功率大于2000kW的高压电机差动保护方式的选择

功率大于2000kW的高压电机差动保护方式的选择
功率大于2000kW的高压电机差动保护方式的选择

功率大于2000kW的高压电机差动保护方式的选择

发表时间:2017-06-09T10:25:52.317Z 来源:《建筑知识》2016年22期作者:冯转玲

[导读] 介绍了功率大于2000kW的高压电机变频器起动及软起动器起动时差动保护的选择以及这两种起动方式在实际应用中的电气接线。(山西新唐工程设计股份有限公司山西太原 030032)

【摘要】介绍了功率大于2000kW的高压电机变频器起动及软起动器起动时差动保护的选择以及这两种起动方式在实际应用中的电气接线,纵联差动保护与磁平衡差动保护的共同点及不同点,优点及缺点。差动保护时选用的电流互感器精度、容量及变比的选择。

【关键词】纵联差动保护;磁平衡差动保护

【中图分类号】TU856 【文献标识码】A 【文章编号】1002-8544(2016)22-0168-02

《电力装置的继电保护和自动装置设计规范》中明确规定2000kW及以上的电动机,或电流速断保护灵敏系数不符合要求的2MW以下电动机,应装设纵联差动保护。

功率大于2000kW的高压电机,一般来说常用的起动方式有两种(1)变频器起动。(2)软起动器起动。一般如此大功率的电机原则上来说不推荐选择直接启动的启动方式。下面我们来具体论述一下以上两种起动方式时,高压电机差动保护的电气接线。

1.变频器起动时高压电机差动保护的选择有两种方式

磁平衡差动保护和普通纵联差动保护。

1.1 磁平衡差动保护时,差动保护的电气接线。

4TA为磁平衡差动线圈,放置于高压电机内部(电机订货要求中一定要写到,并明确电流互感器变比及保护级别、容量等),在电机本体上带有磁平衡差动电流互感器,然后把电流互感器信号接至高压综自保护装置中。注意电动机综自保护装置一定要求是磁平衡差动保护装置(有些综自保护厂家磁平衡保护和电机普通纵联差动保护装置为一个保护装置,装置内部可以设置)。具体接线如图一所示。磁平衡差动保护不受电机起动方式的选择,选择任何起动方式的高压电机均可采用磁平衡差动保护,但是必须在电机订货时要求电机厂家在电机内部磁平衡差动线圈。

1.2 变频器起动时,普通纵联差动保护的电气接线。

由于电机采用变频器起动方式,变频器上侧及下侧电流有变化不一样大,故不能做作为纵联差动保护的取样电流。这时差动电流的取样点必须取自于变频器下侧出口4TA处及电机本体中性点处5TA,具体详见图二。在高压变频器订货时一定要明确指出纵联差动保护时用电流互感器的安装位置、变比、保护级别、容量。电机末端中性点差动电流互感器也一定要在电机的订货资料中写到,并且也一定要写到电流互感器变比、保护级别、容量。且电流互感器4TA及5TA的所有参数必须相同。这时高压电机的微机综自保护装置就由两个组成,第一台保护装置为线路保护装置(安装于对应高压柜上),保护由高压柜至变频器的高压电缆;第二台综自保护装置(安装于对应高压变频柜上或者单独安装于一个柜子上)为电动机纵联差动保护装置,保护范围为高压变频下出口至电机包括电机在内。

2.软起动器起动的高压电机纵联差动保护时的电气接线。

高压电机使用软起动器起动时,软起动不会引起软起动器上下侧电机电流变化,所以纵联差动保护电流取样点一侧取自高压柜电流互感器4TA,另一个电流取样点取在高压电机电机末端中性点差动电流互感器。电机末端中性点电流互感器5TA一定要在电机的订货资料中写到,并且也一定要写到电流互感器变比、保护级别、容量。且电流互感器4TA及5TA的所有参数必须相同。这时高压电机的微机综自保护装置就只有一台普通纵联差动保护装置。具体接线详见图。

上面我们就功率大于2000kW的高压电机的差动保护电气接线进行了分析,下面我们就磁平衡差动保护和普通纵联差动保护的优缺点进行比较:

(1)电动机普通纵联差动保护一侧电流互感器装设在高压开关柜上,另一侧电流互感器装设在电动机末端中性点侧。一般情况下,电动机距高压开关柜较远,虽然两侧电流互感器型号,变比相同,但是因为中性点侧电流互感器有较长的二次电缆,所以两侧电流互感器的二次阻抗处于严重不匹配状态,造成电动机起动时差动回路中有较大的不平衡电流。

