浅谈电压互感器开口电压

浅谈电压互感器开口电压
浅谈电压互感器开口电压

浅谈电压互感器开口三角电压

摘要:电压互感器(PT)的开口三角电压回路对电力系统中的保护的正常运行起着重要作用,开口三角电压回路接线错误将会引起继电保护装置的误动作或拒动。本文分析了电压互感器(PT)在直接接地系统和非直接接地系统中,发生故障时开口三角电压形成原理;总结了开口三角电压回路接线错误对继电保护的危害,并提出了防范措施以保证电网的安全稳定运行。

关键词:电压互感器;开口三角电压;接线错误;影响;防范措施;

引言

在电力系统中,PT是一二次系统的联络元件,能正确反映电气设备的运行情况。其中PT的开口三角电压回路在电力系统的保护中至关重要,若其接线错误将导致保护的拒动或误动,严重危及电力系统的稳定可靠运行。

1. 相关概念:

PT三相的三个二次绕组“da-dn”、“db-dn”、“dc-dn”,开口三角就是“da-dn”中的dn与“db-dn”中的db相连,“db-dn”中的dn与“dc-dn”中的dc相连,从“da-dn”中的da与“dc-dn”中的dn引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压U△,就是开口三角电压。开口三角形端电压等于三相对地电压的向量和的。当三相对地电压平衡时,向量和等于零,开口电压理论上为零,但实际上因漏磁等因素的影响,一般开口电压不为零,而有几伏的不平衡电压。当发生接地故障时,三相对地电压不平衡,于是开口电压不再为零。

由于一般二次仪表的正常运行电压最高是100V,为了达到这个目标,就将PT变比作成固定形式。在非直接接地系统中,开口电压组额定电压作为100/3V,故PT的变比为(UN/√3)/(100/√3)/(100/3)V(UN为一次系统的额定电压)。在中性点直接接地系统中,开口电压绕组额定电压作为100V,故PT的变比为(UN/√3)/(100/√3)/(100)V。这样,无论是直接接地系统,还是非直接接地系统发生单相接地故障时(完全接地),开口电压都是100V。

2.PT开口电压的形成原理:

正常运行时,电压对称,如下图一所示:

在中性点不接地系统:当系统发生单相接地故障时,电压不对称,PT一次绕组相电压一相为零,另两相升高√3倍,相应的二次绕组、剩余电压绕组的相电压也升高√3倍。剩余电压绕组的三相绕组中,一相电压为零,另两相电压为√3×100/3V,且两相电压夹角为60度,于是PT二次侧输出为幅值2√3×U相的两相矢量和,所以开口三角的输出为100V。如下图二所示:

在中性点直接接地系统,当系统发生单相接地故障时,由于一次电压被强制为0V,而非故障相的电压大小和相位均与故障前的相同,所以二次侧开口绕组刚好有一相为0V,所以三相和刚好缺了100V,此时开口电压为100V。如下图三所示:

3. PT开口三角电压在继电保护中的运用

在非直接接地系统中,由于非直接接地系统发生单相接地后,各相对地的电压发生了位移,但各相间的线电压是维持不变的,不影响对用户的供电,所以允许继续运行2小时。因此,开口电压一般仅作为接地报警用,将开口电压接入小电流接地选线装置,让其开口电压与零序电流共同判断选出是哪一支路接地并报警。

而在直接接地系统中,开口电压通常接入主变保护,作为主变的后备保护,系统发生接地故障产生零序电压对不接地变压器中性点绝缘造成危及时,如果棒间隙不能及时被击穿,由间隙零序过压保护作为后备切除变压器,以保护中性点对地的绝缘。于是当开口电压超过零序过压定值,主变保护动作跳开开关。另外,也有保护引入开口电压,让其与零序电流共同组成带方向的零序电流保护。

4. 若开口三角电压接线错误的影响

在非直接接地系统中,若开口电压极性接反,小电流接地选线装置将会误报,不接地的线路报接地,显然已不能正确选出故障线路。

而在直接接地系统中,作为主变零序过压保护的开口电压若接线错误,比如构成开口的其中一相极性接反将会产生200V开口电压,引起误跳主变。若由于接线错位使开口电压未真正接入零序过压保护,故障时主变将拒动。作为用开口电压判方向的零序电流保护,若开口电压极性接反,在故障时,零序电流保护将拒动。可见开口电压接线正确性的重要。然而实际电网中,因为电压互感器的开口三角形接线错误引起的保护误动和拒动屡见不鲜。

