使用优先数法和简单轮转法实现进程调度课程设计报告

使用优先数法和简单轮转法实现进程调度课程设计报告
使用优先数法和简单轮转法实现进程调度课程设计报告

《操作系统原理》课程设计报告

姓名:

班级:

学号:

指导老师:

二〇一三年十二月二十日

目录

一、《操作系统原理》课程设计的目的与要求 (1)

1.目的 (1)

2.要求 (1)

二、简述课程设计内容、主要功能和实现环境 (1)

1.课程设计内容 (1)

2.主要功能 (2)

3.实现环境 (2)

三、任务的分析、设计、实现和讨论 (2)

1.任务的分析 (2)

2.任务的设计与实现 (3)

3.操作过程和结果分析 (4)

4.思考题的解答和讨论 (8)

四、《操作系统》课程设计小结 (14)

五、参考文献 (15)

六、附录 (15)

一、《操作系统原理》课程设计的目的与要求

1.目的

进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计,采用优先数法等。本课题可以加深对进程调度和各种调度算法的理解。

2.要求

(1)设计一个有n个进程并发的进程调度程序。每个进程由一个进程控制块(PCB)表示。进程控制块一般应该包含下述信息:进程名、进程

优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且

可按调度算法的不同而增删。

(2)调度程序采用优先数法,并且调度程序应该具备用户设计优先级的功能。

(3)算法应能显示或打印各个进程的PID、状态(运行状态R、等待状态W等)和参数(已运行时间等)的变化情况,便于观察诸进程的调度过

进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法自行设计,主要采用优先数法,本课题可以加深对进程调度和各种调度算法的理解。

二、简述课程设计内容、主要功能和实现环境

1.课程设计内容

进程调度是处理机管理的核心内容。本实验要求用C语言编写和调试一个简单的进程调度程序。选用优先数法五个进程进行调度。每个进程处于运行

R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数以及进程需要运行的时间片数,在创建进程时均有、由用户自定义,在进程执行中则由机器进行减运算。通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数调度算法的具体实施办法。

2.主要功能

本程序可选用优先数法对N个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算,根据优先级来调度进程成,用cpu在每个时间片内完成每个进程。

3.实现环境

本次课程设计结合算法的特点,采用Windows操作系统平台。开发工具为Microsoft Visual C++6.0。

三、任务的分析、设计、实现和讨论

1.任务的分析

本程序可选用优先数法对N个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数以及进程需要运行的时间片数,在创建进程时均有、由用户自定义,在进程执行中则由机器进行减运算。下面介绍优先数调度算法:

优先数法:进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级,占用cpu的时间加1,接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首

进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。

简单轮转法:进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。进程控制块PCB 结构如下:

表3-1进程控制块结构PCB

进程控制块链结构如下:

表3-2进程控制块链结构

其中:RUN —当前运行进程指针;

HEAD —进程就绪链链首指针; TAID —进程就绪链链尾指针。

2.任务的设计与实现

算法流程图:

进程ID 链指针

优先数/轮转时间片数 占用CPU 时间片数 进程所需时间片数 进程状态

TAIL

RUN

1 … R

HEAD

3 … W

5 … W

2 … W

开始

char algo

Algo==’p ’||algo==’P ’ create1(algo)

Y

Algo==’R ’||algo==‘r ’

N

create2(algo)

Y

N

Printf ("没有相应的调度算

法")

priority(algo)

roundrun(algo)

结束

图3-1 优先数法和简单轮转法进程调度框图

3.操作过程和结果分析

优先数调度算法测试数据:

数据用可以使用rand ()函数随机产生也可以手动输入产生:

ID needtime priority 1 2 28 2 5 25 3 1 32 4 6 13 5

4

39

表3-3优先数调度算法测试数据

简单轮转法调度算法测试数据:

数据用可以使用rand ()函数随机产生也可以手动输入产生:

ID needtime

Round

1 2 2 2 2 2 3

5

2

表3-4简单轮转法调度算法测试数据

本组程序主要用了10个函数:firstin() ,void prt1(char a) ,void prt2(char a,PCB *q) ,void prt(char algo) ,insert1(PCB *q),insert2(PCB

*p2),void create1(char alg),void create2(char alg), priority(char alg), roundrun(char alg)。算法主要是比较优先数算法和简单轮转法算法。

我们的程序是既可以手动输入的,也可以不需要手动输入,里面的优先数和进程需要时间片是既可以随机产生也可以手动输入输入产生,然后有firstin(),void create1(char alg)或者有firstin(),void create2(char alg)函数来利用指针数据结构的特点,对优先数进行比较,然后选出优先数最大的进程,状态为R,剩下的进程继续比较调用void insert1(PCB *q)或者void insert2(PCB *p2)函数,同时产生等待队列。然后priority(char alg)或者roundrun(char alg)函数在循环中调用指针数据结构进行模拟进程运行。优先数进程调度算法:运行一次需要时间片减1,cpu使用时间片加1,优先数减3,判断需要的时间片是否为0,为0,进程状态变成F,否则与等待队列的进程比较优先数,再次调用void insert1(PCB *q),生成新的等待队列。直至等待队列为0,循环结束。简单转轮算法进程调度算法:运行一次需要时间片减1,cpu使用处理机时间片加一,计数器加一,再次调用void insert2(PCB *p2)函数,生成新的等待队列。然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。都会在屏幕上输出。如下图所示。

本次程序在编写的过程中没遇到什么较大的困难,在同学的互相帮助下,还是挺圆满的完成了本次课设。

优先数调度算法程序运行结果截图:

实验每一步的优先数的减少都会生成一组。

简单轮转法调度算法程序运行结果截图:实验每一步的优先数的减少都会生成一组。

4.思考题的解答和讨论

4.1. 示例中的程序,没有使用指针型(pointer)数据结构,如何用指针型结构改写本实例,使更能体现C语言的特性

(1)指针型数据结构,变量与主程序

typedef struct node

{

char ID[10]; /*进程标识符*/

int prio; /*进程优先数*/

int round; /*进程时间轮转时间片*/

int cputime; /*进程占用CPU时间*/

int needtime; /*进程到完成还要的时间*/

int count; /*计数器*/

char state; /*进程的状态*/

struct node *next; /*链指针*/

}PCB;

PCB *finish,*ready,*tail,*run; /*队列指针*/

(2)进程调度程序

1)优先数法进程调度程序

priority(char alg)

{

while(run!=NULL) /*当运行队列不空时,有进程正在运行*/

{

run->cputime=run->cputime+1;

run->needtime=run->needtime-1;

run->prio=run->prio-3; /*每运行一次优先数降低3个单位*/

if(run->needtime==0) /*如所需时间为0将其插入完成队列*/

{

run->next=finish;

finish=run;

run->state='F'; /*置状态为完成态*/

run=NULL; /*运行队列头指针为空*/

if(ready!=NULL) /*如就绪队列不空*/

firstin(); /*将就绪对列的第一个进程投入运行*/

}

else if((ready!=NULL)&&(run->prioprio)) /*没有运行完同时优先数不是最大,则将其变为就绪态插入到就绪队列*/

{

run->state='W';

insert1(run);

firstin(); /*将就绪队列的第一个进程投入运行*/

}

prt(alg); /*输出进程PCB信息*/

}

}

2)轮转法进程调度程序

roundrun(char alg)