为防止纵联差差动保护在起动过程中发生误动作,常规纵联差动保护采取以下两种措施减少电机起动过程中差动装置的动作。一种措施是将综自保护装置内制动特性的最小动作电流和制动特性斜率适当提高甚至加倍,这种措施的缺点是明显降低了起动过程中纵差保护的灵敏度;为躲过外部短路故障时电动机反馈电流或外部短路故障切除电动机自起动电流产生的不平衡电流,正常运行时保护灵敏度也受到限制。另一种措施是将纵差保护分成起动过程中的纵差保护和正常运行时的纵差保护,定值分开独立整定。这种措施与第一种措施无本质区别,因而具有相同的缺点,而且如果将纵差保护定值分为起动过程中及正常运行时,那么起动时间的设置也是影响纵差保护正确的一个重要因素。至于按躲过起动电流影响来整定参数的纵差保护,因不采取任何措施,所以灵敏度降得更低。

在理论上,上述常规纵差保护提高灵敏度最有效的措施是在开关柜电流互感器二次进行阻抗补偿,介接入与另一侧等长的相同的二次电缆,但实际上做起来确实非常的困难,难以实现。

因此,常规纵差保护在上述情况下灵敏度都受到限制,具有较大定子绕组相间短路故障死区,这不能不说是常规纵差保护的一个严重

(新)高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

高压变频器电动机保护的配置

高压变频器电动机保护的配置 根据国家能源政策的要求,节能减排工作已全面展开,而在大型火力发电厂,厂用电率的降低势在必行。对于占厂用电绝大部分的高压电动机来说,节能领域的重要技术措施就是高压变频技术的应用。随着电力电子技术的发展,变频器在电厂得到了广泛应用。目前的新建电厂,重要辅机如风机、水泵等,一般均要求考虑配置变频器拖动;越来越多的已建电厂正在进行或已完成高压电动机采用变频器的改造。高压电动机采用采用变频器拖动后,电动机保护如何配置才能保证机组安全可靠的运行,成为电厂、设计院、保护厂家关注的问题。 1传统电动机保护配置 异步电动机的故障有定子绕组相间短路故障、绕组的匝间短路故障和单相接地故障;不正常运行状态主要有过负荷、堵转、起动时间过长、三相供电不平衡或断相运行、电压异常等。因此,对于高压电动机,根据规程以差动保护或电流速断为主保护,以过负荷保护、过流保护、负序保护、零序保护及低电压保护等作为后备保护。 2目前变频器电动机保护配置 发电厂为保证系统的可靠性,高压电动机一般采用变频器带工频旁路,以便即使在变频器检修时也可通过工频旁路,保证电动机的正常运行。图1为现场高压电动机变频器改造的示意图,其中K1、K2开关保证变频器检修时,与主回路无接触点,此时K3开关闭合,电动机通过旁路运行。 当电动机通过旁路运行,此时由厂用电中高压母线工频电压直接驱动电动机,进线开关QF处保护装置的保护对象是开关出线以及电动机本体。因此,此时应该按照常规电动机保护的要求配置电动机保护,有差动保护要求的,需要配置电动机差动保护。

当旁路开关K3断开,电动机由变频器拖动时,进线开关QF处保护装置的保护对象是开关出线以及变频器。由于目前发电厂使用的变频器一般由整流变压器、控制柜等部分构成,即进线开关QF处保护装置的保护对象是开关出线以及整流变压器。此时电动机成为与厂用电母线隔离后高压变频器的负荷,因而电动机的保护应由高压变频系统的控制器实现。对于6~10kV整流变压器,一般对其配置常规变压器后备保护,在整定时和常规变压器略有差异。此时电动机常规差动保护由于开关处电流和电动机中性侧电流频率不一致,无法进行差动保护,只能退出。 前一般变频器电动机保护配置有:电动机保护测控装置、电动机差动保护装置、变压器保护测控装置。电动机保护装置和变压器保护装置通过旁路开关进行功能的投退:即旁路开关断开,此时为变频器拖动电动机方式,变压器保护装置投入,电动机保护装置和电动机差动保护装置退出;当旁路开关闭合,此时为工频电网直接拖动电动机,电动机保护装置和电动机差动保护装置投入,变压器保护装置退出。 目前此种保护配置方式主要存在两个问题: (1)对于2000kW以上的电动机,需要配置差动保护。因此,在变频器拖动电动机情况下,电动机差动保护退出,保护的可靠性受到影响。 (2)任意时刻,变压器保护装置、电动机保护装置只有一台投入使用,降低了装置的使用效率。 3变频器电动机差动保护 在使用变频器拖动电动机的情况下,传统电动机差动保护无法使用的原因为:电动机机端CT为图1中开关柜处的CT1和电动机中性侧CT即CT3这两处CT的电流频率不相同。文献提出采用磁平衡差动保护来实现,但实际中存在几个问题:

