕时,网络中心会提前收到资源使用预警;而另一区域业务一直很少,前期规划的光缆太多,这时运营商可以经过网优仅仅改动未使用的端口,把更多的共享光纤分配给业务量大的区域,在项目专家团队审核通过后,一次生成批量跳接工单,完成共享光缆的调整,最终形成均匀的光纤利用率。 结束语: 运营商通过引入ODN智能光纤管理系统,资源数据实现一键采集和自动录入,减少了数据的人工校验和录入;同时通过实时监控和定时巡检,确保了光纤资源数据100%准确;管线资源信息、设备信息、端口状态等可在ODN网管上清晰显示,光缆资源使用情况一目了然,提高了业务发放效率,缩短了故障处理时间,实现了光纤资源零浪费、业务发放零等待、业务开通零返工,极大地节省运维费用。■ 阴离子表面活性剂的生产现状及发展趋势 王海燕1王佐2朱小亮1 (1.江苏新源水务有限公司223809;2.江苏颖盛化工有限公司) 表面活性剂是上世纪三十年代发展起来的一门新型化学工业,是国内外化学工业中发展最迅速的专门化学品领域中知识密集型、技术开发型行业。近年来,随着石油化学工业的迅速发展,为表面活性剂的生产提供了丰富的原料,使世界表面活性剂的产量迅速增长,商品种类越来越多,其应用范围也越来越广,成为国民经济的基础工业之一。有“工业催化剂”、 “工业味精”之称。表面活性剂最常用的分类方法是按分子结构中带电性的特征分为阴离子型、离子型、阳离子型和两性表面活性剂四大类。阴离子表面活性剂由于其性质、性能和价格方面的优势,无论在工业应用方面还是在民用产品方面都得到了广泛应用,在众多配方中被用做主要活性组分,而阴离子表面活性剂又分为羧酸盐、硫酸酯盐、磺酸盐和磷酸酯盐四大类,具有良好的去污、发泡、分散、乳化、润湿等特征。广泛用作洗涤剂、起泡剂、润湿剂、乳化剂和分散剂。而磺酸盐类表面活性剂又是阴离子表面活性剂中产量最大、应用领域最广的一种。 下面就磺酸盐类表面活性剂得合成现状和主要发展趋势做主要概述: 一、生产现状 磺酸盐表面活性剂按亲油基或磺化分为(一)石油磺酸盐(磺酸基在芳环或环烷上)(二)烷基芳基磺酸盐(磺酸基在芳环上)(三)烷基和烯基磺酸盐(四)聚氧乙烯醚磺酸盐(磺酸基在氧乙基链端)(五)多环芳环磺酸盐缩合物(磺酸基在芳环上)等。除此之外,还有烷基苯醚磺酸盐。目前常用的表面活性剂有三种:石油磺酸盐、烷基苯磺酸盐和烯烃磺酸盐。 1、石油磺酸盐和烷基苯基磺酸盐这两种传统的磺酸盐表面活性剂的合成及性质有大量的文献进行了报道。石油磺酸基型阴离子表面活性剂由富芳烃原油或馏分磺化得到的产物,烷基苯基磺酸盐包括烷基磺酸盐、烷基苯基磺酸盐、重烷基苯基磺酸盐等。在磺酸盐型阴离子表面活性剂中,以石油磺酸盐型最普遍。石油磺酸盐作为化学采油用剂具有表面活性高、原料易得、生产工艺简单、成本较低、配伍性好等特点,受到普遍关注,进入了先导性实验。烷基炭数为C14-C16的重烷基苯磺酸盐可与我国大多数油田的原油形成超低界面张力体系,因而成为重要的趋油用表面活性剂。 2、α-烯烃磺酸盐(AOS)它的主要成分是:烯烃磺酸盐和羧基磺酸盐,早在20世纪60年代末α-烯烃磺酸盐就已经通过烯烃的磺化反应而工业化了,AOS与钙镁离子生成的盐仍然是一种较好地表面活性剂。AOS具有抗盐性好、油/水界面张力低、良好的起泡力和泡沫稳定性等特点,其生物降解性比烷基苯磺酸盐好,与烷基硫酸盐(AS)接近,因而对人体和环境温和,尤其适用于配制重垢低磷或无磷洗衣粉。此外,又由于AOS热稳定性好,乳化能力强,在工业清洁,石油开发及输送等领域具有相当可观的应用前景。 二、发展趋势 当前,世界表面活性剂市场呈现稳定而缓慢的增长趋势,根据国外一些大公司及专家的预测,未来表面活性剂工业的发展趋势主要是:1、提高表面剂的生物降解性。表面活性剂对环境生态的影响仍然是个重要问题,因此解决表面活性剂的生物降解性和毒性仍是今后一大课题,减少对环境的污染,使表面活性剂生产和使用更加安全。2、大力开发和利用天然资源,开发和利用天然脂肪醇和棕榈油,糖类、淀粉松香及其衍生物为原材料制造表面活性剂,使其符合生态与环保要求。3、醇系表面活性剂需求量将持续增长,在家用洗涤剂中,醇系表面活性剂耗量大幅增加,其主要原因是洗涤剂新品种开发使其活性物含量增加;醇系表面活性剂的性能优越,天然油脂开发和利用提供充足和价格平稳的高炭醇资源。4、功能性和有效性将成为表面活性剂的开发动向。在家用洗涤剂与化妆品中要求提供温和性、低刺激、去污力好、相容性佳的表面活性剂,满足低温、硬水少用助剂要求的表面活性剂以及特种用途用表面活性剂等。5、表面活性剂在高新技术领域的应用,随着高科技的不断发展,表面活性剂在高新技术领域的应用越来越广,其中包括在能源、新材料、生物、生命科学、分离、微电子技术、宇宙、海洋等领域的应用。 三、结束语 在工业生产和日常生活中,随着环保意识的增强,人们对表面活性剂的开发提出了更高的要求,要求产品具有高表面活性剂的同时,还要生物降解性好、无(或低)毒、无刺激、多功能性,并且采用再生资源进行清洁生产。由于表面活性剂应用于各种合成洗涤剂及个人护理用品中,所以对表面活性剂温和型、无刺激性的要求越来越高。在表面活性剂的实际应用中,成本仍然是决定性因素,如何降低生产成本应是表面活性剂的研究重点。因此,低成本、绿色、温和型的表面活性剂将会有更广阔的市场前景,也是目前表面活性剂研究方面的热点课题。■ 科学研究 4