5. 防范措施

为了避免此类事故的发生,需要在设备验收时就重点做好把关。①不能以检查3U0 回

路是否有不平衡电压的方法来确认3U0 回路良好。②不能单独依靠“六角图”测试方法确证3U0构成的方向保护的极性关系正确。③可以包括电流及电压互感器及其二次回路联接与方向元件等综合组成的整体进行试验,以确证整组方向保护的极性正确。④其中:对于正常时采用自产3U0 ,而PT 断线时采用外接3U0 的保护装置一定要验证整组方向保护的极性正确。⑤最根本的办法,是查清电压及电流互感器极性,所有由互感器端子到继电保护盘的联线和盘上零序方向继电器的极性,作出综合的正确判断。⑥要确保在电压互感器的开口三角形接线回路没有装设熔断器(因为其正常运行时开口电压是比较低的,如果发生熔断器接触不良或自动开关断开就不容易被发现,从而使保护拒动或在接地时不发信)。

6.结束语

继电保护作为保障电网安全稳定运行的第一道防线,担负着保卫电网和设备安全运行的重要职责,而开口三角电压在继电保护中至关重要。本文根据电压互感器开口三角电压的形成原理,分析了不同系统发生接地故障时如何形成开口电压,简述了该开口电压在保护中的应用及错误接线导致的危害,并提出了相应防范措施。

参考文献

[1] 天津大学贺家李,宋从矩编电力系统继电保护原理(第三版) 中国电力出版社,2000.7

[2] 电力系统继电保护实用技术问答(第二版)/国家电力调度通信中心编中国电力出版社,1999.11

电压互感器常见接线图 (图文) 民熔

电压互感器接线图 电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位; 而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 民熔电压互感器简介: JDZ-10高压电压互感器 10kv 半封闭式 0.5级 羊角型

特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片 电压互感器的电力系统通常有四种接线方式。电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。1、单相电压互感器接线方式 一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。二、两个单相电压互感器互V/V型的接线方式

两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。广泛应用于20kV以下中性点不接地或经消弧图接地的电网。3、三台单相电压互 感器Y0/Y0接线方式 三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型

电压互感器常见故障及处理

电压互感器常见故障及处理: (1)电压三相指示不平衡:可能是保险损坏。 (2)中性点不接地:三相不平衡,可能是谐振,或受消弧线圈影响。 (3)高压保险多次熔断:内部绝缘损坏,层间和匝间故障。 (4)中性点接地,电压波动:若操作是串联谐振,没有操作是内绝缘损坏。 (5)电压指示不稳:接地不良,及时检查处理。 (6)电压互感器回路断线:退出保护,检查保险并更换,检查回路。 (7)电容式电压互感器的二次电压波动:可能是二次阻尼配合不当。二次电压低,可能接线断或分压器损坏。二次电压高,可能是分压器损坏。 (8)声音异常:电磁单元电抗器或中间变压器损坏。 电压互感器的作用 电压互感器是一种电压变换装置,有电压变换和隔离两重作用,它将高压回路或低压回路的高电压转变为低电压(一般为100V),供给仪表和继电保护装置实现测量、计量、保护等作用。 另外,某些电压互感器(或者其某一二次绕组)也用于从一次线路取点,用于给二次回路供电,这种互感器或绕组的特点是二次额定电压一般为220V,且二次负荷较大。 电压互感器的原理 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式 电压互感器的分类 (1)按安装地点可分为户内式和户外式。35kV及以下多制成户内式;35kV以上则制成户外式。 (2)按相数可分为单相和三相式,35kV及以上不能制成三相式。 (3)按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。 (4)按绝缘方式可分为干式、浇注式、油浸式和充气式,干式浸绝缘胶电压互感器结构简单、无着火和爆炸危险,但绝缘强度较低,只适用于6kV以下的户内式装置;浇注式电压互感器结构紧凑、维护方便,适用于3kV~35kV户内式配电装置;油浸式电压互感器绝缘性能较好,可用于10kV以上的户外式配电装置;充气式电压互感器用于SF6全封闭电器中。 (5)此外,还有电容式电压互感器,电容式电压互感器实际上是一个单相电容分压管,由若干个相同的电容器串联组成,接在高压相线与地面之间,它广泛用于110kV~330kV的中性点直接接地的电网中。 电压互感器工作原理