{

while(run!=NULL)

{

run->cputime=run->cputime+1;

run->needtime=run->needtime-1;

run->count=run->count+1;

if(run->needtime==0)/*运行完将其变为完成态,插入完成队列*/

{

run->next=finish;

finish=run;

run->state='F';

run=NULL;

if(ready!=NULL)

firstin(); /*就绪对列不空,将第一个进程投入运行*/

}

else

if(run->count==run->round) /*如果时间片到*/

{

run->count=0; /*计数器置0*/

if(ready!=NULL) /*如就绪队列不空*/

{

run->state='W'; /*将进程插入到就绪队列中等待轮转*/

insert2(run);

firstin(); /*将就绪对列的第一个进程投入运行*/

}

}

prt(alg); /*输出进程信息*/

}

}

4.2.如何在程序中真实地模拟进程运行的时间片

在程序中设置时间片大小,模拟进程运行的时间片,设置cputieme模拟cpu 的运行,当进程从就绪队列通过指针调进运行队列,使运行指针处于运行状态,每次在时间片时间范围内运行,运行结束cputime自动加上一个时间片,

needtime (完成整个进程所需要的时间)减去一个时间片,从而模拟了进程运行的时间片。

4.3.如果增加进程的“等待”状态,即进程因请求输入输出等问题而挂起的状态,如何在程序中实现

如果增加进程的等待状态,进程在输入输出等时处于阻塞状态,利用java 高级语言,在菜单栏上增加阻塞按钮,菜单栏上设置开始,添加,阻塞进程的按钮,点击添加进程则创建一个进程,在界面的左侧显示进程的号,进程完成所需要的时间和进程到达时间,点击开始菜单则会显示进程所需要时间和进程运行时间,当点击阻塞,进程将被阻塞,等待结束,进程将调进就绪队列再从就绪队列调进运行队列完成进程。

public class RR extends JFrame implements ActionListener,Runnable{ Thread myThread; JPanel p1=new JPanel(); /*就绪*/ JPanel p2=new JPanel(); /*控制台*/ JPanel p3=new JPanel(); /*完成*/ JPanel p4=new JPanel(); /*左边*/ JButton []b=new JButton[10]; /*就绪队列*/ JButton []d=new JButton[10]; /*完成队列*/ JButton jbBegin,jbAdd,jbSuspend; public int [][]pcb=new int [10][5]; /*最多10个进程。存放进程信息:第一列表示所需时间片,第二列表示已执行与否,第三列表示剩下的时间片,第四列表示到达时间,第五列进程ID*/ public final static int pT=20; /*单位时间片长度 Piece of Time*/ public int curTime=0; /*作为程序运行时的时间*/

public int pcbCount=0; /*进程数量,最多10个进程*/ boolean Continue=false;

/*开始执行标志*/ boolean Susp=false;

/*增加进程标志*/ public RR(){

/*线程*/ myThread=new

Thread(this); myThread.start();

/*程序窗口初始化*/ JFrame f=new JFrame();

f.setTitle("时间片轮转调度算法(RR )");

f.setSize(650,450); f.setDefaultCloseOperation(JF rame.EXIT_ON_CLOSE); f.setVisible(true); f.setLayout(new

GridLayout(1,2)); /*进程信息初始化*/

for(int i=0;i<10;i++){

pcb[i][1]=0;

/*无进程,不显示*/

b[i]=new

JButton();

}

p1.setVisible(true);

p1.setLayout(new

GridLayout(10,1));

for(int i=0;i<10;i++)

p1.add(b[i]);

/*初始化“添加进程”和

“开始”按钮*/

jbBegin=new JButton(" 开始 ");

jbAdd=new JButton(" 添加进程 ");

jbSuspend=new

JButton(" 阻塞 ");

p2.setVisible(true);

p2.setLayout(new

GridLayout(3,1));

p2.add(jbBegin);

p2.add(jbAdd);

p2.add(jbSuspend);

f.add(p1);

f.add(p2);

/*添加事件监听*/

jbBegin.addActionListener(thi

s);

jbAdd.addActionListener(this)

;

jbSuspend.addActionListener(t

his);

}

public void actionPerformed(ActionEvent e){

if (e.getSource() == jbBegin){

if(Continue==false)

Continue=true; }

if (e.getSource() ==

jbAdd){

if(pcbCount<10){

int

tNeed=(int)(Math.random()*100);

pcb[pcbCount][0]=tNeed;

pcb[pcbCount][1]=1;

pcb[pcbCount][2]=tNeed;

pcb[pcbCount][3]=curTime;

pcb[pcbCount][4]=pcbCount+1;

b[pcbCount].setText(" 进程"+(pcbCount+1)+" 到达时间"+curTime+" 需要时间"+tNeed+" ");

pcbCount++;

curTime++;

}

}

if (e.getSource() == jbSuspend){

Susp=true;

}

}

public void run(){

while(true){

if(Continue==true){

int select=0;

//选出最先到达的进程,冒泡排序

for(int

i=0;i

for(int

j=0;j

if(pcb[j][3]>pcb[j+1][3]){

int temp[]=pcb[j];

pcb[j]=pcb[j+1];

pcb[j+1]=temp;

}

}

}

//重新显示就绪队列

for(int

j=0;j<10;j++){

if(pcb[j][1]==1)

b[j].setText(" 进程"+(pcb[j][4])+" 到达时间"+pcb[j][3]+" 需要时间"+pcb[j][0]+" "+" 剩余时间"+pcb[j][2]);

if(pcb[j][1]==2)

b[j].setText(" 进程"+(pcb[j][4])+" 执行完毕");

}

/*已执行的进程不能再执行,置select 为-1作为标志*/

if(pcb[0][1]==2)

select=-1;

//被选中而开始执行的进程,则不再在队列中显示,把显示标记置1

else

pcb[0][1]=1;

//放到开始按钮(CPU)上显示

if(select!=-1){

for(int

j=1;j<=pT;j++){

if(Susp==true){

jbBegin.setText("处理I/O请求,"+"进程"+(pcb[0][4])+" 阻塞");

try{

Thread.sleep(8888);

}catch(InterruptedException e){};

Susp=false;

break;

}

else{

curTime++;

if(pcb[0][2]>=0)

jbBegin.setText("进程"+(pcb[0][4])+" 需要时间"+pcb[0][0]+" 正在执行: "+pcb[0][2]--);

else

break;

try{

Thread.sleep(100);

}catch(InterruptedException e){};

}

}

pcb[0][3]=curTime;

}

/*如果已经执行完*/

if(pcb[0][2]<0){ pcb[0][1]=2;

pcb[0][3]=1000000;

}

}

}

}

public static void main(String []args){

new RR();