实用文档之高压电动机差动保护原理及注意事项

实用文档之"高压电动机差动保护原理及注意事项" 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之

差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT 二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下: ≥1 & & ≥1 ACT BTJ ACT BTJ t dz 差动速断(投跳) 比率差动(投跳) I da >I sd I ∑>I N I d >I set I ∑I sd I d >I set 差动 速断 保护 分相 比率 差动 保护

高压电动机差动保护使用说明书

二、高压电机防冲击箱控制原理 本柜采用三个安装于中性点的互感器、三个装于用户电源侧的互感器和电流继电器组成的差动保护电路对电机进行保护,在电动机没有内部短路时,电流回路上几乎没有不平衡电流,电流继电器理论指示数值为零,实际值也极小。当电机内部短路时,两组互感器将产生电流差,从而使得电流继电器动作,给出跳闸信号。此箱在电源进线侧装有阻容吸收器,既可以最有效限制操作过电压,又具有强大的防雷功能。为防止箱体内部产生的放电等易引起内部气体膨胀事故,防冲击箱下部安装有防爆片,当内部气压达到一定值时,防爆片内部弹片将动作,使防爆片破裂,释放箱体内部压力,起到防爆作用。 三、安装说明 防冲击箱运抵安装现场后,卸下正面盖板,将安装板一侧与电机基座侧对接,因运输过程不确定因素,如铜排有松动,应用扳手紧固。互感器上三根铜排为电机中性点连接点,绝缘子上铜排为引入电源的引线,其上连接有阻容吸收器,根据现场情况按相关规定连接,互感器引出线端子在箱体后部端子盒中,可根据标号接至远方继电器上,互感器工作时严禁开路,右侧铜螺栓为接地端。盖上正面盖板,安装完毕。 内部电路图见附页感谢您选用本公司的产品! 该设备出厂前,已通过出厂检验。 本说明书涵盖了设备的设计、结构、安装、操作等相关内容。为确保您使用的权益,并避免无谓的损失,请您在使用之前务必详读,并按各项操作要求作业。如按本使用说明书规范安装、操作和维护,设备将为您提供多年满意的服务。 若有问题,请立即与我公司联络,公司将派专人为您提供最完善的售后服务。 产品保证! 保证是基于本设备按产品使用说明书正常使用的情况。未经授权的改造或超出使用限制、不正确操作、缺少保养等,将会影响我们对您的保证。 交货确认! 用户自提,用户应对本设备的正确性、完整性、完好性进行确认,并在交货单上签字。 由本公司安排发运,在承运者代表与用户在场的情况下,对本设备的正确性、完整性、完好性进行确认,并在交货单上签字。 安装前存放! 设备应存放在干燥、通风、无腐蚀性物质的仓库中。