浅析电压互感器开口三角形接线错误的判断

浅析电压互感器开口三角形接线错误的判断 电压互感器二次接线柱通常有三个绕组,一组用于测计量接成星形状、一组用于保护接成星形状、另外一组接成三角形状用于零序电压保护。当开口三角形绕组发生接线错误时,会在开口处产生200V的高电压,需要保护人员快速定位接线错误处,排除故障。利用测量值来判断定位错误接线位置是一种快速的方法。 标签:电压互感器;开口三角;测量值 1 概述 电压互感器的星形接线绕组在一次额定电压运行下其二次理论值为57.7V,三角形接线的各绕组其二次理论值为100V,三角形开口处的电压理论值为0V;当开口三角形绕组的接线错误时,将会出现200V的高电压,严重影响设備的安全运行,造成零序电压保护误动作。因此,在变电站送电启动过程中及时解决开口三角绕组接线错误问题具有重要意义。 在110kV及以上电压等级的变电站中,电压互感器的二次绕组全部引入端子箱内,引出线多,出错概率大;而35kV及以下电压等级的电压互感器通常是开关柜形式,其二次接线在电压互感器二次端子上完成,引出线少,出错几率低。因此研究大电流接地系统中电压互感器的接线更有价值,文章将对开口三角接线中各相接反的情况进行相量计算,通过计算值与实际运行中的测量值对比,发现问题所在并快速处理。 2 开口三角形接线原理 开口三角形接线分为开口三角绕组的a头接地、a尾接地、c头接地、c尾接地四种情况。实际应用中多以开口三角绕组的a头接地运行,则a尾接b头,b 尾接c头,c尾出L。 4 结束语 电压互感器是变电站运行中重要的一次设备,其二次接线的正确性直接关系到设备安全及保护装置的可靠动作。综合上述,如果在电压互感器投运时出现开口三角电压异常,可对照上述计算结论判断出现接线错误相。为保证上述结论正确,检测时需注意首先保证星形接线侧电压相序、相位、幅值的正确性,再由于系统运行电压不一定是额定电压,所以计算值与实测值存在一定的偏差,但并不会影响判断。通过总结工作中的检测方法,希望对今后电压互感器的正确投运提供参考。 参考文献 [1]申晓平,张金龙,王世伟,等.电压互感器开口二次出现异常情况的处理

电压互感器常见故障及处理方法

1.电压互感器的常见故障及分析 (1)铁芯片间绝缘损坏。故障现象:运行中温度升高。产生故障的可能原因:铁芯片间绝缘不良、使用环境条件恶劣或长期在高温下运行,促使铁芯片间绝缘老化。 (2)接地片与铁芯接触不良。故障现象:运行中铁芯与油箱之间有放电声。产生故障的原因:接地片没插紧,安装螺丝没拧紧。 (3)铁芯松动。故障现象:运行时有不正常的振动或噪声。产生故障的原因:铁芯夹件未夹紧,铁芯片问松动。 (4)绕组匝间短路。故障现象:运行时,温度升高,有放电声,高压熔断器熔断,二次侧电压表指示不稳定,忽高忽低。产生故障的原因:系统过电压,长期过载运行,绝缘老化,制造工艺不良。 (5)绕组断线。故障现象:运行时,断线处可能产生电弧,有放电响声,断线相的电压表指示降低或为零。产生故障的原因:焊接工艺不良,机械强度不够或引出线不合格,而造成绕组引线断线。 (6)绕组对地绝缘击穿。故障现象:高压侧熔断器连续熔断,可能有放电响声。产生故障的原因:绕组绝缘老化或绕组内有导电杂物,绝缘油受潮,过电压击穿,严重缺油等。 (7)绕组相间短路。故障现象:高压侧熔断器熔断,油温剧增,甚至有喷油冒烟现象。产生故障原因:绕组绝缘老化,绝缘油受潮,严重缺油。 (8)套管间放电闪络。故障现象:高压侧熔断器熔断,套管闪络放电。产生故障原因:套管受外力作用发生机械损伤,套管间有异物或小动物进入,套管严重污染,绝缘不良。 2.电压互感器回路断线及处理 当运行中的电压互感器回路断线时,有如下现象显示:“电压回路断线”光字牌亮、警铃响;电压表指示为零或三相电压不一致,有功功率表指示失常,电能表停转;低电压继电器动作,同期鉴定继电器可能有响声;可能有接地信号发出(高压熔断器熔断时);绝缘监视电压表较正常值偏低,正常相电压表指示正常。 电压回路断线的可能原因是:高、低压熔断器熔断或接触不良;电压互感器二次回路切换开关及重动继电器辅助触点接触不良。因电压互感器高压侧隔离开关的辅助开关触点串接在二次侧,与隔离开关辅助触点联动的重动继电器触点也串接在二次侧,由于这些触点接触不良,而使二次回路断开;二次侧快速自动空气开关脱扣跳闸或因二次侧短路自动跳闸;二次回路接线头松动或断线。 电压互感器回路断线的处理方法如下: (1)停用所带的继电保护与自动装置,以防止误动。