}

}

四、《操作系统》课程设计小结

这次课程设计,我们小组抽中了第二组,使用优先数法实现操作系统的进程调度,经过小组的讨论,组长将思考题交给了我和施彬彬,随后我和施彬彬浏览了《操作系统》课程设计指导书new和操作系统课程设计-格式模板,对这次实验内容有了详细地了解,弄清楚这次课程设计是关于处理机调度的问题,明确了方向,我们开始复习课件第二章处理机管理。通过复习课件我知道了常用的调度放算法:先进先出法,短进程优先法,时间片轮转法,优先级调度法,短作业优先调度算法,最高相应比优先调度。在多任务系统中,进程调度是CPU管理的一项核心工作。根据调度模式的不同,多任务系统有两种类型,即非抢占式和抢占式。其中,优先数法是非抢占式调度策略,进程调度算法是系统效率的关键,它确定了系统对资源,特别是对CPU资源的分配策略,因而直接决定着系统最本质的性能指标,如相应速度和吞吐量等。

然后,我和施彬彬再分工,我负责编写程序,施彬彬负责写报告和画流程图,经过我在网上大量搜索,找到了一些源程序,但是这些源程序有的使用了VC++里没有的函数,要么就是手动输入不符合这次课程设计的要求,要么就是随进函数rand()的随机数太大,对此,我不断缩小随机数的大小,通过修改代码实现进程完成时间和进程优先数自动产生,不需要手动产生,实现了既可以手动输入数据也可以自动产生数据,使搜索的程序经过编译测试符合本次的实验要求,还将使用简单轮转法实现操作系统的进程调度和使用优先数法实现操作系统的进程调度用一个程序实现。

这次课程设计不仅考察了我c语言的编程编译测试能力,也考察了我的操作

系统原理的知识,非常有意义和实用价值。

五、参考文献

[1] 苏庆刚,操作系统原理与应用教程上海:上海交通大学出版社2012.01.01

[2] 胡志刚,谭长庚等. 《计算机操作系统》.中南大学出版社. 2005

[3] 谭浩强,C程序设计(第四版).北京:清华大学出版社.2010.06.04

[4] 王旭阳,李睿《操作系统原理》北京:机械工业出版社,2009

[5] 汤子瀛等《计算机操作系统》西安电子科技大学出版社

六、附录

源代码程序:

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

#include

typedef struct node

{

char ID[10]; /*进程标识符*/

int prio; /*进程优先数*/

int round; /*进程时间轮转时间片*/

int cputime; /*进程占用CPU时间*/

int needtime; /*进程到完成还要的时间*/

int AllTime;

int count; /*计数器*/

char state; /*进程的状态*/

struct node *next; /*链指针*/

}PCB;

PCB

*finish,*ready,*tail,*run; /*队列指针*/

int N; /*进程数*/

firstin()

{

run=ready; /*就绪队列

头指针赋值给运行头指针*/

run->state='R'; /*进程

状态变为运行态*/

ready=ready->next; /*就

绪对列头指针后移到下一进程*/

}

void prt1(char a)

{

if(toupper(a)=='P') /*优

先数法*/

printf(" ID AllTime cputime needtime priority state\n");

else if(toupper(a)=='R')

printf(" ID cputime needtime count round state\n");

else

printf(" not exist!\n");

}

void prt2(char a,PCB *q)

{

if(toupper(a)=='P') /*优先数法的输出*/

printf(" %-10s%-9d%-8d%-11d%-1 0d%-3c\n",q->ID,q->AllTime,

q->cputime,q->needtime,q->prio, q->state);

else if (toupper(a)=='R')/*轮转法的输出*/

printf(" %-8s%-9d%-9d%-9d%-9d% -3c\n",q->ID,

q->cputime,q->needtime,q->count ,q->round,q->state);

else

printf(" not exist!\n");

}

void prt(char algo)

{

PCB *p;

prt1(algo); /*输出标题*/

if(run!=NULL) /*如果运行指针不空*/

prt2(algo,run); /*输出当前正在运行的PCB*/

p=ready; /*输出就绪队列PCB*/

while(p!=NULL)

{

prt2(algo,p);

p=p->next;

}

p=finish; /*输出完成队列的PCB*/

while(p!=NULL)

{

prt2(algo,p);

p=p->next;

}

getchar(); /*按任意键继续*/

}

insert1(PCB *q)

{

PCB *p1,*s,*r;

int b;

s=q; /*待插入的PCB指针*/

p1=ready; /*就绪队列头指针*/

r=p1; /*r做p1的前驱指针*/

b=1;

while((p1!=NULL)&&b) /*根据优先数确定插入位置*/

if(p1->prio>=s->prio)

{

r=p1;

p1=p1->next;

}

else

b=0;

if(r!=p1) /*如果条件成立说明插入在r与p1之间*/

{

r->next=s;

s->next=p1;

}

else

{

s->next=p1; /*否则插入在就绪队列的头*/

ready=s;

}

}

insert2(PCB *p2)

{

tail->next=p2; /*将新的PCB插入在当前就绪队列的尾*/ tail=p2;

p2->next=NULL;

}

void create1(char alg)

{

PCB *p;

int i;

char na[10];

ready=NULL; /*就绪队列头指针*/

finish=NULL; /*完成队列头指针*/

run=NULL; /*运行队列指针*/

//printf("Enter ID(数字或字符串)time(整数) and priority(整数) of process\n"); /*输入进程标识和所需时间创建PCB*/ printf("Enter ID(进程号用数字或字符串表示)\n");

for(i=1;i<=N;i++)

{

p=malloc(sizeof(PCB));

scanf("%s",na);

//scanf("%d",&time);

//scanf("%d",&priority);

strcpy(p->ID,na);

p->cputime=0;

//p->needtime=time;

p->needtime=(rand()+1)%37-3;

if(p->needtime>=10)

{p->needtime=p->needtime%10;

}

p->AllTime=p->needtime;

//p->needtime=time;

p->state='w';

//*p->prio=50-time;

// p->prio=priority;

p->prio=(rand()+11)%41;

if(ready!=NULL) /*就绪队列不空调用插入函数插入*/

insert1(p);

else

{

p->next=ready; /*创建就绪队列的第一个PCB*/

ready=p;

}

}

system("cls");

printf(" output of priority:\n");

printf("*********************** *************************\n");

prt(alg); /*输出进程PCB 信息*/

run=ready; /*将就绪队列的第一个进程投入运行*/

ready=ready->next;

run->state='R';

}

void create2(char alg)

{

PCB *p;

int i;

char na[10];

ready=NULL;

finish=NULL;

run=NULL;

//printf("Enter ID(数字或字符串) and time(整数) of round process\n");

printf("Enter ID(进程号用数字或字符串表示)\n");

for(i=1;i<=N;i++)

{

p=malloc(sizeof(PCB));

scanf("%s",na);

//scanf("%d",&time);

strcpy(p->ID,na);

p->cputime=0;

p->needtime=(rand()+1)%37-2;