高压电动机保护定值计算

高压电动机的继电保护高压电动机的定子绕组和其引出线,一般应装设电流速断保护。对生产过程中容易发生过载的电动机,应装设过负荷保护,过负荷保护可根据负荷特性带时限作用于信号、跳闸或自动减负荷装置。对于高压电动机容量在2000kW以上的,在电流速断不能满足灵敏度要求时,应装设纵联差动保护。当电源电压短时降低或短时中断后根据生产过程不允许或不需要自启动的电动机,以及为了保证重要电动机自启动而需要断开的次要电动机,应装设低电压保护,一般带有~时限作用于跳闸,但是为了保证人身和设备的安全,在电源电压长时间小时后,须从系统中自动断开的电动机,也需要装设低电压保护,一般带有5~10s时限作用于跳闸。一、高压电动机的相间短路保护-对于功率小于2000kW的电动机,常采用电流速断来作为电动机的相间短路保护,当灵敏度要求较高时,可以用DL型或GL型继电器构成两相不完全星型连接方式,其接线方式与电路线路或电力变压器的电路速断相同。也可以采用两相差接线,即两相一继电器接线。ZG电力自电流速断的动作电流按躲过电动机的最大启动电流来整定。二、电动机的过压保护-过负荷保护可以采用一相一继电器接线,也可以采用两相两继电器不完全星型连接或两相差一继电器接线。由于电动机装有电流速断保护,过负荷保护就可以利用GL型继电器的反时限过电流装置来实现过负荷保护。过负荷的动作电流按躲过电动机的最大启动电流来整定。过负荷保护的动作时间应大于电动机的启动时间,一般取10-16s,如用GL型继电器,可取两倍动作电流时的时间12-16s。 三、高压电机的低电压保护-当电压互感器一次测隔离开关断开时,低电压保护即退出工作,防止无动作。对保护动作不重要的电动机,电压继电器按60%-70%额定电压整定,动作时间取;对动作较为重要的电动机,电压继电器按30%-50%额定电压整定,动作时间取5-10s。 四、高压电动机的差动保护-在小电流接地的供电系统中,可以采用两相两继电器的差动保护接线,差动保护的动作电流按躲过电动机额定电流In来整定,主要考虑二次回路断线时不至于引起误动作。五、同步电动机的失步保护-采用两相差接线对同步电动机的失步进行保护。当电动机定子绕组内出现较大的由于失步引起的脉动电流时电流继电器动作。反应转子回路内交变电流的失步保护-在同步电动机的转子回路中串接电流互感器,正常运行时转子回路中流过直流电流,互感器的二次侧不产生感应电动势,保护装置不动作,当同步电动机发生失步运行时,转子回路中感应出交变电流,通过电流互感器使二次侧保护继电器动作。高压电动机保护配置:大型发电厂的高压厂用电机及一些工矿企业的高压电机普遍

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 令狐采学 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图

为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

高低压电动机保护定值整定

低压电动机保护定值整定

电动机的主要保护及计算 一、速断保护 1.速断高值:动作电流高定值Isdg计算。按躲过电动机最大起动电流计算,即: Isdg=Krel×Kst×In In=Ie/n TA 式中 Krel——可靠系数1.5; Kst——电动机起动电流倍数(在6-8之间); In——电动机二次额定电流; Ie——电动机一次额定电流; n TA——电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据以往实测,电动机反馈电流的暂态值为5.8-5.9,考虑保护固有动作时间为0.04-0.06S,以及反馈电流倍数暂态值的衰减,取Kfb=6计算动作电流低定值,即: Isdd=Krel×Kfb×In=7.8In

式中 Krel——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3.动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1.一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由于三相电流产生的漏磁通不一致,于是在零序电流互感器内产生磁不平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz——单相接地零序过电流保护一次动作电流整定值; Ie——电动机一次额定电流。 当电动机容量较大时可取: I0dz=(0.05-0.075)Ie 当电动机容量较小时可取: I0dz=(0.1-0.15)Ie 由于单相接地保护灵敏度足够,根据具体情况,I0dz有时可适当取大一些。根据经验,低电压电动机单相接地保护一次动作电流一般取I0dz=10-40A。 2.动作时间t0dz计算。取: t0dz=0s。 三、负序过电流保护 电动机三相电流不对称时产生负序电流I2,当电动机一次回路的一相断线(高压熔断器一相熔断或电动机一相绕组开焊),电动机一相或两相绕组匝间短路,电动机电源相序接反(电流互感器TA前相序接反)等出现很大的负序电流(I2)时,负序电流保护或不平衡电流(△I)保护(国产综合保护统称负序过电流保护,而国外进口综合保护统称不平衡△I 保护)延时动作切除故障。 1.负序动作电流计算。电动机两相运行时,负序过电流保护应可靠动作。 2.国产综合保护设置两阶段负序过电流保护时,整定计算可同时采用Ⅰ、Ⅱ段负序过电流保护。 (1)负序Ⅰ段过电流保护。按躲过区外不对称短路时电动机负序反馈电流和电动机起动时出现暂态二次负序电流,以及保证电动机在较大负荷两相运行和电动机内部不对称短路时有足够灵敏度综合考虑计算。 1)动作电流,采取经验公式,取: I22dz=(0.6-1)In 一般取I22dz=0.6In 2)动作时间。取: t22dz=(0.5-1)s。 (2)负序Ⅱ段过电流保护。按躲过电动机正常运行时可能的最大负序电流和电动机在较小负荷时两相运行时有足够灵敏度及对电动机定子绕组匝间短路有保护功能考虑。 1)动作电流,用经验公式,取: I22dz=(0.15-0.3)In 一般取I22dz=0.15In 2)动作时间。一般取: t22dz=(10-25)s。

