污水处理生物除磷工艺

污水处理生物除磷工艺
污水处理生物除磷工艺

污水处理生物除磷工艺

(一)缺氧好氧活性污泥法(A/O工艺)

当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。

厌氧/好氧工艺流程

1. 设计参数

A/O工艺生物除磷设计参数见下表

A/O工艺生物除磷设计参数

2. 工艺计算

缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式

(二)弗斯特利普( Phostrip) 除磷工艺

Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。

Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。

四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺

需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。

A2/O工艺脱氮除磷流程

(一)一般规定

进入系统的污水应符合下列要求:

(1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ;

(2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ;

(3) 同时脱氮、除磷时,宜同时满足前两款的要求;

(4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

(5) 当工业废水进水COD超过1000mg/L 时,前处理可采用升流式厌氧污泥床反应器( UASB) 等厌氧处理措施;

(6) 当工业废水进水的BOD5/COD小于0. 3时,前处理需采用水解酸化等预处理措施。(二)工艺设计

1. 设计参数

处理城镇污水或水质类似城镇污水的工业废水时主要设计参数,可按下表的规定取值。工业废水的水质与城镇污水水质差距较大时,设计参数应通过试验或参照类似工程确定。

厌氧/缺氧/好氧(A/A/O)工艺主要设计参数(水温20℃)

2. 曝气设备

1)供气量

选用曝气设备时,应根据不同设备的特征、位于水面下的深度、水温、污水的氧总转移特性,当地的海拔高度以及预期生物反应池中溶解氧浓度等因素,将计算的污水需氧量按公式(6)换算为标准状态(0. 1Mpa、20℃)下污水需氧最( SOR )。

Os = K。?O2 (7)

式中

Os—标准状态下污水需氧量,kgO2/d ;

O2一污水需氧量,kgO2/d ;

K。—需氧量修正系数,采用鼓风曝气装置时按下式计算。

式中

а一混合液中KLa值与清水中KLa值之比,一般取0. 8~0. 85;

β一混合液的饱和溶解氧值与清水中的饱和溶解氧值之比,取0. 9~0.97 ;

Cs一标准条件下清水中饱和溶解氧浓度,取9. 17mg/L;

Csw—温度、实际计算压力时,清水饱和溶解氧,mg/L;

C。一混合液剩余溶解氧,一般取2mg/L;

T—混合液温度,一般取5~30℃;

Csw—T温度、实际计算压力时,曝气池中氧的平均饱和浓度;mg/L;

Ot一曝气池逸出气体中含氧,%;

Pb—曝气装置所处绝对压力,MPa;

EA一曝气设备氧的利用率,%。

采用鼓风曝气装置时,可按下式将标准状态下污水需氧量,换算为标准状态下的供气量。

Gs=Os/0.28EA

式中

Gs—标准状态下的供气量,m3/h ;

Os一标准状态下污水需氧量,kgO2/h ;

0. 28—标准状态下的每m3空气中含氧量,kgO2/m3 ;

EA—曝气设备氧的利用率,%

2) 曝气方式的选择

(1)曝气方式应结合供氧效率、能耗和维护检修等因素进行综合比选后确定;

(2)大、中型污水处理厂宜选择鼓风式中、微孔曝气系统等水下曝气系统;

(3)鼓风式中微孔曝气系统宜选择共用鼓风机的供气方式。

3) 鼓风机与鼓风机房

(1)应根据风蜇和风压选择鼓风机。大、中型污水处理厂宜选择单级高速离心鼓风机或多级低速离心鼓风机,小型污水处理厂和工业废水处理站可选择罗茨鼓风机;

(2)鼓风机房设置的常用鼓风机的供气总量应符合设计供气量(Gs)的要求,并保持10%的富余供气能力。

4)曝气器的数星与布置

(1)曝气器的数量应根据曝气池的供气蜇和所选曝气器的参数要求确定;

(2)曝气器一般布置均匀,不留有死角和空缺区域。

5) 推流器

(1)缺氧池(区)和厌氧池(区)应采用推流器,推流器功率宜采用5~8W/m3, 应选用安装角度可调的推流器;