{p->needtime=p->needtime%10;

}

else

if(p->needtime<=0)

{ p->needtime=p->needtime+3;

}

//p->needtime=time;

p->count=0; /*计数器*/

p->state='w';

p->round=2; /*时间片*/

if(ready!=NULL)

insert2(p);

else

{

p->next=ready;

ready=p;

tail=p;

}

}

system("cls");

printf(" output of round\n");

printf("*********************** *************************\n");

prt(alg); /*输出进程PCB信息*/

run=ready; /*将就绪队列的第一个进程投入运行*/

ready=ready->next;

run->state='R';

}

priority(char alg, int H)

{

while(run!=NULL) /*当运行队列不空时,有进程正在运行*/ {

run->cputime=run->cputime+H ; run->needtime=run->needtime-H;

if(run->needtime<0)

run->needtime=0;

run->prio=run->prio-3; /*每运行一次优先数降低3个单位*/ if(run->needtime==0) /*如所需时间为0将其插入完成队列*/

{

run->next=finish;

finish=run;

run->state='F'; /*置状态为完成态*/

run=NULL; /*运行队列头指针为空*/

if(ready!=NULL) /*如就绪队列不空*/

firstin(); /*将就绪对列的第一个进程投入运行*/

}

else

if((ready!=NULL)&&(run->prioprio)) /*没有运行完同时优先数不是最大,则将其变为就绪态插入到就绪队列*/

{

run->state='W';

insert1(run);

firstin(); /*将就绪队列的第一个进程投入运行*/

}

prt(alg); /*输出进程PCB信息*/

}

}

roundrun(char alg,int H)

{

while(run!=NULL)

{

run->cputime=run->cputime+H;

run->needtime=run->needtime-H;

进程调度程序设计

长沙学院课程设计说明书 题目进程调度程序设计 系(部) 计算机科学与技术系 专业(班级) 2009级数据库二班 姓名 学号 指导教师黄彩霞 起止日期2012.6.4-2012.6.15

课程设计任务书 课程名称:操作系统课程设计 设计题目:进程调度程序设计 已知技术参数和设计要求: 1. 设计任务 设计一个虚拟内核,该内核能支持多任务管理。提供创建进程、终止进程、进程状态转换,进程调度,上下文切换等功能。 2. 问题描述 2.1 系统组成 系统由虚拟内核(VKernel)、命令解释程序(Commander)、用户程序(Application)、编译器(Compiler)四部分组成。VKernel首先运行,并常驻内存。Kernel启动后,创建Commander进程。根据用户请求创建多个Application进程。Kernel负责维护6个数据结构,包括时间 (Time), 处理器状态(CPUstate),进程表(PCBTable), 就绪队列(ReadyState),等待队列(BlockedState),运行进程(RunningState)。Time是系统时间片。CPUstate应包括程序计数器PC,累加器A、B,状态寄存器F的值。PCBTable的每一项是一个进程的进程控制块(PCB)。Commander程序、Application程序是用下列CPU虚拟指令书写的程序: ①CPU虚拟指令(以下指令仅供参考, 设计者可以自行设计) MOV n //把整数n赋给累加器A SAV m //把累加器A的值存入地址M ADD n //从累加器A的值减去整数n,结果送到累加器A。 SUB n //从累加器A的值减去整数n,结果送到累加器A。 MUL n //从累加器A的值乘以整数n,结果送到累加器A。 DIV n //从累加器A的值除以整数n,结果送到累加器A。 JEQ m //F为0跳转到m JLG m //F大于0跳转到m JLE m //F大于等于0跳转到m JMP m //无条件跳转到m OUT port //累加器的内容输出到端口port。port为0,指显示器;为1,指扬声器。 ②虚拟系统调用(以下系统调用仅供参考, 设计者可自行设计) exec() //执行程序并创建子进程 exit() //进程终止 block() //进程等待 printk() //在屏幕上打印系统信息

电子电路课程设计密码锁(满分实验报告)

密码锁设计报告 摘要: 本系统是由键盘和报警系统所组成的密码锁。系统完成键盘输入、开锁、超时报警、输入位数显示、错误密码报警、复位等数字密码锁的基本功能。 关键字:数字密码锁GAL16V8 28C64 解锁与报警 1

目录: 一、系统结构与技术指标 1、系统功能要求 (4) 2、性能和电气指标 (5) 3、设计条件 (5) 二、整体方案设计 1、密码设定 (6) 2、密码判断 (6) 3、密码录入和判断结果显示 (6) 4、系统工作原理框面 (7) 三、单元电路设计 1、键盘录入和编码电路图 (8) 2、地址计数和存储电路 (12) 3、密码锁存与比较电路 (12) 2

4、判决与结果显示电路 (14) 5、延时电路 (15) 6、复位 (17) 7、整机电路图 (19) 8、元件清单……………………………………………19四、程序清单 1、第一片GAL (21) 2、第二片GAL (23) 五、测试与调整 1、单元电路测试 (25) 2、整体指标测试 (26) 3、测试结果 (26) 六、设计总结 1、设计任务完成情况 (27) 2、问题及改进 (27) 3、心得体会 (28) 3

一、系统结构与技术指标 1.系统功能要求 密码锁:用数字键方式输入开锁密码,输入密码时开锁;如 果输入密码有误或者输入时间过长,则发出警报。 密码锁的系统结构框图如下图所示,其中数字键盘用于输入 密码,密码锁用于判断密码的正误,也可用于修改密码。开锁LED1亮表示输入密码正确并开锁,报警LED2亮表示密码有误或者输入时间超时。 开锁green 键盘密码锁 错误red 4

进程调度算法模拟 (操作系统课程设计报告)

福建农林大学计算机与信息学院 课程设计报告 课程名称:操作系统 实习题目:进程调度算法模拟 姓名: 系:计算机科学与技术系 专业:计算机科学与技术 年级:2012 学号: 指导教师: 职称:副教授 年月日

福建农林大学计算机与信息学院计算机类 课程设计结果评定

目录 1.本选题课程设计的目的 (4) 2.本选题课程设计的要求 (4) 3.本选题课程设计报告内容 (4) 3.1前言 (4) 3.2进程调度算法模拟的环境 (4) 3.3系统技术分析 (4) 3.4系统流程图及各模块 (5) 3.5程序调试情况 (8) 4.总结 (11) 参考文献 (11) 程序代码 (12)

1.设计目的 课程设计将课本上的理论知识和实际有机的结合起来,锻炼学生的分析系统,解决实际问题的能力。提高学生分析系统、实践编程的能力。 2.设计要求 利用学到的操作系统和编程知识,完成具有一定难度的系统分析研究或系统设计题目。其中:专题系统理论研究应包括研究目的、目标,论点和论据以及证明推导等;分析、设计系统应包括编写、调试程序以及最后写出设计报告或系统说明文档文件,系统说明文档包括系统界面、变量说明、系统功能说明、编程算法或思路、流程图和完整程序。具体要求如下: 1、对系统进行功能模块分析、控制模块分析正确; 2、系统设计要实用; 3、编程简练,可用,功能全面; 4、说明书、流程图要清楚。 3.设计方案 3.1前言 本程序包括三种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 3.2本选题设计的环境 WindowsXP下的Microsoft Visual C++ 6.0 3.3系统技术分析 (1)编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。(2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:进程标识数ID。 进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。