高压电动机综合保护整定原则

电动机综合保护整定原则 1、差动电流速断保护按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定一般取:I dz=KI e/n 式中:I dz:差电流速断的动作电流 I e :电动机的额定电流 K :一般取8~10 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流 I dz.min二K K△ ml" 式中:l e:电动机的额定电流 n:电流互感器的变比 K K :可靠系数,取3~4 △ m:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取I dz.min=(0.3~0.6)I e/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数 K =K K K fzq K tx K c 式中:心:电流互感器的同型系数,心=0.5

K K :可靠系数,取2~3 K c:电流互感器的比误差,取0.1 K fzq :非周期分量系数,取1.5~2.0 计算值K max=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.3~0.6 3、电流速断保护 整定原则:躲过电动机启动时的产生的最大电流,但在正常运行中又要有足够的灵敏度; 1)Izd = K K.Istart K为可靠系数,一般地Kk=1.3 Istart 为电动机启动的最大电流,该电流值可以通过启动电机时记录保护中记录的最大电流取得;或根据动机标称启动电流得到;2)若Istart 不好确定时,可根据下面推荐进行计算Istart ;单鼠笼: Istart=(6~7)Ie 双鼠 笼: Istart=(4~5)Ie 绕线式: Istart=(3~4)Ie Idz=K*Izd 电动机启动过程中K=1 ,启动结束后K=0.5; 即当电动机启动完成后速断定值自动降低为原定值的50%。可有效 地防止启动过程中因启动电流过大引起的误动,同时还能保证正常运行中保护有较高的灵敏性。 3) 速断动作时间tsd 根据现场运行经验,一般取取tsd =0.05s

高压电机、变压器差动保护动作的几种原因及分析

装置与应用 258 2015年9月下 高压电机、变压器差动保护动作的几种原因及分析 张培龙 李洪佳 刘 伟 中石化中原油田分公司供电服务中心,河南 濮阳 457000 摘要:随着微机保护装置的广泛应用,特别是在保护装置改造、新设备投产中,会遇到电机、变压器差动保护动作的情况,本文就我们实践中出现的问题及解决办法介绍给大家,以求少走弯路。 关键词:高压电机(发电机、电动机);变压器;差动保护动作 中图分类号:TM772 文献标识码:A 文章编号:1002-1388(2015)09-0258-01 高压变压器、电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1 电机差动保护动作原因分析 1.1 已经投产运行中的电机 已经投产运行的电机当出现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置出现了问题。 解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断出故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及CT 和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其二次线错接在了测量级上,其电机两侧CT 的特性不一致。当给2号35kV 主变充电时就会有直流分量和谐波串到6kV 电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值1.6A 左右,动作整定值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误动。 2 改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设备第一次投产试运行时,往往会出现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所出现过的几种情况。 (1)郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值6.2A-7.2A 。动作整定值5.2A )。对装置的参数整定,CT 的极性、接线进行反复检查均没问题,电机试验也正常。后来确认,由于电机距离开关柜较远(1000m ),电机中心点CT 的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流出现。测量电动机尾端到开关柜保护装置的接线直阻为3.5欧,CT 带负载能力为2.2欧。我们从厂家制造了两只专用CT ,二次绕组都制成保护级且变比相同,把其副边串接起来,在不改变变比的情况下,提升了带负载能力。改造后正常。 (2)郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A ,动作整定值21.7A 。我们对电机、电缆、CT 变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT 极性接反(相角差180度),接反后其动作值应在42A 以上,更像是差动回路或一次回路相序不对,其动作电流肯定大于21.7A ,一般小于42A 。其动作值与启动电流 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算出来理想状态下的动作电流。经过仔细检查,发现电机中心点电缆出线A 相接到了C 相上,也就是说,开关侧与电机中心点侧的CT 差的不是同相电流。这与分析和计算结果相一致。濮一变也出现过此情况。 (3)郭村变再次改造微机保护装置后,第一次投运时,622注水电机保护装置的差速动作(动作值44A ,动作整定值21.7A ),根据动作值来看,应该是CT 的极性接反,但反复检查,按照惯例是“正确的”。后经过分析,可能是保护装置(型号PSM641U 国电南自)设计与原产品有变化,把电机开关侧CT 的极性调反后,电机启动正常。濮一变622注水电机也出现过此情况。 3 变压器差动保护动作原因及分析 (1)赵村变一号110kV 主变微机保护装置(PST622,国电南自)改造后,差动保护越线报警(报警电流整定值0.7A )。我们当时没有经验,误认为没有问题。当35kV 赵特蒙线短路后,一号主变差动保护动作,造成主变跳闸。我们经过仔细查找,发现主变35kV 侧差动CT 变比本应600/5却错接为400/5,而且未做变比试验。更改后差动保护越线电流降低为0.2A-0.3A 之间。差动保护装置检测到的差动电流ISA 、ISB 、ISC 在0.025-0.04之间。究其原因就是因为在外部短路时,电流很大,由于35kV 侧与110kV 、6kV 侧CT 变比不匹配,造成差流过大,致使主变三侧开关跳闸。但正常运行时,差流不会达到跳闸值。 (2)赵村变二号主变在第二次改造投运后,发现差动电流IUMA 、IUMC 偏大(为0.4A 左右。正常值值应为0.02-0.04A 之间),ISB 正常。我们分析是CT 的二次相序接反了。经过查找就是因为建站初期,因110kV 进线通道问题,相序故意接反的。我们调整后,一切正常。 (3)郭村变一号主变微机保护装置改造完投运后,未发现异常。当35kV 郭胡线短路后,一号主变却跳闸了。经过仔细检查发现主变(Y/Y/△11接法)110kV 侧CT 二次(△接线方式)有一处接地(不能接地),当外部出线发生短路时,变压器三侧的二次电流差自然会加大,造成差动保护动作。解掉后正常。现在的微机保护装置都可以根据需要实现内部相位补偿,差动CT 的副边都可以接成星型,无需考虑变压器的接法。 (4)金堤变一号主变差动保护动作。我们到现场进行了仔细分析和试验,没发现什么问题,施工单位反映,他们在一号主变的110kV 进线开关上焊接接地极。根据这个线索,我们进行了分析和查找,发现110kV 侧差动CT 中性点在101CT 端子箱上接了地,在主变保护屏端子上也接了地,造成重复接地。当施工人员在110kV 端子箱上焊接接地极时,会在CT 回路上加上一个20V 的电压,造成CT 回路电流超过差动保护动作电流整定值(2.2A ),致使主变三侧开关跳闸。因此,检修、验收时一定要详细检查CT 回路的中性点接地情况。 参考文献 [1]何彤,薛文俊,梁乐.变压器差动保护误动作分析[J].中国新技术新产品,2013(1):156. [2]董智勇.变压器差动保护动作原因的分析方法[J].中国机械,2013(11):150-151.