(2)推流器器布置的间距、位置应根据试验确定或由供货厂方提供;

(3)推流器应对称布置,搅拌器的轴向有效推动距离应大于反应池的池长;

(4)每个反应池内应设置2台以上的推流器,反应池若分割成若干廊道,每条廊道至少应设

置1台推流器。

3. 加药系统

1)外加碳源

当进入反应池废水的BOD5/TKN小于4时,应在缺氧池中投加碳源。投加碳源量可按一下公式确定。

BOD5=2.86×△N×Q

式中

BOD5一投加的碳源相当于BOD5量,mg/L;

△N—硝态氮的脱除量,mg/L;

Q一设计污水流量,m3 /d。

2)化学除磷

(1)当出水总磷不能达到排放标准要求时,宜采用化学除磷作为辅助手段;

(2)最佳药剂种类、投加量和投加点宜通过试验或参照类似工程确定。化学药剂储存罐容量应为理论加药量的4~7d投加量,加药系统应不少于2套,应采用计量泵投加。

(3)化学除磷时应考虑产生的污泥量,污泥增量可参照下表设计。

絮凝剂投加位置污泥增量

铝盐或铁盐作絮凝剂前置投加40%~75%

铝盐或铁盐作絮凝剂后置投加20%~35%

铝盐或铁盐作絮凝剂同步投加15%~50%

化学除磷污泥增量

(4)接触铝盐和铁盐等腐蚀性物质的设备和管道应采取防腐措施。

4. 硝化液回流系统

(1)污泥回流设施应采用不易产生复氧的离心泵、混流泵、潜水泵等设;

(2)回流设施宜分别按生物处理工艺系统中的最大污泥回流比和最大混合液回流比计算确定;

(3)回流设备不应少于2 台,并设备用,回流设备宜有洞节流量的措施。

5. 剩余污泥量

1) 按下式计算污泥泥龄。

式中

△X—剩余污泥量,kgSS/d;

V一生物反应池的容积,m3;

X一生物反应池内混合液悬浮固体平均浓度,gMLSS/L;

θe一污泥泥龄,d。

2 ) 按污泥产率系数、衰减系数及不可生物降解和惰性悬浮物计算剩余污泥量。

式中:

△X一剩余污泥量,kgSS/d ;

V一生物反应池的容积,m3 ;

Y 一污泥产率系数,20℃时取0. 4~0. 8kgMLVSS/kgBOD5 ;

Q一设计平均日污水量,m3/ d ;

S。一生物反应池进水五日生化需氧量,kg/m3;

Se—生物反应池出水BOD5 , kg/m3;

Kd—衰减系数,d-1

Xv一生物反应池内混合液挥发性悬浮固体平均浓度,gMLVSS/L;

f—SS的污泥转换率,宜根据试验资料确定,无试验资料时可取0.5~0.7gMLVSS/gSS;

SS。一生物反应池进水悬浮物浓度,kg/m3;

SSe一生物反应池出水悬浮物浓度,kg/m3;

3)剩余污泥量设置计量装置可采用湿污泥计量和干污泥计量两种方式。

(三)A2/O工艺的影响因素

1. 污水中可生物降解有机物的影响

厌氧段:如果污水中可生物降解有机物很少,则聚磷菌无法正常进行磷的释放,导致好氧段也不能大量地吸收污水中的磷,从而影响除磷的效果。试验证明:进水中溶解性磷与溶解性BOD5之比应小于0. 06才会有较好的除磷效果。

缺氧段:C/N 较高时,NOx -N反销化速率大,则HRT=0.5~1.0h; C/N较低时,Nox-N反硝化速率小,则HRT=2.0~3. 0h。

对于低BOD5浓度的城市污水,C/N 比较低,脱氮率不高。一般来说,污水中COD/ TKN >8 , N的总去除率可达80%。

2.污泥龄(θe)的影响

污泥龄θe受硝化和除磷两个方面的影响:一方面硝化反应要求污泥龄θe比普通活性污泥工艺时间长;另一方面由于除磷的要求,使污泥龄不能过长,A2/O工艺中的θe一般为15~20d。