进程调度程序设计报告(源代码)资料

课程设计报告 题 目 进程调度程序设计 课 程 名 称 操作系统课程设计 院 部 名 称 计算机工程学院 专 业 计算机科学与技术 班 级 13计算机科学与技术(单)(1) 学 生 姓 名 周敏健 学 号 1305201013 课程设计地点 A104 课程设计学时 20学时 指 导 教 师 何 健 金陵科技学院教务处制 成绩

目录 摘要 (3) 一、课程设计的目的和要求 (4) 二、系统需求分析 (4) 三、总体设计 (5) 四、详细设计 (6) 五、测试、调试过程 (9) 六、结论与体会 (11) 七、参考文献 (12) 附录:源程序 (12)

课程设计课题 进程调度程序设计 摘要 在多道系统中,对批处理作业需要进行作业调度。作业调度是在资源满足的条件下,将处于就绪状态的作业调入内存,同时生成与作业相对应的进程,并未这些进程提供所需要的资源。进程调度需要根据进程控制块(PCB)中的信息,检查系统是否满足进程的资源需求。只有在满足进程的资源需求的情况下,系统才能进行进程调度。下面是几种常见的作业调度算法:先来先服务(FCFS)、优先算法、轮换算法、短作业优先算法以及最高响应比优先法等,本文将对前两种算法进行详细的介绍。 关键词:进程调度,优先级,FCFS,PCB,作业,资源

一、课程设计的目的和要求 1、目的 进程调度是处理机管理的核心内容。本设计要求用C语言编写和调试一个简单的进程调度程序。通过设计本可以加深理解有关进程控制块、进程队列的概念,并体会和了解最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法的具体实施办法。 2、要求 1)进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 2)每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 3)进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。进程的运行时间以时间片为单位进行计算。 4)每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 5)就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 6)每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 7)重复以上过程,直到所要进程都完成为止。 二、系统需求分析 编写一个模拟进程调度的程序,将每个进程抽象成一个进程控制块PCB,PCB 用一个结构体描述。 采用两种不同的调度算法来实现功能,主要有如下几大功能模块组成。 (1)创建优先数PCB模块

单片机电子时钟课程设计实验报告

单片机电子时钟课程设 计实验报告 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

《单片机原理与应用》课程设计 总结报告 题目:单片机电子时钟(带秒表)的设计 设计人员:张保江江润洲 学号: 班级:自动化1211 指导老师:阮海容 目录 1.题目与主要功能要求 (2) 2.整体设计框图及整机概述 (3) 3.各硬件单元电路的设计、参数分析及原理说明 (3) 4.软件流程图和流程说明 (4) 5.总结设计及调试的体会 (10) 附录 1.图一:系统电路原理图 (11) 2.图二:系统电路 PCB (12) 3.表一:元器件清单 (13) 4.时钟程序源码 (14)

题目:单片机电子时钟的设计与实现 课程设计的目的和意义 课程设计的目的与意义在于让我们将理论与实践相结合。培养我们综合运用电子课程中的理论知识解决实际性问题的能力。让我们对电子电路、电子元器件、印制电路板等方面的知识进一步加深认识,同时在软件编程、排错调试、焊接技术、相关仪器设备的使用技能等方面得到较全面的锻炼和提高,为今后能够独立完成某些单片机应用系统的开发和设计打下一个坚实的基础。 课程设计的基本任务 利用89C51单片机最小系统,综合应用单片机定时器、中断、数码显示、键盘输入等知识,设计一款单片机和简单外设控制的电子时钟。 主要功能要求 最基本要求 1)使用MCS-51单片机设计一个时钟。要求具有6位LED显示、3个按键输入。 2)完成硬件实物制作或使用Pruteus仿真(注意位驱动应能提供足够的电流)。 3)6位LED数码管从左到右分别显示时、分、秒(各占用2位),采用24小时标准计时制。开始计时时为000000,到235959后又变成000000。 4)使用3个键分别作为小时、分、秒的调校键。每按一次键,对应的显示值便加1。分、秒加到59后再按键即变为00;小时加到23后再按键即变为00。在调校时均不向上一单位进位 (例如分加到59后变为00,但小时不发生改变)。 5) 软件设计必须使用MCS-51片内定时器,采用定时中断结构,不得使用软件延时法,也不得使用其他时钟芯片。 6)设计八段数码管显示电路并编写驱动程序,输入并调试拆字程序和数码显示程序。7)掌握硬件和软件联合调试的方法。 8)完成系统硬件电路的设计和制作。 9)完成系统程序的设计。 10)完成整个系统的设计、调试和制作。

计算机操作系统综合设计实验报告实验一

计算机操作系统综合设计 实验一 实验名称:进程创建模拟实现 实验类型:验证型 实验环境: win7 vc++6.0 指导老师: 专业班级: 姓名: 学号: 联系电话: 实验地点:东六E507 实验日期:2017 年 10 月 10 日 实验报告日期:2017 年 10 月 10 日 实验成绩:

一、实验目的 1)理解进程创建相关理论; 2)掌握进程创建方法; 3)掌握进程相关数据结构。 二、实验内容 windows 7 Visual C++ 6.0 三、实验步骤 1、实验内容 1)输入给定代码; 2)进行功能测试并得出正确结果。 2、实验步骤 1)输入代码 A、打开 Visual C++ 6.0 ; B、新建 c++ 文件,创建basic.h 头文件,并且创建 main.cpp 2)进行功能测试并得出正确结果 A 、编译、运行main.cpp B、输入测试数据 创建10个进程;创建进程树中4层以上的数型结构 结构如图所示:。

createpc 创建进程命令。 参数: 1 pid(进程id)、 2 ppid(父进程id)、3 prio(优先级)。 示例:createpc(2,1,2) 。创建一个进程,其进程号为2,父进程号为1,优先级为2 3)输入创建进程代码及运行截图 4)显示创建的进程

3、画出createpc函数程序流程图 分析createpc函数的代码,画出如下流程图:

四、实验总结 1、实验思考 (1)进程创建的核心内容是什么? 答: 1)申请空白PCB 2)为新进程分配资源 3)初始化进程控制块 4)将新进程插入到就绪队列 (2)该设计和实际的操作系统进程创建相比,缺少了哪些步骤? 答:只是模拟的创建,并没有分配资源 2、个人总结 通过这次课程设计,加深了对操作系统的认识,了解了操作系统中进程创建的过程,对进程创建有了深入的了解,并能够用高 级语言进行模拟演示。一分耕耘,一分收获,这次的课程设计让 我受益匪浅。虽然自己所做的很少也不够完善,但毕竟也是努 力的结果。另外,使我体会最深的是:任何一门知识的掌握, 仅靠学习理论知识是远远不够的,要与实际动手操作相结合才能 达到功效。