高压电动机保护整定原则

高压电动机保护整定原则 1)电流速断保护--电动机定子绕组相间短路的保护,动作于跳闸. 2)纵联差动保护--采用差动保护来对电动机内部及引出线相间短路进行保护,动作于跳闸. 3)过负载保护--预防电动机所拖动的生产机械过负荷而引起的过电流,动作于信号或带一定时限动作于跳闸. 4)单相接地保护--在小接地电流系统中,当接地电流大于5A时,为预防电流电动机定子绕组单相接地故障的危害,必须装设单相接地保护,接地电流值为5A~10A时,动作于信号;接地电流大于10A时,动作于跳闸. 5)低电压保护--防止电压降低或中断电动机自启动的保护,动作于跳闸。 通过学习后总结和多方面资料的查找,对电动机综合保护整定参数进行整理,给出以下参数,以供参考。 1 差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取:Idz=KIe/n 式中:Idz:差动电流速断的动作电流Ie:电动机的额定电流K:一般取6~12 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流Idz.min=KKΔmIe/n 式中:Ie:电动机的额定电流 n:电流互感器的变比 KK:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取Idz.min=(0.3~0.6)Ie/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数

K =KKKfzq Ktx Kc 式中:Ktx:电流互感器的同型系数,Ktx=0.5 KK:可靠系数,取2~3 Kc:电流互感器的比误差,取0.1 Kfzq:非周期分量系数,取1.5~2.0 计算值Kmax=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.5~1.0 3、相电流速断保护 1)速断动作电流高值Isdg Isdg = Kk / Ist 式中,Ist:电动机启动电流(A) Kk:可靠系数,可取Kk = 1.3 2)速断电流低值Isdd Isdd可取0.7~0.8Isdg,一般取0.7Isdg 3)速断动作时间tsd 当电动机回路用真空开关或少油开关做出口时,取tsd =0.06s,当电动机回路用FC做出口时,应适当延时以保证熔丝熔断早于速断保护。 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。 5、负序过流保护 1)负序动作电流I2dz I2dz按躲过正常运行时允许的负序电流整定