电压互感器

电压互感器 二次绕组是双绕组的电压互感器,接线时一次是VV接法,二次绕组必须都要接成VV接法吗? 问题补充: 我想知道一组电压互感器(2个)一次是VV接法,二次绕组必须都要接成VV接法吗?如果二次绕组一个绕组接成vv接法(交流220V),另一个绕组(交流100V)不按VV方式接可以使用吗? V/V接线一般是由2个PT分别接与线电压Uab\Ucb上得到的,一、二次侧接线均呈V字形,故称为V/V接线,其二次侧B相也接地,但是一次测不接地,否则造成接地短路。 这种接线方式其实就是由两个单相互感器接线形成不完全星形,其接法是A-X、B、A-X-C,所以怎么量,ABC三相都是导通的,不导通就不对了。 VV接线的目的: 用两只互感器能够完成三只互感器的工作,如计量PT就用V/V 接线完成三相电压的采集。 说的更白些就是将两只互感器分别装在A、C相上,然后将A相互感器的尾与C相互感器的头相连,在这个连接点上接入B相电,省了一个B相互感器。 但请注意:VV接线只能用来测线电压,而无法测量相对地电压,所以无法反映单相接地故障!但可以满足计量要求,比较经济,多用

于小电流接地系统,大部分是中小型工厂的高压配电室采用,而变电站中很少用这种接法。 电压互感器二次绕组的0.2级,3P级到底是什么意思? 其它的还有什么等级么,又分别是什么意义? 1、测量用电压互感器: 主要的标准准确级:0.1, 0.2, 0.5, 1.0, 3.0 在额定频率和80%~120%额定电压之间的任一电压和功率因素0.8(滞后)的二次额定负荷的25%~100%之间的任意值下,误差不超过下述值: 准确级电压误差(%)相位差(’) 0.1 0.1 5 0.2 0.2 10 0.5 0.5 20 1.0 1.0 40 3.0 3.0 不规定 2、保护用电压互感器(P表示保护) 标准准确级:3P, 6P

直流电子式电压互感器技术说明书

PCS-9250-EAVD 直流电子式电压互感器 技术说明书

目录 1.概述 (1) 2.型号及名称 (1) 3.正常使用条件 (1) 3.1.环境温度 (1) 3.2.环境相对湿度 (2) 3.3.海拔高度 (2) 3.4.风速 (2) 3.5.污秽等级 (2) 4.主要技术参数 (2) 4.1.额定电压及绝缘水平 (2) 4.2.可视电晕 (2) 4.3.额定频率 (2) 4.4.测量范围 (2) 4.5.元件参数 (2) 4.6.额定电压时高压臂电阻流过的电流 (3) 4.7.测量系统的方波响应 (3) 4.8.直流电压测量准确度 (3) 4.9.机械强度 (3) 4.10.采样率 (3) 4.11.输出信号数据速率 (3) 4.12.输出信号传输规约 (3) 4.13.输出信号传输介质 (3) 5.结构 (3) 5.1.基本结构 (3) 6.型式试验 (8) 6.1.试验项目 (8) 6.2.雷电冲击耐受试验 (8) 6.3.湿状态下的操作冲击试验 (8) 6.4.湿状态下直流电压耐受试验 (9) 6.5.干燥状态下极性反转直流耐受试验 (9) 6.6.干燥状态下直流电压局部放电试验 (9) 6.7.可视电晕试验 (9) 6.8.机械强度试验 (10) 6.9.低压器件耐压试验 (10) 6.10.电磁兼容抗扰度试验 (10) 6.11.直流电压测量准确度试验 (11) 6.12.直流测量系统方波响应试验 (11) 6.13.直流测量系统频率响应试验 (11)

7.出厂试验 (11) 7.1.外观检查 (11) 7.2.电阻的测量 (11) 7.3.直流电压耐受试验和局部放电试验 (11) 7.4.低压器件耐压试验 (12) 7.5.直流电压准确度试验 (12) 7.6.低压器件限制电压的检查 (12) 8.标志、包装、运输、贮存 (12) 8.1.标志 (12) 8.2.包装 (12) 8.3.运输 (13) 8.4.贮存 (13) 9.产品出厂随行文件 (13)

互感器的常见故障及处理(终审稿)