2011180021-Linux操作系统-课程设计报告-基于Linux的进程调度模拟程序

河南中医学院 《linux操作系统》课程设计报告 题目:基于Linux的进程调度模拟程序 所在院系:信息技术学院 专业年级:2011级计算机科学与技术完成学生:2011180021 郭姗 指导教师:阮晓龙 完成日期:201X 年06 月22 日 目录 1. 课程设计题目概述3 2. 研究内容与目的4 3. 研究方法5 4. 研究报告6 5. 测试报告/实验报告7 6. 课题研究结论8 7. 总结9

1、课程设计题目概述 随着Linux系统的逐渐推广,它被越来越多的计算机用户所了解和应用. Linux是一个多任务的操作系统,也就是说,在同一个时间内,可以有多个进程同时执行。如果读者对计算机硬件体系有一定了解的话,会知道我们大家常用的单CPU计算机实际上在一个时间片断内只能执行一条指令,那么Linux是如何实现多进程同时执行的呢?原来Linux使用了一种称为"进程调度(process scheduling)"的手段,首先,为每个进程指派一定的运行时间,这个时间通常很短,短到以毫秒为单位,然后依照某种规则,从众多进程中挑选一个投入运行,其他的进程暂时等待,当正在运行的那个进程时间耗尽,或执行完毕退出,或因某种原因暂停,Linux就会重新进行调度,挑选下一个进程投入运行。因为每个进程占用的时间片都很短,在我们使用者的角度来看,就好像多个进程同时运行一样了。本文就是对进程调度进行研究、实验的。 本文首先对Linux系统进行了简要的介绍, 然后介绍了进程管理的相关理论知识。其次,又介绍最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)、先来先服务算法的相关知识,并对进程调度进行最高优先数优先的调度算法和先来先服务算法模拟实验,并对比分析两种算法的优缺点,从而加深对进程概念和进程调度过程/算法的理解 设计目的:在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个。也就是说能运行的进程数大于处理机个数。为了使系统中的进程能有条不紊地工作,必须选用某种调度策略,选择某一进程占用处理机。使得系统中的进程能够有条不紊的运行,同时提高处理机的利用率以及系统的性能。所以设计模拟进程调度算法(最高优先数优先的调度算法、先来先服务算法),以巩固和加深处理进程的概念,并且分析这两种算法的优缺点。关键词:linux 进程调度调度算法

操作系统实验-进程调度程序设计

课程名称:实验项目:实验地点: 专业班级:学生姓名:指导教师: 本科实验报告 操作系统B 进程调度程序设计 学号:2011 年11 月

目录 进程调度程序设计 一、实验目的和要求 (1) 二、实验内容及原理 (1) 三、实验仪器设备 (3) 四、操作方法与实验步骤 (3) 五、实验数据记录和处理 (3) 六、实验结果与分析 (10) 七、实验感想 (11)

实验二 一、实验目的和要求 (一) 目的 进程调度程序设计 进程是操作系统最重要的概念之一,进程调度是操作系统的主要内容,本实验要求 学生独立地用高级语言编写一个进程调度程序,调度算法可任意选择或自行设计,本实验 可使学生加深对进程调度和各种调度算法的理解。 (二) 要求 1. 设计一个有几个进程并发执行的进程调度程序,每个进程由一个进程控制块(PCB) 表示,进程控制块通常应包括下述信息:进程名,进程优先数,进程需要运行的时间,占 用 CPU 的时间以及进程的状态等,且可按照调度算法的不同而增删。 2. 调度程序应包含 2—3 种不同的调度算法,运行时可以任选一种,以利于各种方法 的分析和比较。 3. 系统应能显示或打印各进程状态和参数的变化情况,便于观察。 二、实验内容及原理 1. 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行 R(run)、就绪 W(wait)和完成 F(finish)三种状态之一,并假定起始状态都是就绪状态 W 。 为了便于处理,程序中进程的运行时间以时间片为单位计算。各进程的优先数或轮 转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如表 2-1 所示: 表 2-1 PCB 进程控制块链结构如图 2-1 所示: 图 2-1 进程控制块链结构 其中:RUN —当前运行进程指针; 进程标识符 链指针 优先数/轮转时间片数 占用 CPU 时间片数 进程所需时间片数 进程状态

电子商务系统分析与设计课程设计实验报告范本

电子商务系统分析与设计课程设计实 验报告

江苏科技大学 电子商务系统分析与设计课程设计 网上书城系统的开发 学生姓名张颖 学号 班级08404121 指导老师 成绩 经济管理学院信息管理系 1月8日 目录 一.系统规划 (4)

1.2初步调查 (5) 1.3确定电子商务模式和模型 (6) 1.4可行性分析和可行性分析报告 (6) 二.系统分析 (8) 2.1系统调查 (8) 2.2需求规格说明书 (9) 2.2.1 引言 (9) 2.2.2项目概述 (9) 2.2.3需求规定 (10) 2.2.4环境要求 (16) 2.3组织结构分析 (17) 2.4业务流程分析 (17) 2.5数据流程分析 (19) 三.系统设计 (21) 3.1系统总体结构 (21) 3.2网络基本结构 (22) 3.3系统平台选择 (22) 3.4应用系统方案 (23) 3.4.1各功能模块简要描述 (23) 3.4.4数据库设计 (24) 3.4.5用户界面设计 (31)

3.5.1客户端要求 (32) 3.5.2服务器端要求 (32) 3.5.3系统测试 (32) 四.支付系统设计 (39) 4.1支付协议选择 (39) 4.2支付系统数据流程分析 (39) 4.3支付系统安全需求分析 (41) 4.4支付系统总体设计 (42) 4.5支付系统功能 (44) 4.6交易流程设计 (46) 4.7支付系统安全设计 (47) 五.心得体会 (47) 一.系统规划 1.1明确用户需求 随着当今社会新系统大度的提高,网络的高速发展,计算机已被广泛应用于各个领域,因而网络成为人们生活中不可或缺的一部分。互联网用户应经接受了电子商务,网购成为一种时尚潮流。

操作系统课程设计报告进程调度

前言操作系统(OperatingSystem,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。 操作系统是用户和计算机的接口,同时也是计算机硬件和其他软件的接口。操作系统的功能包括管理计算机系统的硬件、软件及数据资源,控制程序运行,改善人机界面,为其它应用软件提供支持,让计算机系统所有资源最大限度地发挥作用,提供各种形式的用户界面,使用户有一个好的工作环境,为其它软件的开发提供必要的服务和相应的接口等。实际上,用户是不用接触操作系统的,操作系统管理着计算机硬件资源,同时按照应用程序的资源请求,分配资源,如:划分CPU时间,内存空间的开辟,调用打印机等。 操作系统的主要功能是资源管理,程序控制和人机交互等。计算机系统的资源可分为设备资源和信息资源两大类。设备资源指的是组成计算机的硬件设备,如中央处理器,主存储器,磁盘存储器,打印机,磁带存储器,显示器,键盘输入设备和鼠标等。信息资源指的是存放于计算机内的各种数据,如系统软件和应用软件等。 操作系统位于底层硬件与用户之间,是两者沟通的桥梁。用户可以通过操作系统的用户界面,输入命令。操作系统则对命令进行解释,驱动硬件设备,实现用户要求。