3. DO的影响

好氧段DO过高,DO会随污泥回流和混合液回流带至厌氧段与缺氧段,造成厌氧段的厌氧不完全而影响聚磷菌释放磷。而缺氧段DO升高则影响NOx -N的反硝化。相反,好氧段DO下降,则氨氮的硝化速度下降,即氧化速度下降。因此在好氧段DO以2mg/L左右为好,缺氧段DO≤0.5mg/L, 厌氧段DO <0.5mg/L。

4. 有机物负荷率( Ns ) 的影响

好氧段:Ns≤0.18kgBOD5/(kgMLVSS?d), 否则异氧菌会大大超过硝化菌,使硝化反应受到抑制;

厌氧段:Ns >0.1kgBOD5/( kggMLVSS?d), 否则除磷效果会下降。

5. TKN/MLSS负荷率的影响

过高浓度的氨氮对硝化菌会产生抑制作用,影响其硝化,一般控制TKN/MLSS<

0.05kgTKN/ ( kgMLSS?d)。

6.污泥回流比(R)与混合液回流比(RN)的影响

R为25%~100%为宜。R太高,污泥将DO和NOx -N带入厌氧段太多,影响其厌氧状态,使释磷不利;如果R太低,可能维持不了反应池内污泥正常浓度2500~3500mg/L, 影响生化反应速率。缺氧段的脱氮效果与混合液回流比RN有较大的影响,一般采用RN≥200%。

城市污水处理厂化学除磷效果及运行成本研究

万方数据

万方数据

万方数据

万方数据

城市污水处理厂化学除磷效果及运行成本研究 作者:念东, 王佳伟, 刘立超, 周军, 甘一萍, 王洪臣, Nian Dong, Wang Jiawei, Liu Lichao, Zhou Jun, Gan Yiping, Wang Hongchen 作者单位:北京城市排水集团有限责任公司,北京,100022 刊名: 给水排水 英文刊名:WATER & WASTEWATER ENGINEERING 年,卷(期):2008,34(5) 被引用次数:11次 参考文献(3条) 1.邱维;张智城市污水化学除磷的探讨[期刊论文]-重庆环境科学 2002(02) 2.赵恩海;朱文亭我国污水处理的发展趋势[期刊论文]-城市环境与城市生态 2000(04) 3.Henze M;Harremoes P;国家城市给水排水工程技术研究中心污水生物处理与化学处理技术 1999 本文读者也读过(10条) 1.孔令勇.马小蕾废水化学除磷的基本原理与设计[会议论文]-2009 2.徐丰果.罗建中.凌定勋废水化学除磷的现状与进展[期刊论文]-工业水处理2003,23(5) 3.李炜炜.吴国防.丁云松.龙腾锐.LI Wei-wei.WU Guo-fang.DING Yun-song.LONG Teng-rui城市污水厂化学除磷投药点后移的生产性试验[期刊论文]-中国给水排水2010,26(10) 4.侯艳玲.刘艳臣.邱勇.何苗.施汉昌.Hou Yanling.Liu Yanchen.Qiu Yong.He Miao.Shi Hanchang化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[期刊论文]-给水排水2010,36(6) 5.唐建国.林洁梅化学除磷的设计计算[期刊论文]-给水排水2000,26(9) 6.张健.ZHANG Jian杭州七格污水处理厂化学除磷工艺探讨[期刊论文]-中国给水排水2010,26(21) 7.帖春英.TIE Chun-ying改良A2/O与化学除磷工艺用于城市污水处理[期刊论文]-中国给水排水2010,26(20) 8.吕亚云污水化学除磷处理技术[期刊论文]-河南化工2010,27(8) 9.潘理黎.王玲.郑海军.吕伯昇.徐伟勇.Pan Lili.Wang Ling.Zheng Haijun.Lu Bosheng.Xu Weiyong城镇污水处理厂尾水深度化学除磷试验研究[期刊论文]-水处理技术2011,37(6) 10.张亚勤污水处理厂达到一级A排放标准中的化学除磷[期刊论文]-中国市政工程2009(5) 引证文献(11条) 1.孙士权.杨静.毕立俊.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-工业水处理 2010(1) 2.贾会艳.杨云龙城市污水化学辅助除磷[期刊论文]-山西建筑 2009(14) 3.孙士权.刀钟颖.郭文文.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-环境工程学报2009(7) 4.解立国太原市北郊污水净化厂深度除磷研究[期刊论文]-科技情报开发与经济 2009(20) 5.戴斌低碳源情况下氧化沟工艺除磷的方式[期刊论文]-上海建设科技 2009(5) 6.陈晓安.严福平.李旭.桂丽娟连续流砂过滤器处理城市二级出水中试研究[期刊论文]-工业用水与废水 2011(1) 7.乔莹.栗建华污水处理厂节能降耗区域性评价管理研究[期刊论文]-长治学院学报 2010(5) 8.郑育毅低碳源城市污水化学除磷的研究[期刊论文]-工业水处理 2011(9) 9.刘传伟.孙书群城市污水污水处理厂氮磷去除的研究[期刊论文]-广州化工 2011(23) 10.杨凌波.葛勇涛.谢继荣.应启锋.曾思育.何苗基于节能降耗的污水处理厂绩效评估体系研究[期刊论文]-给水排水 2009(z1)