我国聚氨酯胶粘剂的发展现状及趋势

·专题综述· 我国聚氨酯胶粘剂的发展现状及趋势 陆冬贞 孙 杰 (上海新光化工厂 201811) 摘 要:评述了我国聚氨酯胶粘剂的发展现状和趋势,对一些主要胶种如鞋用聚氨酯胶、通用型聚氨酯胶、复合膜用聚氨酯胶粘剂、单组份聚氨酯液体胶、无溶剂聚氨酯结构胶、水性聚氨酯胶粘剂、单组份湿固化聚氨酯密封胶、聚氨酯泡沫密封剂、反应型聚氨酯热熔胶等的发展状况、市场和趋势分别作了概述。 关键词:聚氨酯;胶粘剂;密封胶;市场概况;发展趋势 聚氨酯胶粘剂(简称P U胶)以其优良的粘接性、突出的耐油、耐冲击、耐磨、耐低温等特性,使其自德国工业化60多年来,得到了迅速的发展。据报道,2004年全球胶粘剂及密封胶的消费总量约合967万t,聚氨酯胶粘剂生产量约为59万t,我国聚氨酯胶粘剂生产量约为20万t左右[1,2]。起步较早的工业发达国家,特别是美国、德国、法国、日本等已步入了高度发达的阶段,近年来仍保持着3%的增长率。 1 我国聚氨酯胶粘剂的发展现状 我国聚氨酯胶粘剂起步于上世纪60年代,上海合成树脂研究所率先开发成功通用型P U101胶。后由新光化工厂改进工艺、生产扩大化,至今已有40年。目前我国聚氨酯胶粘剂的生产企业约有400多家,其中约有20多家规模较大的企业分布在广东、福建、浙江等东南沿海地区。据行业协会统计,我国大陆胶粘剂2004年总销售量约379万t,反应型聚氨酯胶粘剂(包括密封胶)约为20.5万t,分别比上年增加13.1%和13.9%[3]。同期台湾地区的聚氨酯胶粘剂产量约为4.77万t,比上年增长3.14%[4]。预计到2010年我国胶粘剂总产量将达730万t,年均增长11.5%;反应型聚氨酯胶粘剂约为40.5万t,年均增长12%[3]。 1.1 通用型聚氨酯胶粘剂 通用型聚氨酯胶粘剂是我国最早合成的P U 胶,一般以聚己二酸乙二醇酯与T D I反应得到端羟基P U树脂溶于有机溶剂为主成分,以三羟甲基丙烷(有的用丙三醇)与T D I反应所得加成物的醋酸乙酯溶液为固化剂的双组分胶,至今仍然是溶液聚合法合成P U胶的最大胶种之一。目前全国约有30多家生产单位,总产量约1.5万~1.6万t,其中上海新光、江苏金坛、浙江新东方油墨等规模较大。 通用型聚氨酯胶粘剂广泛用于金属和非金属材料的粘接,特别是电绝缘材料涤纶薄膜与多孔性材料的复合及一般包装装饰材料等的复合。目前已开发出防冻型、耐温型、增强型、快固型及柔软型等系列产品。 1.2 鞋用聚氨酯胶粘剂 我国是世界上最大的制鞋出口国,上世纪80年代末开始使用溶剂型P U胶,最早在大陆投资建厂生产P U鞋用胶的是我国台湾的鞋用胶生产企业,目前我国已有各类鞋用胶生产厂200多家。其中南海南光、霸力、广东多正化工科技公司等几家是中国乃至世界上最大的鞋用胶生产厂。新建的广东多正化工科技公司(与新加坡合资)年产能力达10万t/a。由南海霸力新建的珠江裕田化工制品公司设计能力也有6万t/a[5]。此外台湾大东、南宝、中山伟民、镇江金宝等规模也较大,其中台湾大东等公司还生产水性P U鞋用胶。 目前我国P U鞋用胶年生产量约有14万~15万t,除国内使用以外,还部分出口。由于P U胶性能优良,使用P U胶的比例逐年递增。目前在外底胶中P U胶已占70%以上[5]。 · 1 · 2006年第21卷4期2006.V o l.21N o.4 聚氨酯工业 P O L Y U R E T H A N EI N D U S T R Y

相关文档
最新文档