本次课程设计我们将对上学期所学的知识进行系统的应用,而达到巩固知识的作用

目录 1问题概述.................................................................................................... 2需求分析.................................................................................................... 3概要设计.................................................................................................... 3.1主要功能................................................................................................. 3.2模块功能结构 ........................................................................................ 3.3软硬件环境............................................................................................. 3.4数据结构设计 ........................................................................................ 4详细设计.................................................................................................... 4.1“先来先服务(FCFS)调度算法” ....................................................... 4.2“短进程调度算法(SPF)”.................................................................. 4.3“高响应比优先调度算法”................................................................. 4.4“优先级调度(非抢占式)算法”.......................................................... 5系统测试及调试 ....................................................................................... 5.1测试......................................................................................................... 5.2调试过程中遇到的问题 ........................................................................ 6心得体会.................................................................................................... 7参考文献.................................................................................................... 8附录............................................................................................................

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

中南大学电工电子课程设计实验报告

中南大学 电工电子技术课程设计报告 题目:可编程乐曲演奏器的设计 学院:信息科学与工程学院 指导老师:陈明义 专业班级: 姓名: 学号:

前言 随着科学技术发展的日新日异,电工电子技术在现代社会生产中占据着非常重要的地位,因此作为二十一世纪的自动化专业的学生而言,掌握电力电子应用技术十分重要。 电工电子课程设计的目的在于进一步巩固和加深所学电工电子基本理论知识。使学生能综合运用相关关课程的基本知识,通过本课程设计,培养我们独立思考的能力,学会和认识查阅学习我们未学会的知识,了解专业工程设计的特点、思路、以及具体的方法和步骤,掌握专业课程设计中的设计计算、软件编制,硬件设计及整体调试。设计过程中还能树立正确的设计思想和严谨的工作作风,达到提高我们的设计能力的目标。 从理论到实践,往往看似简单,实则是有很大的差距的,通过课程设计,可以培养我们学到很多东西,不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正的学到知识,从而提高自己的实际动手能力和独立思考的能力。 在次,特别感谢老师给我们以实践动手的机会,让我们对以前的知识以复习,整合,并从理论走向实践,相信我们都会在这次课程设计中学到很多!!!

目录 前言 (2) 正文 第一章系统概述 (4) 系统功能 (4) 系统结构 (4) 实验原理 (4) 整体方案 (5) 第二章单元电路的设计与分析 (5) 音频发生器的设计 (5) 节拍发生器的设计 (6) 读取存储器数据 (7) 选择存储器地址 (8) 控制音频电路设计 (8) 第三章电路的安装与调试 (9) 第四章结束语 (9) 元器件明细表 (10) 参考文献 (10) 附录 (11)

操作系统-课程设计

课程设计说明书(操作系统) 题目:进程调度 院系:计算机科学与工程学院 专业班级:信息安全13-2 学号:20133029xx 学生姓名:xx 指导教师:xx 2015年12月15日

安徽理工大学课程设计(论文)任务书计算机科学与工程学院

安徽理工大学课程设计(论文)成绩评定表

摘要 现代计算机系统中,进程是资源分配和独立运行的基本单位,是操作系统的核心概念。因而,进程就成为理解操作系统如何实现系统管理的最基本,也是最重要的概念。进程调度是进程管理过程的主要组成部分,是必然要发生的事件。 在现代操作系统中,进程的并发机制在绝大多数时候,会产生不断变化的进程就绪队列和阻塞队列。处于执行态的进程无论是正常或非正常终止、或转换为阻塞状态,都会引发从就绪队列中,由进程调度选择一个进程进占CPU。 进程调度的核心是进程调度的算法.在本课程设计中,用良好清晰的界面向用户展示了进程调度中的时间片轮转调度算法。在最终实现的成果中,用户可指定需要模拟的进程数,CPU时间片和进程的最大执行时间,并且选择需要演示的算法,界面将会动态的显示进程调度过程及各个队列的变化。通过此进程调度模拟系统,用户可以对时间片轮转调度算法有进一步以及直观的了解。 关键词:进程,调度,PCB,时间片轮转

目录 1.设计目的 (6) 2.设计思路 (6) 3.设计过程 (8) 3.1流程图 (8) 3.2算法 (8) 3.3数据结构 (10) 3.4源代码 (10) 4.实验结果及分析 (20) 4.1 使用说明 (20) 4.2程序演示 (20) 5.实验总结 (24) 6.参考文献 (24)

《高级语言程序设计》课程设计报告

2013-2014学年第二学期《高级语言程序设计》 课程设计报告 题目:进程调度模拟 专业:计算机科学与技术 班级:12级对口(3)班 姓名:刘以鹏 指导教师:代美丽 成绩: 计算机与信息工程系 2014年 5月 23日

目录 1 1 设计目的及要求 (3) 1.1 设计目的 (3) 1.2 课程设计的实验环境 (3) 1.3 课程设计的预备知识 (3) 1.4 课程设计要求 (3) 2 课程设计内容 (3) 2.1程序功能介绍 (3) 2.2程序整体设计说明 (4) 2.2.1设计思路 (4) 2.2.2数据结构设计及用法说明 (5) 2.2.3程序结构(流程图) (5) 2.2.4各模块的功能及程序说明 (6) 2.2.5程序运行结果 (7) 3 总结 (9) 参考资料 (11) 程序源代码 (12)

1 设计目的及要求 1.1 设计目的 本课程设计是计算机科学与技术专业重要的实践性环节之一,是在学生学习完《程序设计语言(C)》课程后进行的一次全面的综合练习。本课程设计的目的和任务: 1. 巩固和加深学生对C语言课程的基本知识的理解和掌握 2. 掌握C语言编程和程序调试的基本技能 3. 利用C语言进行基本的软件设计 4. 掌握书写程序设计说明文档的能力 5. 提高运用C语言解决实际问题的能力 1.2 课程设计的实验环境 硬件要求能运行Windows 2000/XP操作系统的微机系统。C语言程序设计及相应的开发环境。 1.3 课程设计的预备知识 熟悉C语言及C语言开发工具。 1.4 课程设计要求 1. 分析课程设计题目的要求 2. 写出详细设计说明 3. 编写程序代码,调试程序使其能正确运行 4. 设计完成的软件要便于操作和使用 5. 设计完成后提交课程设计报告 2课程设计内容 2.1程序功能介绍 在多道程序环境下,进程数目往往多于处理机数目,致使他们争用处理机。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使