互感器的常见故障及处 理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、 1. 电压互感器有下列故障现象之一,应立即停用: (1)高压保险连续熔断两次(指10kV电压互感器); (2)内部发热,温度过高; (3)内部有放电“噼叭”声或其它噪声; (4)内部发出焦臭味、冒烟、着火; (5)套管严重破裂放电,套管、引线与外壳之间有火花放电; (6) GIS互感器设备有漏气或SF6气体压力低于最小运行压力值; 2. 发现电压互感器有上述严重故障,其处理程序和一般方法为: (1)退出可能误动的保护及自动装置,断开故障电压互感器二次开关(或拔掉二次保险)。(2)电压互感器三相或故障相的高压保险已熔断时,可以断开,隔离故障。 (3)高压保险未熔断,高压侧绝缘未损坏的故障,可以断开隔离开关,隔离故障。 (4)高压保险未熔断,电压互感器故障严重,高压侧绝缘已损坏,禁止使用隔离开关或取下熔断器来断开有故障的电压互感器,只能用断路器切除故障,然后在不带电情况下断开隔离开关,恢复供电。 (5)故障隔离,一次母线并列后,合上电压互感器二次联络,重新投入所退出的保护及自动装置。 (6)电压互感器着火,切断后,用干粉、1211灭火器灭火。 3. 10kV电压互感器一次侧熔丝熔断的处理: (1)现象:熔断相的相电压降低或接近零,完好相电压不变或略有降低,有功无功表指示降低。

(2)处理:断开电压互感器隔离开关,取下低压熔丝,做好安全措施后,检查外部无故障,更换同一规格的一次熔丝。若送电时发生连续熔断,此时可能互感器内部有故障,应该将电压互感器停用。 4. 10kV电压互感器二次侧熔丝熔断的处理: (1)现象: 1)电压互感器对应的电压回路断线信号表示,警铃响。 2)故障相相电压指示为零或偏低,有功、无功表指示为零或偏低。 (2)处理方法: 1)检查二次电压回路的保险器是否熔断或接触不良。 2)如果不是保险器的问题,应立即报告值班调度员。 3)检查电压回路有无接头松动或断线现象。 4)如找不到原因,故障现象又不能消除,应立即进行停电检查。 5. 110kV电压互感器的事故处理: 110kV及以上电压互感器一次侧无熔断器保护,二次侧用低压自动开关来断开二次回路的短路电流。 (1) 现象:母线电压表、有功功率表、无功功率表降为零;主电压回路断线,母线电压回路断线信号,距离保护振荡闭锁;(2) 处理:立即汇报调度;退出该母线上的线路距离保护出口连接片;试送电压互感器二次侧自动开关,若不成功应及时报告上级领导;不准将电压互感器在二次侧并列,以免扩大事故。二、电流互感器 1. 电流互感器有下列故障现象时,应立即停用,但事后必须立即报告值班调度员及有关人员:(1)有过热现象;(2)内部有臭味、冒烟;(3)内部有严重的放电声;(4)外绝缘破裂放电;(5) GIS互感器设备有漏气或SF6气体压力低于最小运行压力值; 2. 电流互感器二次开路故障的处理:(1)现象: 1)电流互感器声音变大,二次开路处有放电现象。 2)电流表、有功功率表和无功功率表指示为零或偏低,电度表不转或

电流互感器电压互感器常见故障处理

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器)(1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随

较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常(2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 901。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~

根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗 根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:

2021新版浅谈电压互感器二次回路短路故障机防范措施

2021新版浅谈电压互感器二次回路短路故障机防范措施 Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0494

2021新版浅谈电压互感器二次回路短路故 障机防范措施 摘要:介绍电压互感器二次回路短路,常见故障原因,常规检查及巡视的方法,叙述PT二次回路短路故障在线监测及防范措施。 关键词:电压互感器二次回路短路故障在线监测防范 1概述 电压互感器是电力系统运行中重要设备组成,是交流电路中一次系统和二次系统间联络元件,用于传递信息供给测量仪器、仪表和保护、控制装置等,它属于特种变压器,工作原理与变压器基本相同。基本结构主要由一次绕组、二次绕组和铁心构成,一、二次绕组和铁心之间均有相匹配的绝缘措施,在正常情况下,二次回路电压与一次回路电压成正比。 从电压互感器的原理特性上不难看出,其二次绕组不能短路或

接地运行。二次电压的大小,与一次电压相关,二次电压产生的磁势,平衡一次电压磁势。若发生二次回路短路故障,此时阻抗无限大,二次电压等于零、磁势也等于零,一次电压就将全部作用于激磁,使铁心严重饱和、正弦交变磁通变为梯形波,二次绕组将感应较大的电流,磁饱和会使铁损增加而发热,持续时间较长时,会使绕组的绝缘性能下降或烧坏。同时还会造成二次侧熔断器熔丝熔断,影响表计:严重时,可能引起保护装置误动作和烧毁电压互感器。为此,国标DL408-91《电业安全工作规程》第十章“继电保护、仪表等二次回路上的工作要求”中强调“严格防止带电电压互感器二次回路短路或接地”。 2常见原因 引起电压互感器二次回路短路故障原因较多,下面简述几种常见的原因: (1)回路中联结电缆短路。 (2)二次回路导线受潮、腐蚀及损伤而发生一相接地,又发展成二相接地短路。