生物除磷实验技术路线

1、通过对空白试验和加填料后氧化沟系统的除磷效果的实验情况进行对比,探讨加填料后生物膜对厌氧释磷和好氧吸磷过程的影响,是否有生物膜重新释放磷的情况,并从机理上分析其原因。 2、在实验过程中,通过控制厌氧状态、厌氧时间、回流污泥量、污泥龄、碳源等各影响生物除磷的因素来分析他们对生物除磷效果的影响,在不同工况下进行生物系统除磷研究。 各参数情况:①污泥回流量和厌氧状态:厌氧池的污泥回流量是影响生物除磷效果的重要因素之一。试验中,既要防止污泥回流量大,带入的硝态氮过多,对厌氧状态产生影响,从而抑制聚磷菌进行磷的释放而影响整个系统的除磷效果;又要避免污泥回流量过小,进入厌氧池的聚磷菌相应减少,同样影响系统的除磷能力。因此,需严格控制污泥回流量。 ②污泥龄:对于生物除磷系统,污泥龄的长短对污泥摄磷作用及剩余污泥排放量有直接的影响。污泥龄越长,污泥含磷量越低,去除单位重量的磷需要消耗的有机物就越多,而且由于聚磷菌可利用有机质的不足使污泥发生“自溶”现象,致使磷的溶解和排泥量的减少进而导致除磷效果的降低;污泥龄越短,污泥含磷量越高,污泥的产磷率也越高,使得通过剩余污泥的排放而去除的磷量也就越多。 而在脱氮除磷相结合的工艺中,硝化菌和聚磷菌在污泥龄上存在着矛盾,污泥龄太高,不利于磷的去除;污泥龄太低,硝化菌无法存活,且污泥龄过大也会影响后续污泥处理。因此 因为试验中两类微生物共用一个污泥回流系统,整个系统的污泥龄需要控制在一个很窄的范围,使系统兼具脱氮除磷的效果。 ③厌氧停留时间:生物除磷要提供充分的厌氧时间,使污水与活性污泥充分地接触混合,有利于磷的有效释放和溶解性有机物的充分吸收,充分的厌氧释磷才能为后续的好氧吸磷和排泥除磷创造较好的条件。但是,厌氧反应时间过长,如果水中的的有机基质几乎消耗完了,聚磷菌处于内源呼吸期,就会出现无效释磷,进而造成在后续的好氧条件下不能过量吸磷,使出水中TP浓度升高,达不到除磷的目的。根据参考资料所做的实验研究表明,厌氧停留时间2h就能达到释磷,时间过长,则会“无效释磷”。在实验研究中,可以分别选择1h、 1.5h和2h等几个厌氧段时间。 ④提高聚磷菌在活性污泥中的比例:在生物脱氮除磷工艺运行中,有硝态氮时,反硝化菌可以直接利用易降解有机物质,导致聚磷菌无法得到足够的碳源而影响生长,所以要设法避免厌氧区硝态氮的存在,解决回流污泥中硝态氮问题,才能确保良好的厌氧状态。同时要提高兼性细菌将可溶解有机物向聚磷菌可利用有机物的发酵转化量,确保聚磷菌在厌氧段的碳源需求量。尽量降低有机物质、氨氮等的浓度,这些物质过高会导致其它菌群的增长优势,也会影响聚磷菌的比例。另一方面,提高活性污泥浓度也可以提高活性污泥中聚磷菌的比例。在常规活性污泥中,聚磷菌含量比较少,属于弱势菌群。通过研究发现不同污泥浓度下,微生物比增殖速率不同,而提高污泥浓度可以增加微生物比增殖速率,使弱势菌群增长速率有