电子CAD课程设计实验报告

一.课程设计的目的 课程设计以电子线路CAD软件设计原理为基础,重点在硬件设计领域中实用的电子线路设计软件的应用。掌握电子线路设计中使用CAD的方法。为后继课程和设计打下基础。 通过电路设计,掌握硬件设计中原理图设计、功能仿真、器件布局、在线仿真、PCB设计等硬件设计的重要环节。 二.课程设计题目描述和要求 2.1振荡电路的模拟和仿真。 由555定时器构成多谐波振荡电路,用模拟的示波器观察输出的信号,熟悉555定时器构成多谐波振荡电路的基本原理,熟悉proteus的基本操作,和各元器件的查找。 2.2 8051单片机 用80c51单片机完成以下功能:(1)构成流水灯的控制电路,使八个流水灯轮流点亮。(2)构成音乐播放的简单电路。(3)构成串口通信电路,完成信息在单片机和串口之间的传播。(4)构成8255键盘显示模块。(5)构成A/D和D/A 转换模块。 首先用模拟器件构成基本电路,然后在单片机中加入驱动程序,运行仿真,最后对电路进行调整校正,完成相关功能。 熟悉单片机实现相关功能的基本原理,对单片机有个框架的了解。学习用proteus仿真单片机电路中不同模块间的组合,扩展单片机电路的功能。 三.课程设计报告内容。 3.1设计原理 3.1.1振荡电路仿真的原理 振荡电路原理: 555管脚功能介绍: 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电

物联网传输综合课程设计实验报告 人体红外数据通信实验

物联网传输综合课程设计实验报告 人体红外数据通信实验 一、实验目的 1. 了解基于Z-Stack 协议栈的SappWsn 应用程序框架的工作机制 2. 掌握在ZigBee 协议栈中添加人体红外传感器驱动的方法。 二、实验设备 1. 装有IAR 开发工具的PC 机一台 2. 下载器一个 3. 物联网多网技术开发设计平台一套 三、实验原理 在Z-Stack APP中的HAL\Target\CC2530EB\Includes组中,提供了一个hal_io.h的文件,如图所示。 其中,提供了名为HalIOSetInput 的函数,可以将燃气传感器端口(P1.0)设置为输入,然后通过调用HalIOGetLevel 函数来获取传感器状态。 四、实验步骤 1、将单片机zigbee协调器拆卸下来,取出烧写器。通过Mini USB接口将zigbee 协调器与下载器和PC机相连。

2、将实验箱控制方式切换开关拨至“手动”一侧,转动实验箱“旋钮节点选择”旋钮,使得协调器旁边的LED灯被点亮 3、打开配套代码中的ZStack-CC2530\Projects\SappWsn\SappWsn.eww工程文件,在“Tools”组中,找到“f8wConfig.cfg”文件,双击打开,并找到大概第59 行的“-DZAPP_CONFIG_PAN_ID=0xFFFF”,将其中的“0xFFFF”修改为其他值,例如0x0010

4、在工程目录结构树上方的下拉列表中,选择“CoordinatorEB”,点击工具栏中的“Make”按钮,编译工程,等待工程编译完成,如看到警告,可以忽略。在工程目录结构树中的工程名称上点击鼠标右键,选择“Options”,并在弹出的对话框中选择左侧的“Debugger”,并在右侧的“Driver”列表中选择“Texas Instruments”,点击“Download and Debug”按钮。待程序下载完毕后,点击“Go”按钮,使程序开始运行。点击工具栏中的“Stop Debugging”,退出调试模式, 5、转动实验箱“旋钮节点选择”旋钮,使得热释红外传感器节点旁边的LED灯被点亮,在工程目录结构树上方的下拉列表中,选择“EndDeviceEB”,在“SAPP_Device.h”文件中,取消“HAS_IRPERS”的注释,并保证其他的功能均被注释,如图所示

操作系统进程调度实验报告

实验一进程调度实验 专业:XXXXX 学号:XXXXX 姓名:XXX 实验日期:20XX年XX月XX日

一、实验目的 通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。 二、实验要求 编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。 三、实验方法内容 1.算法设计思路 将每个进程抽象成一个控制块PCB,PCB用一个结构体描述。 构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。 主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、完成容器。 当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。 2.算法流程图 主程序的框架: 开始 选择调度算法void FCFS();//先来先服务 void SJF();//最短进程优先调度void RR();//简单时间片轮转void PD();//最高优先数优先 输入进程信息 将输入容器中以满足进入条件的进程调入就绪队列 判断就绪容器和输入容器是否为空!processScheduler.m_WaitQueue.empty()|| !processScheduler.m_ProcessQueue.empt() void ProcessQueueProcess(); //查看当前时间下,有无进程加 入。若有则把该进程调入就绪队列 void PCBInput();//输入进程信息 Y 打印各进程信息 进行统计计算周转 时间等 结束void PCBDisplay(); //打印当前状况下。就绪队列、完成队列、运行中的进程信息 void SchedulerStatistics(); //调度统计,计算周转时间等 按照选择的算法开 始选择就绪队列的 进程开始执行 void ProcessSelect(); //若当前就绪队列不为空则根 据选择的调度算法开始调度,否则,系统时间加一个时间片.以等待新的进程到

【VIP专享】电子技术课程设计实验报告

电子技术课程设计实验报告 学院:物联网工程学院 班级:自动化1204 姓名:XXX 学号:1070412428 同组成员:XXX 二〇一四年六月

目录 一、实验名称 (3) 二、实验任务和要求 (3) 三、实验电路 (a)系统框图 (3) (b)总电路原理图 (4) (c)总电路管脚图 (5) 四、单元电路及原理分析 (1)+5V电源电路 (5) (2)正弦波发生及波形变换电路 (6) (3)单稳态定时电路 (7) (4)频率计数显示电路 (7) (5)超量程指示电路 (8) (6)控制电路 (9) 五、元器件列表 (10) 六、安装与调试 1、使用仪器仪表 (10) 2、安装 (10) 3、调试 (11) 4、调试中出现的故障、原因及排除方法 (14) 七、收获和体会 (15)

一、实验名称 正弦波发生、频率测量显示电路 二、实验任务和要求 正弦波振荡频率100~1000Hz,输出信号幅度5±5%V; (1)用3位数码管显示振荡频率; (2)能自动连续测量、显示频率,测量周期为4S; (3)用中规模集成电路实现。 三、实验电路 (a)系统框图 图1-1 正弦波发生电路组成框图 (b)总电路原理图

原理图分析:正弦波振荡器自激振荡产生正弦波输出信号,波形变换电路将正弦波变换成方波,方波输入到计数器中,由计数器对输入方波信号进行计数,计数器的计数结果在译码显示中显示;控制电路部分输出定时触发信号、超量程复位信号和清零信号,定时触发信号输入到单稳态定时电路中,单稳态定时电路将定时触发信号给计数器,计数器在定时周期内对方波信号进行计数;超量程复位信号和计数器输出的超量程指示同时控制超量程指示电路部分,发光二极管发光进行超量程指示;清零信号输入到计数器中,在计数超过量程时计数器清零。

相关文档
最新文档