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/8e1651067.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.360docs.net/doc/8e1651067.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/8e1651067.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/8e1651067.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/8e1651067.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/8e1651067.html, 较为复杂。 信息来自:https://www.360docs.net/doc/8e1651067.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.360docs.net/doc/8e1651067.html,

电压互感器使用注意事项 民熔

注意事项 1.电压互感器在投入运行前要按照规程规定的项目进行试验检查。例如,测极性、连接组别、摇绝缘、核相序等。 2电压互感器的接线应保证其正确性。一次绕组与被测电路并联,二次绕组与所连接的测量仪表、继电保护装置或自动装置的电压线圈并联,同时注意极性的正确性。 三。连接到电压互感器二次侧的负载容量应适当,连接到电压互感器二次侧的负载不应超过其额定容量,否则,变压器的误差会增大,难以达到测量精度。 4电压互感器二次侧不允许短路。由于电压互感器内阻小,如果二次回路短路,会产生大电流,损坏二次设备,甚至危及人身安全。电压互感器可在二次侧装设熔断器,以防止二次侧短路损坏。如有可能,还应在一次侧安装熔断器,以保护高压电网不因变压器高压绕组或引线故障而危及一次系统的安全。 5为了保证测量仪表和继电器接触人员的安全,电压互感器的二次绕组必须有接地点。因为接地后,当一次绕组和二次绕组之间的绝缘损坏时,会使仪表和继电器免受高压,危及人身安全。 6电压互感器二次侧不允许短路。 异常与处理

常见异常 (1)三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断; (2)中性点非有效接地系统,三相电压指示不平衡:一相降低(可为零),另两相升高(可达线电压)或指针摆动,可能是单相接地故障或基频谐振,如三相电压同时升高,并超过线电压(指针可摆到头),则可能是分频或高频谐振; (3)高压熔断器多次熔断,可能是内部绝缘严重损坏,如绕组层间或匝间短路故障; (4)中性点有效接地系统,母线倒闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架绕、绕组层间或匝间短路故障; (5)中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能是高压绕组N(X)端接地接触不良。 (6)电压互感器回路断线处理。 处理方法

电流互感器及电压互感器常见故障处理

电流互感器及电压互感器常见故障处理 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器) (1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能

力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常 (2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作 处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断线等现象,检查相应的二次小开关是否跳闸,二次小开关跳闸可试送一次,不成功应查明原因,通知检修处理。 (3)拉开失压后误动的保护及自动装置。 (4)检查有无继电保护人员在电压互感器二次回路工作,误碰引起断路,或有短路情况。 3、电压互感器一次保险熔断

电压互感器和电流互感器

目录 1. 概述 (2) 2. 电压互感器 (2) 2.1. 基本介绍 (2) 2.2. 主要类型 (3) 2.3. 工作原理 (3) 2.4. 注意事项 (4) 2.5. 铭牌标志 (5) 2.6. 基本作用 (5) 2.7. 接线方式 (5) 2.8. 常见异常 (6) 3. 电流互感器 (7) 3.1. 基本介绍 (7) 3.2. 基本原理 (7) 3.3. 型号参数 (8) 3.4. 使用原则 (10) 3.5. 校验方法 (11) 3.6. 注意事项 (12)

1.概述 互感器在供配电系统中主要分为两种:电压互感器和电流互感器。 在供配电系统中,大电流、高电压有时不能直接用电流表和电压表来测量,必须通过互感器按比例减小后测量。互感器的内部结构就是变压器。按照变压器的原理运行。 互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100 伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈。 2.电压互感器 2.1.基本介绍 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 电压互感器(Potential transformer 简称PT,也简称TV)和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和