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

影响污水生物除磷的因素

污水生物除磷的影响因素 排放富含氮磷的污水会导致受纳水体的富营养化,特别是湖泊和流速较小的河流(Sundblad et al., 1994; Danalewich et al., 1998)。目前,具有除磷功能的污水厂多数采用化学沉淀法,常用的混凝剂为硫酸铝或石灰(Stratful et al., 1999)。生物除磷就是利用微生物超过其正常代谢需要地聚集磷酸盐(作为细胞内的聚磷)(Brdjanovic et al., 1998; Mino et al., 1998)。BPR工艺的主要特征就是使活性污泥循环处于厌氧和好氧环境,并使进水进入厌氧区(Wagner and Loy, 2002)。在厌氧区,必须有充足的易生物降解碳源,如VFAs,诱导除磷菌吸收酸并释放磷酸盐(Morse et al., 1998)。在好氧区,发生超量吸磷,导致总磷去除率高达80-90% (Morse et al., 1998)。通过排放富含磷的剩余污泥实现磷的高效去除(Mino et al., 1998)。Mino et al.(1998)总结了BPR工艺的微生物学和生物化学过程。此外,反硝化聚磷菌(DPAO=denitrifying P-accumulating organisms)也被广泛报道与讨论((Kerm-Jespersen and Henze, 1993; Rensink et al., 1997, Meinhold et al., 1999; Hu et al., 2002)。Ekama and Wentzel(1999a)认为,在适宜的条件下,不同种类的PAO可以完成缺氧磷吸收,但除磷效果明显较低,而且与好氧吸磷PAO相比,其利用进水中易生物降解COD的效率也低。 1.1 污水水质 要使BPR成功运行,污水进水越稳定越好,应避免进水量的剧烈波动。可采取在较长时间内逐渐增加的办法来提高负荷率(Shehab et al., 1996)。BPR系统对干扰很敏感,例如暴雨时的污水稀释(Brdjanovic et al., 1998),较长时间的干扰导致长达4周的恢复时间(Okada et al., 1992)。有机碳负荷较低的时期过后的1-2d,出水磷酸盐明显升高(Carucci et al., 1999a)。当进水有机组分从VFAs变为糖类,如葡萄糖,会诱导聚糖原微生物(GAOs=glycogen accumulating organisms)的增殖(Satoh et al., 1994)。 COD负荷过高将使BPR系统除磷效果恶化。Morgenroth and Wilderer(1998)在生物膜系统中发现,当进水乙酸盐浓度增加到400mg/L时,导致高效厌氧释磷(超过100mgP/L),提高了除磷效果。但是,当进水乙酸盐浓度进一步增加到600mg/L时,厌氧释磷却停止,除磷效果恶化。较高的进水乙酸盐浓度也会给BPR带来不利影响(Randall and Chapin, 1997)。据报道,污泥的COD-SS负荷较低时,具有较高的吸磷动力(Chuang et al., 1998)。当污泥的COD-SS负荷较高时,污泥将进水中的有机物转化为贮存物3-hydroxyvalerate(3HV),导致BPR恶化(Liu et al., 1996)。3HV是可被GAO细菌利用的主要贮存物。较高的进水COD/P 比也会降低BPR效果。在厌氧区内,如果COD未被消耗完毕,剩余的基质会导致好氧区内丝状菌的生长(Chang et al., 1996)。Furumai et al.(1999)发现,当污泥具备较高的生物除磷能力后,降低有机负荷导致BPR恶化,同时出水硝酸盐浓度升高。污泥负荷升高后,除磷效果恢复。 一般认为,要使得出水P水平<1.0mg/L,要求厌氧区进水的BOD5:TP>20:1,或COD:P>40:1(Randall et al., 1992)。当COD:P低于50时,单独的BPR就不满足出水磷要求(Pitman, 1991)。进水中每增加7.5mg乙酸盐/L,将使出水中减少1.0mgP/L(Manoharan, 1988)。 1.2. VFAs Barnard(1993)发现,去除1mg磷需要7-9mgVFA。而Oldham等(1994)利用VFAs使出水磷降低至0.2-0.3mg/L。VFAs可在现场生产,且运行费用低,不存在贮存和操作问题,这使其成为具有吸引力的营养物去除碳源(Manaraj and Elefsiniotis, 2001)。除VFAs外,更多的有机化合物,包括:羧酸类(carboxylic acids),糖类,和氨基酸,也可被富含PAO的污泥在厌氧条件下利用(Satoh et al., 1996)。Carucci等(1999b)发现,用其它基质,如葡萄糖和蛋白胨,代替VFA也可实现BPR。上述作者表明,葡萄糖的厌氧吸收可能实现BPR,也可能不会出现BPR。有关PAOs和GAOs的活动的研究结果还没有取得一致。这表明,有机化合物