高压电动机保护

高压电动机的继电保护 高压电动机的定子绕组和其引出线,一般应装设电流速断保护。对生产过程中容易发生过载的电动机,应装设过负荷保护,过负荷保护可根据负荷特性带时限作用于信号、跳闸或自动减负荷装置。 对于高压电动机容量在2000kW以上的,在电流速断不能满足灵敏度要求时,应装设纵联差动保护。 当电源电压短时降低或短时中断后根据生产过程不允许或不需要自启动的电动机,以及为了保证重要电动机自启动而需要断开的次要电动机,应装设低电压保护,一般带有~时限作用于跳闸,但是为了保证人身和设备的安全,在电源电压长时间小时后,须从系统中自动断开的电动机,也需要装设低电压保护,一般带有5~10s时限作用于跳闸。 一、高压电动机的相间短路保护-对于功率小于2000kW的电动机,常采用电流速断来作为电动机的相间短路保护,当灵敏度要求较高时,可以用DL型或GL型继电器构成两相不完全星型连接方式,其接线方式与电路线路或电力变压器的电路速断相同。也可以采用两相差接线,即两相一继电器接线。 电流速断的动作电流按躲过电动机的最大启动电流来整定。 二、电动机的过压保护-过负荷保护可以采用一相一继电器接线,也可以采用两相两继电器不完全星型连接或两相差一继电器接线。由于电动机装有电流速断保护,过负荷保护就可以利用GL型继电器的反时限过电流装置来实现过负荷保护。 过负荷的动作电流按躲过电动机的最大启动电流来整定。过负荷保护的动作时间应大于电动机的启动时间,一般取10-16s,如用GL型继电器,可取两倍动作电流时的时间12-16s。

三、高压电机的低电压保护-当电压互感器一次测隔离开关断开时,低电压保护即退出工作,防止无动作。对保护动作不重要的电动机,电压继电器按60%-70%额定电压整定,动作时间取;对动作较为重要的电动机,电压继电器按30%-50%额定电压整定,动作时间取5-10s。 四、高压电动机的差动保护-在小电流接地的供电系统中,可以采用两相两继电器的差动保护接线,差动保护的动作电流按躲过电动机额定电流In来整定,主要考虑二次回路断线时不至于引起误动作。 五、同步电动机的失步保护-采用两相差接线对同步电动机的失步进行保护。当电动机定子绕组内出现较大的由于失步引起的脉动电流时电流继电器动作。 反应转子回路内交变电流的失步保护-在同步电动机的转子回路中串接电流互感器,正常运行时转子回路中流过直流电流,互感器的二次侧不产生感应电动势,保护装置不动作,当同步电动机发生失步运行时,转子回路中感应出交变电流,通过电流互感器使二次侧保护继电器动作。 高压电动机保护配置: 大型发电厂的高压厂用电机及一些工矿企业的高压电机普遍采用微机保护。 1、对于容量在2000kW及以下的高压电动机的相间短路的主保护为相电流速断。 、电机启动过程速断保护按躲过电机的最大启动电流整定。 动作电流Idz>=Ih, Ih=K1*K2*In2