浅谈电压互感器故障

浅谈电压互感器故障 园坪电厂:林鸿 【摘要】该文鉴于电压互感器对各电厂的重要性与其发生故障的严重性,对电压互感器进行学习,并初步认识采取正确的接线方式、保护措施和巡检方法。 【关键词】电压互感器保护故障 一、前言 电压互感器可以说是一个被限定结构和使用形式的降压变压器。其目的是把一次高电压变为低电压,为继电保护、自动装置和测量仪表提供一次电压信息。同时隔离了高电压,保护人生与设备安全,成为电力系统电量结算依据。确保电压互感器正常持续运行成为各厂重要课题。 二、电压互感器的保护 电压互感器作为一种重要的一次设备在电力系统中发挥着重要的作用。同时,因为电压互感器是一种公用设备,无论是互感器本身出现问题或是其二次回路出现问题,都将给整个二次系统带来严重影响。保障电压互感器及其二次回路的稳定运行至关重要。电压互感器相当于一个电压源,当二次回路发生短路时将会出现很大的短路电流,如果没有合适的保护装置将故障切除,将会使电压互感器及其二次线烧坏。 对电压互感器二次回路进行保护的设备应满足:在电压回路最大负荷时,保护设备不应动作;而电压回路发生单相接地或相间短路时,保护设备应能可靠地切除短路;在保护设备切除电压回路的短路过程中和切除短路之后,反应电压下降的继电保护装置不应误动作,即保护装置的动作速度要足够快;电压回路短路保护动作后出现电压回路断线应有预告信号。 对电压互感器二次回路的保护设备,一般采用快速熔断器或自动空气开关。采用熔断器作为保护设备,简单、能满足上述选择性及快速性要求,报警信号需要在继电保护回路中实现。采用自动空气开关作为保护设备时,除能切除短路故障外,还能保证三相同时切除,防止缺相运行,并可利用自动开关的辅助触点,在断开电压回路的同时也切断有关继电保护的正电源,防止保护装置误动作,或由辅助接点发出断线信号。 电压互感器二次回路采用哪种保护方式,主要取决于电压回路所接的继电保护和自动装置的特性。当电压回路故障不能引起继电保护和自动装置误动作的情况下,应首先采用简单方便的熔断器作为电压回路的保护。在电压回路故障有可能造成继电保护和自动装置不正确动作的场合,应采用自动开关,作为电压回路的保护,以便在切除电压回路故障的同时,也闭锁有关的继电保护和自动装置。 互感器均要考虑消谐问题。消谐措施一般是在电压互感器的开口三角绕组两端连接一个消谐器。 三、电压互感器的故障分析与防御措施 案例:上培电厂110KV出线的室外PT故障引起爆炸 分析:110KV及以上系统使用的电容式电压互感器安装于室外,最容易引起密封不严或密封件老化,造成内部芯体受潮,内部容易吸潮的元件和绝缘介质吸收水分后,导致绝缘材料介质损耗超标,耐压强度大幅度下降,同时在高电场作用下产生局部放电。放电又使油分解气化,进一步恶化电容器的绝缘性能,使局部放电更容易产生,形成恶性循环。另一方面,投运多年的电压互感器设备老化

关于4PT电压互感器防谐振与开口三角接线说明

前言:电压互感器作为开关柜主要设备之一,进行电力计量、测量及继电保护作用。但是由于电力系统的不稳定性、特别是频繁发生谐振地区,对电压互感器的危害是很大的,大部份都导致电压互感器烧毁。 一、产生铁磁谐振的原因 由非线性电感(铁心线圈)和线性电容组成的回路,当外施电压发生变化时,由于电感的变化而产生谐振,这种现象称为铁磁谐振。 1、在中性点不接地系统中,虽然电源侧的中性点不直接接地,但电压互感器的高压侧中性点是接地的,若Ca,Cb,Cc为各回线路(包括电缆出线和架空线路)三相对地的等值电容,而La,Lb,Lc则为母线电压互感器的一次侧三个线圈的对地阻抗(忽略其线圈电阻),假设系统发生单相接地。此时,电压互感器的铁心线圈相当于与电容器并联,构成了可能产生谐振的并联电路,由于相对地电压升高√3倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流最大,这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器。 此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。 2、操作过电压:包括互感器在内的空载母线或送电线路的突然合闸,使得PT的某一相或二相绕组内产生巨大的涌流和磁饱和现象; ①由于合闸瞬间的三相触头不同期性,此时最慢接触的一相在触头间相当于串联上一个电容(如A相)。当电容的容抗等于互感器的感抗时即产生谐振,但该状态下只是使中央信号装置的电铃响了一下,仪表摆动一下,但随着操作的完成该现象随之消失。 ②由于合闸过程中产生操作过电压,此时假设断路器在合闸操作过程中A相出现过电压,则有可能使A相电压互感器铁心出现饱和,使A相电压互感器线圈感抗变小,从而三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生位移现象。 3、雷击过电压:由于雷击或其它原因,线路中发生瞬间弧光接地,使得其它两相电压瞬间升到线电压,而故障相电压在接地消失后又瞬间恢复至相电压,以至造成暂态励磁电流的急剧增大和铁芯的磁饱和; 4、磁饱和的产生也可能由于另一绕组瞬间传递过来的过电压或者系统运行方式的突然改变、负荷剧烈波动等所引起的系统电压的强烈扰动。 二、铁磁谐振的种类 铁磁谐振是一个非常复杂的非线性振荡过程,PT伏安特性饱和得越快,谐振的区域越广。谐振大致分为分频谐振、基波谐振、高频谐振,基波和高次谐波的谐振过电压的幅值很少超过3Uj,故除非存在弱绝缘设备,是不会产生危险的。对于分频谐波,由于频率只有工频的一半,励磁感抗相应降低一半,使得励磁电流急剧增加,有时甚至达到额定值的100倍以上,使得互感器发生严重的磁饱和现象,因而限制了过电压幅值,通常在2Uj以下,中性点位移电压一般不超过Uj,但大电流持续时间过长,势必引起TV高压熔丝熔断,或者造成TV本身冒油和烧毁。 三、消除铁磁谐振的措施和方法 电力系统过电压现象十分普遍,如果没有防范措施,随时都有可能造成电气设备损坏和大面积的停电事故。目前,我国35 kV及以下配电网,仍大部分采用中性点不接地方式或采用老式的消弧线圈接地。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁芯饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器等等,但始终没有从根本上得到解决。由于谐振过电压作用时间长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成了很大的困难。为了尽可能的防止谐振过电压的发