污水处理厂的脱氮除磷改造

-- ●Vol.27,No.62009年6月 中国资源综合利用 China Resources Comprehensive Utilization 1 概况 漯河市污水处理厂,系“九五”期间淮河流域水污染防治规划重点项目之一,一期工程设计规模日处理城市混合污水80000m 3,工艺流程如图1所示。该工程采用carrousel 氧化沟工艺,设计出水标准为GB8978-1996二级排放标准。服务面积约28km 2,服务区人口35万人。该污水处理厂1997年12月开工建设,2000年7月进水试运行,同年10月底达标排放。 图1工艺流程图 该污水处理厂运行八年来,累计净化城市综合污水2亿多t ,日均进水量为70000~85000m 3,出水水质基本符合原设计出水要求,出水COD Cr 均低于120mg /L ,其去除率均在80%以上,有时甚至高于 90%;出水BOD 5均低于30mg /L ,去除率均在90%以上;只有SS 时有超标现象发生。同时,carrousel 氧 化沟具有较好的除磷功能,但脱氨氮功能有限。 随着环境保护形势的日益严峻,国家对重点流域出水断面的水质要求在进一步提高,尤其更加关切氮、磷污染物的污染问题。根据豫发改城市[2008]579号文件要求,10座省辖市污水处理厂需要进行脱氮改造,其中要求漯河市污水处理厂出水NH 3-N ≤10mg /L ,TN ≤15mg /L ,COD Cr ≤60mg /L 。从原厂检测数据看,出水NH 3-N 没有达到水质排放要求,出水COD Cr 虽然与排放指标接近,但不稳定。 2问题分析 2.1 进水水质超标。 原设计进水COD Cr 标准为500mg /L ,污水处理厂实际进水COD Cr 大多超过设计指标,有时甚至超设计标准数倍,导致污泥负荷过高,氧化沟内没有足够的氧气氧化分解污染物质,影响污水处理效果。另外,原设计进水SS 为200mg /L ,而实际进水大都在400mg /L 以上,进水SS 高,会导致氧化沟内污泥含量MLSS 快速上升,影响氧气的传递吸收[1]。由于污 收稿日期:2009-02-25作者简介:王 斌(1974-),男,河南漯河人,学士,工程师,从事污水治理方面的研究工作。 污水处理厂的脱氮除磷改造 王 斌1,朱学红1,赵若尘2 (1.漯河市水务投资有限公司,河南 漯河 462000;2.南京市排水管理处江心洲污水处理厂,南京210019) 摘要:结合城镇污水处理厂脱氮除磷改造工程实例,对老氧化沟进行功能区划分、设备改造:增加好氧区溶解氧浓度,降低缺(厌)区溶解氧浓度;同时适当增容,延长氧化沟水力停留时间和污泥泥龄。运行结果表明,系统出水主要指标稳定达到GB18918-2002一级A 标准。关键词:污水处理;脱氮除磷;功能区改造中图分类号:X703.1 文献标识码:A 文章编号:1008-9500(2009)06-0032-03 Reconstruction in N and P Removal in Wastewater Treatment Plants Wang Bin 1,Zhu Xuehong 1,Zhao Ruochen 2 (1.Luohe Water Co.Ltd.Luohe 46200,China ; 2.Jiangxinzhou Wastewater Treatment Plant of Nanjing Discharge Water Conducting Center ,Nanjing 210019,China ) Abstract :According to the reconstruction case in the town ,classing function zone and improving equipment on oxidation channel.At the same time enforcing the DO concentration of aerobic zone ,while decreasing the DO concentration of anoxic zone;meantime,cementing the capacity of oxidation channel to extend HRT an d SRT.The results show that the key output indicators of the system stably achieve GB18918-2002first-degree emission standards. Keywords :N and P removal;class zone ;increase the DO concentration ;increase the volume 污水治理32

