液压缸设计规范

液压缸设计规范
液压缸设计规范

液压缸设计规范

Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

液压缸的设计计算规范

目录:一、液压缸的基本参数

1、液压缸内径及活塞杆外径尺寸系列

2、液压缸行程系列(GB2349-1980)

二、液压缸类型及安装方式

1、液压缸类型

2、液压缸安装方式

三、液压缸的主要零件的结构、材料、及技术要求

1、缸体

2、缸盖(导向套)

3、缸体及联接形式

4、活塞头

5、活寒杆

6、活塞杆的密封和防尘

7、缓冲装置

8、排气装置

9、液压缸的安装联接部分(GB/T2878)

四、液压缸的设计计算

1、液压缸的设计计算部骤

2、液压缸性能参数计算

3、液压缸几何尺寸计算

4、液压缸结构参数计算

5、液压缸的联接计算

一、液压缸的基本参数

液压缸内径及活塞杆外径尺寸系列

8 10 12 16 20 25 32

40 50 63 80 (90) 100 (110)

125 (140) 160 (180) 200 220 (250)

(280) 320 (360) 400 450 500

括号内为优先选取尺寸

4 5 6 8 10 12 14 16 18

20 22 25 28 32 36 40 45 50

56 63 70 80 90 100 110 125 140

160 180 200 220 250 280 320 360

活塞杆连接螺纹型式按细牙,规格和长度查有关资料。

液压缸的行程系列(GB2349-1980)

25 50 80 100 125 160 200 250 320 400

500 630 800 1000 1250 1600 2000 2500 3200 4000

40 63 90 110 140 180 220 280 360 450 550

700 900 1100 1400 1800 2200 2800 3600

二、液压缸的类型和安装办法

液压缸的类型

对江东机械公司而言

液压缸的安装方式

对江东机械公司而言

三、液压缸主要零件的结构、材料、技术要求

缸体

A焊接缸头缸底等,采用35钢粗加工后调质 [σ]=110MPa B一般情况采用45钢 HB241-285 [σ]=120MPa C铸钢采用ZG310-57 [σ]=100MPa

D球墨铸铁(江东厂采用)QT50-7 [σ]=80-90MPa E无缝纲管调质(35号 45号) [σ]=110MPa

A内径 H8 H9 精度粗糙度(垳磨)

B内径圆度9-11级圆柱度 8级

缸盖(导向套)

A可选35,45号锻钢

B可选用ZG35,ZG45铸钢

C可选用HT200 HT300 HT350铸铁

D当缸盖又是导向导时选铸铁

A直径d(同缸内径)等各种回转面(不含密封圈)圆柱度按 9 、10 、11 级精度

B内外圆同轴度公差

C与油缸的配合端面⊥按7级

D导向面表面粗糙度

A材料灰铸铁HT200 HT300 钢35 、45

B技术要求

外径D(缸内径)与内孔D1↗按7、8级

外径D的圆柱度 9、10、11级

端面与内孔D1的⊥按7级

C活塞头与活塞杆的联接方式

按图3形式

D活塞头与缸内径的密封方式

柱寒缸 40MPa以下V型组合移动部分

活塞缸 32MPa以下用Yx型移动部分

静止部分 32MPa以下用“O“型

活塞杆

A端部结构

按江东厂常用结构图17、18

B活塞杆结构

空心杆实心杆

C材料

实心杆35、45钢

空心杆35、45无缝缸管

D技术要求

粗加工后调质HB229-285

可高频淬火HRC45-55

外圆圆度公差按9、10、11级精度

圆柱度按8级

两外圆↗为

端面⊥按7级

工作表面粗糙度 <(江东镀铬深度)

渡后抛光

A导向套结构图9(江东常用)

导向杆材料可用铸铁、球铁

导向套技术要求

内径H8/f8、H8/f9表面粗糙度

B活塞杆的密封与防尘

柱塞缸V型组合移动部分

活塞缸Yx 移动部分

“O”型(静止密封)

防尘,毛毡圈(江东常用)

3.2.7液压缸缓冲装置

多路节流形式缓冲

参考教科书

3.2.8排气装置

采用排气螺钉

可用螺纹联接(细牙)油口部位

可用法兰压板联接油口部位

液压缸安装可按图8

4液压缸的设计计算

液压缸的设计计算部骤

注:负载决定了压力。速度决定流量。

4.液压缸的性能验算

液压缸性能参数的计算

A液压缸单杆、活塞和柱塞缸推力F1(液压缸的输出按负载F决定)F1=P1A1×103

P1-工作压力(MPa)(按工作母机选定液压机选25MPa)