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。

功率大于2000kW的高压电机差动保护方式的选择

功率大于2000kW的高压电机差动保护方式的选择 发表时间:2017-06-09T10:25:52.317Z 来源:《建筑知识》2016年22期作者:冯转玲 [导读] 介绍了功率大于2000kW的高压电机变频器起动及软起动器起动时差动保护的选择以及这两种起动方式在实际应用中的电气接线。(山西新唐工程设计股份有限公司山西太原 030032) 【摘要】介绍了功率大于2000kW的高压电机变频器起动及软起动器起动时差动保护的选择以及这两种起动方式在实际应用中的电气接线,纵联差动保护与磁平衡差动保护的共同点及不同点,优点及缺点。差动保护时选用的电流互感器精度、容量及变比的选择。 【关键词】纵联差动保护;磁平衡差动保护 【中图分类号】TU856 【文献标识码】A 【文章编号】1002-8544(2016)22-0168-02 《电力装置的继电保护和自动装置设计规范》中明确规定2000kW及以上的电动机,或电流速断保护灵敏系数不符合要求的2MW以下电动机,应装设纵联差动保护。 功率大于2000kW的高压电机,一般来说常用的起动方式有两种(1)变频器起动。(2)软起动器起动。一般如此大功率的电机原则上来说不推荐选择直接启动的启动方式。下面我们来具体论述一下以上两种起动方式时,高压电机差动保护的电气接线。 1.变频器起动时高压电机差动保护的选择有两种方式 磁平衡差动保护和普通纵联差动保护。 1.1 磁平衡差动保护时,差动保护的电气接线。 4TA为磁平衡差动线圈,放置于高压电机内部(电机订货要求中一定要写到,并明确电流互感器变比及保护级别、容量等),在电机本体上带有磁平衡差动电流互感器,然后把电流互感器信号接至高压综自保护装置中。注意电动机综自保护装置一定要求是磁平衡差动保护装置(有些综自保护厂家磁平衡保护和电机普通纵联差动保护装置为一个保护装置,装置内部可以设置)。具体接线如图一所示。磁平衡差动保护不受电机起动方式的选择,选择任何起动方式的高压电机均可采用磁平衡差动保护,但是必须在电机订货时要求电机厂家在电机内部磁平衡差动线圈。 1.2 变频器起动时,普通纵联差动保护的电气接线。 由于电机采用变频器起动方式,变频器上侧及下侧电流有变化不一样大,故不能做作为纵联差动保护的取样电流。这时差动电流的取样点必须取自于变频器下侧出口4TA处及电机本体中性点处5TA,具体详见图二。在高压变频器订货时一定要明确指出纵联差动保护时用电流互感器的安装位置、变比、保护级别、容量。电机末端中性点差动电流互感器也一定要在电机的订货资料中写到,并且也一定要写到电流互感器变比、保护级别、容量。且电流互感器4TA及5TA的所有参数必须相同。这时高压电机的微机综自保护装置就由两个组成,第一台保护装置为线路保护装置(安装于对应高压柜上),保护由高压柜至变频器的高压电缆;第二台综自保护装置(安装于对应高压变频柜上或者单独安装于一个柜子上)为电动机纵联差动保护装置,保护范围为高压变频下出口至电机包括电机在内。 2.软起动器起动的高压电机纵联差动保护时的电气接线。 高压电机使用软起动器起动时,软起动不会引起软起动器上下侧电机电流变化,所以纵联差动保护电流取样点一侧取自高压柜电流互感器4TA,另一个电流取样点取在高压电机电机末端中性点差动电流互感器。电机末端中性点电流互感器5TA一定要在电机的订货资料中写到,并且也一定要写到电流互感器变比、保护级别、容量。且电流互感器4TA及5TA的所有参数必须相同。这时高压电机的微机综自保护装置就只有一台普通纵联差动保护装置。具体接线详见图。 上面我们就功率大于2000kW的高压电机的差动保护电气接线进行了分析,下面我们就磁平衡差动保护和普通纵联差动保护的优缺点进行比较: (1)电动机普通纵联差动保护一侧电流互感器装设在高压开关柜上,另一侧电流互感器装设在电动机末端中性点侧。一般情况下,电动机距高压开关柜较远,虽然两侧电流互感器型号,变比相同,但是因为中性点侧电流互感器有较长的二次电缆,所以两侧电流互感器的二次阻抗处于严重不匹配状态,造成电动机起动时差动回路中有较大的不平衡电流。 为防止纵联差差动保护在起动过程中发生误动作,常规纵联差动保护采取以下两种措施减少电机起动过程中差动装置的动作。一种措施是将综自保护装置内制动特性的最小动作电流和制动特性斜率适当提高甚至加倍,这种措施的缺点是明显降低了起动过程中纵差保护的灵敏度;为躲过外部短路故障时电动机反馈电流或外部短路故障切除电动机自起动电流产生的不平衡电流,正常运行时保护灵敏度也受到限制。另一种措施是将纵差保护分成起动过程中的纵差保护和正常运行时的纵差保护,定值分开独立整定。这种措施与第一种措施无本质区别,因而具有相同的缺点,而且如果将纵差保护定值分为起动过程中及正常运行时,那么起动时间的设置也是影响纵差保护正确的一个重要因素。至于按躲过起动电流影响来整定参数的纵差保护,因不采取任何措施,所以灵敏度降得更低。 在理论上,上述常规纵差保护提高灵敏度最有效的措施是在开关柜电流互感器二次进行阻抗补偿,介接入与另一侧等长的相同的二次电缆,但实际上做起来确实非常的困难,难以实现。 因此,常规纵差保护在上述情况下灵敏度都受到限制,具有较大定子绕组相间短路故障死区,这不能不说是常规纵差保护的一个严重

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式, KW 以上的高压电动机一般采用差动保护,或 kW(含 kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图

为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流 I·12与 I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,

高压电动机差动保护原理及注意事项

差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。

相关文档
最新文档