除磷工艺比较与选择

污水除磷工艺比较与选择 化学除磷 1. 1.1 化学除磷原理 化学除磷主要是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体。 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。 1.2 化学除磷药剂 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 表1 污水净化常用药剂

铝盐的混凝沉淀 Al 2(SO 4 ) 3 + 6H 2 O----2Al(OH) 3 +3SO 4 2-+6CO 2 Al 2 (SO 4 ) 3 + 2PO 4 ----2AlPO 4 +3SO 4 2- 在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH) 3 沉淀。 铁盐的混凝沉淀 Fe 2(SO 4 ) 3 + 3HCO 3 ----Fe(OH) 3 +2SO 4 2-+3CO 2 Fe3+ + PO 43----FePO 4 ↓pH=5~5.5 每1mol磷需要加铁(Fe3+) 1.5—3 mol,最佳pH为5.0。 对磷含量为5mg/l左右的二级处理水,通过投加100-200mg/l的氯化铁 ( FeCl 3.6H 2 O)就可以得到90%以上的磷去除率。 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理中的化学除磷

污水处理中的化学除磷公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5

废水生物除磷技术

废水生物除磷技术 ——苏州科技大学生物技术1212班王森1220212201 摘要:本文介绍了一些废水生物除磷技术工艺,主要是对PAO和DPB两大类废水生物除磷工艺技术的作用机理和代表工艺技术做一个简要综述。 关键词:废水生物除磷,PAO,DPB 随着工农业生产增长,人口剧增,含磷洗涤剂和农药化肥大量使用,水体中的磷盐日益增加。虽然氮磷同为水体生物的重要营养物质,但是藻类等水生生物对磷更敏感,所以水体富营养化的最主要影响元素在于磷。到目前为止,国内外普遍采用的除磷方法主要有化学除磷法和生物除磷法,以及化学和生物除磷相结合的生化除磷法。化学法的运行费用较高,且产生的污泥量大。所以人们对生物除磷技术充满着兴趣。 下面将介绍几种废水生物除磷技术。 1、传统的聚合磷酸盐累积微生物(PAO)除磷工艺 1.1、作用机理 传统的除磷工艺是在厌氧\好氧交替运行的条件下达到除磷效果。 在厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为低分子有机物,聚磷菌分解细胞的聚磷酸盐同时产生ATP 并利用ATP 将废水中的低分子有机物,如挥发性脂肪酸(VFA)摄入细胞内,以PHB(聚-β羟基丁酸盐)及糖原等有机颗粒的形式存在于细胞中,同时将聚磷酸盐分解所产生的磷酸排出细胞外。而在好氧条件下,聚磷菌以氧气作为电子受体,利用PHB代谢释放的能量,从污水中吸收超过其生长所需要的磷并以聚磷酸盐的形式贮存起来,并产生新的细胞物质。普通细菌体内含有磷量只有2%左右,而聚磷菌在好氧条件下,因超量吸磷使其体内含磷量超过10%,有时甚至高达30%。然后系统通过排泥方式将被细菌过量吸收的磷随剩余污泥排出系统,从而达到高效除磷的目的。 