PCS-9250 系列电子式电流电压互感器技术和使用说明书

ZL_DLYH0101.0510 PCS-9250系列 电子式电流电压互感器 技术和使用说明书 说明:此页为封面,印刷时必须与公司标准图标合成,确保资料名称、资料编号及其相对位置与本封面一致

南瑞继保电气有限公司版权所有 本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是否相符。 更多产品信息,请访问互联网:https://www.360docs.net/doc/8e1651067.html,

目录 1概述 (1) 1.1应用范围 (1) 1.2型号和名称 (1) 1.3引用标准 (2) 1.4使用环境条件 (2) 1.5主要技术参数 (2) 2结构及工作原理 (4) 2.1总体结构 (4) 2.2电流传感器 (4) 2.3电压传感器 (5) 2.4数字变换器 (5) 3外型尺寸及装配结构 (6) 4与二次设备的接口 (8) 5运输、安装及调试 (8) 6维护 (9)

PCS-9250系列电子式电流电压互感器 技术和使用说明书 1概述 常规仪用互感器绝缘要求高,尺寸大,重量重,价格高;动态范围小,电流互感器有饱和现象;易产生铁磁谐振。 电子式互感器是仪用互感器的发展方向。和常规仪用互感器相比,电子式互感器绝缘结构简单,体积小、重量轻、造价低;不含铁心,无磁饱和、铁磁谐振等问题;抗电磁干扰性能好;动态范围大,频率响应宽。 依据国家电网公司科学技术项目SP11-2001-01-13-01《电子式电压电流互感器的研制》、国家经贸委技术创新项目01BK-042《数字式电压电流互感器研制》,南京南瑞继保电气有限公司联合西安西开高压电气股份有限公司共同完成了《PCS-9250系列/363kV GIS用组合型电子式电流电压互感器》项目。 1.1应用范围 PCS-9250系列电子式电流电压互感器与220kV六氟化硫气体绝缘金属封闭开关设备(GIS)配套,是GIS的组成元件之一。在额定电压为220kV、频率为50Hz的电力系统中,作为测量电流、电压,为数字化计量、测控及继电保护装置提供电流、电压信息的设备使用。可用于户内及户外环境下。 目前,GIS中普遍采用铁芯式电流电压互感器,此类互感器存在动态范围小,在故障电流下易饱和,体积大,笨重,输出信号不能直接与数字化二次设备接口等缺点。PCS-9250系列电子式电流电压互感器是为克服常规互感器的缺点,适应变电站自动化技术的发展而开发的新型互感器。设备开发中充分考虑了变电站现场电磁干扰强及温度变化范围大等恶劣运行环境的影响。 PCS-9250系列利用空芯线圈测量电流,利用电容分压技术测量电压,利用光纤传送输出信号。本产品体积小、重量轻、无饱和现象、暂态性能好、性能稳定,具有良好的电磁兼容性能及较宽的工作温度范围。 PCS-9250系列电子式电流电压互感器的性能指标均符合IEC60044-6《互感器第六部分:保护用电流互感器暂态特性要求》、IEC60044-7《互感器第七部分:电子式电压互感器》、IEC60044-8《互感器第八部分:电子式电流互感器》等相关标准的要求。 1.2型号和名称 型号和名称含义如下: PCS-9250-E G I-22-2400 ■1位字母表示互感器类型 E:有源式 O:无源式(光学互感器) L:低压用LPCT 1

相关文档
最新文档