1.2、代表工艺技术 1.2.1、A/O工艺与A2/O工艺 A/O工艺是美国与20世纪70年代在研究活性污泥膨胀问题时开发出的生物除磷工艺,这是目前最为简单的生物除磷手段。原污水或经过预处理的水与回流污泥在厌氧池中进行混合,然后进入好氧池,最后在二沉池进行沉淀分离,出水、污泥的回流和排出,这种工艺要求没有硝化反应。一般来说,当厌氧区和好氧区的水力停留时间分别为0.5 ~ l h和l ~ 3 h时,便可获得较好的除磷和除有机物效果。此工艺流程的优点在于工艺流程简单,不需要投加化学药品,建设费用和运行费用均较低。存在的问题是脱磷效果决定于剩余污泥排放量,在二沉池中还难免有磷的释放。 A2/O工艺,一般是在A/O工艺的基础上,于厌氧池与好氧池之间增加一个缺氧池,并使好氧区中混合液回流至缺氧区使之反硝化脱氮。在厌氧、缺氧、好氧3个不同的环境条件下,不同功能的微生物菌群的有机配合协作是A2/O工艺流程的主要特点,它可以同时达到去除有机物、脱氮和除磷的目的。此工艺具有抗冲击负荷能力强、水力停留时间长、运行稳定的特点。但除磷效果因污泥龄和回流污泥中挟带的溶解氧和硝酸盐氮受到抑制的原因,去除率不可能很高,但比A/O工艺的除磷率有明显提升。 1.2.2、Bardenpho工艺与Phoredox工艺 南非的Barnard 在他首创的Bardenpho 脱氮工艺中发现当反硝化彻底时也

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺水污染课程设计

城镇污水处理厂工艺设计(生物脱氮除磷工艺)水污染课程设 计

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

废水生物除磷原理

废水生物除磷原理 一、磷在废水中的存在形式 通常磷是以磷酸盐(-42PO H 、-24HPO 、-34PO )、聚磷酸盐和有机磷等的形式存在于废水 中;细菌一般是从外部环境摄取一定量的磷来满足其生理需要;有一类特殊的细菌——磷细菌,可以过量地、超出其生理需要地从外部摄取磷,并以聚合磷酸盐的形式贮存在细胞体内,如果从系统中排出这种高磷污泥,则能达到除磷的效果。 二、生物除磷的基本过程 1、除磷菌的过量摄取磷 好氧条件下,除磷菌利用废水中的BOD 5或体内贮存的聚β-羟基丁酸的氧化分解所释放的能量来摄取废水中的磷,一部分磷被用来合成ATP ,另外绝大部分的磷则被合成为聚磷酸盐而贮存在细胞体内。 2、除磷菌的磷释放 在厌氧条件下,除磷菌能分解体内的聚磷酸盐而产生ATP ,并利用ATP 将废水中的有机物摄入细胞内,以聚β-羟基丁酸等有机颗粒的形式贮存于细胞内,同时还将分解聚磷酸盐所产生的磷酸排出体外。 3、富磷污泥的排放 在好氧条件下所摄取的磷比在厌氧条件下所释放的磷多,废水生物除磷工艺是利用除磷菌的这一过程,将多余剩余污泥排出系统而达到除磷的目的。 三、生物除磷过程的影响因素 1、溶解氧: 在除磷菌释放磷的厌氧反应器内,应保持绝对的厌氧条件,即使是NO 3-等一类的化合态氧也不允许存在;在除磷菌吸收磷的好氧反应器内,则应保持充足的溶解氧。 2、污泥龄: 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩余污泥的多少对脱磷效果有很大影响,一般污泥短的系统产生的剩余污泥多,可以取得较好的除磷效果;有报道称:污泥龄为30d ,除磷率为40%;污泥龄为17d ,除磷率为50%;而污泥龄为5d 时,除磷率高达87%。

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

相关文档
最新文档