F1-推力(kN)

A1-活塞与柱塞的作用面积(㎡)

A1=πD2/4

D-活塞直径(m)

B)单杆活塞缸的拉力F2

F2=P2A2×103

P2-工作压力(MPa)液压缸的拉力按拉

F2-液压拉力(kN)负载F’决定 A2-有杆腔面积(㎡)

A2=π(D2-d2)/4

D-活塞直径(m)

d-活塞杆直径(m)

4.液压缸的输出速度

速度按主机要求决定再选择流量

A. 单杆活塞缸或柱塞缸外伸时速度υ1=60qν/A2

υ1—活塞外伸速度(m/min)

qν—进入液压缸流量(m3/s) 有时流量用L/min表示 A1—活塞的作用面积(m2)

B.单杆活塞杆缩入时的速度

ν2=60qν/A2

ν2—活塞的缩小速度。(m/min)

qν—流量。进入液压缸的流量(m3/s)可用

A2=π(D2-d2)/4

D—活塞直径(m)

d—活塞杆直径(m)

C.液压缸的作用时间t

t=υ/qν=As/qν

t—液压缸的作用时间(s)

υ—液压缸的容积(m3)

A—液压缸的作用面积(m2)

※活塞杆伸出时 A=(π/4)D2

※活塞杆缩入时 A=π(D2-d2)/4

S—

qν—进入液压缸的流量(m3/s)

液压缸主要几何尺寸的计算。(D,d,S)

A.根据负载大小选定系统压力表计算D

D=3.57×10?2√F/P

D—液压缸内径(m)

F—液压缸的推力(kN)

P—选定的工作压力(MPa)

B. 根据执行机构的速度要求和选定的液压泵流量来计算D

D=8.74√qυ/υ

D—液压缸内径(m)

qυ—进入液压缸的流量(m3/s)

υ—液压缸输出的速度(m/min)

活塞杆直径d的计算

A.根据速度比的要求来计算d

d=D√(φ?1)/φ

d—活塞杆直径(m)

D—油缸直径(内)(m)

φ—速度比

φ=v2/v1=D2/ (D2-d2)

ν2. 活塞杆缩入速度 m/min

υ1. 活塞杆伸出速度 m/min

速度比关系:

φ 2

D

※选用速度比的方法。(也可以是工作机要求)

工作压力 p/MPa ≤10 ~20 ﹥20

速度比φ~2 2

B.活塞直径d按强度要求计算

按简单的拉压强度计算

d≥10?2√F/[σ]

[σ]—为许用应力 100-120MPa(碳钢)

F—活塞杆输出力

另一确定活塞杆的方法:

当杆受拉力:d=~D

当杆受压力:d=~D (P≤5MPa)

d=~D (5MP﹤P≤

d= (P﹥7MPa)

必要时活塞杆的直径d按下式进行强度校核:

D?√4F/π[σ]

F—液压缸的负载

[σ]—活塞杆材料许用应力 [σ]= σb(抗拉强度)/n(安全系数= 液压缸行程S的确定:根据工作机运动要求确定

液压缸的结构参数的计算:缸壁、油口直径、缸底、缸头厚度等。

δ

A. 当D/δ≥16时,按薄壁筒计算:

δ≥P y D/2[σ]

δ—缸壁厚度 (m)

Py—试验压力(MPa)

当工作压力≤16MPa时 P y=

当工作压力≥16MPa时 Y y=

[σ]—缸体材料的许用应力(MPa)

按抗拉强度:σb

[σ]= σb/n b

n b=~5 一般取5

锻钢[σ]=100~120MPa

铸钢[σ]=100~110MPa

球墨铸铁[σ]=80~90MPa

铸铁[σ]=60MPa

钢管[σ]=100~110MPa

推荐再校核

按工程机械 P≤16MPa 无缝管20号,P﹥16MPa无缝管45号

重型机械无缝管45号 P≤16MPa

缸内径 32 40 50 60 80 100 125 150 180 200

缸外径 52 60 75 85 105 120 150 180 215 240

B. 按中等壁厚

当≤D/δ﹤16

δ=(P y D/[σ]-P y)ψ)+C

ψ:强度系数对无缝管ψ=1

C:计入壁厚公差及腐蚀的附加厚度,通常圆整到标准厚度值C.按厚壁筒计算

对中、高压D/δ﹤

※当材料为塑性材料时,按第四强度理论

塑性材料常用第四强度理论

δ≥D/2(√[σ]

[σ]?1.73P y

?1)

或如果知道缸外圆D1,内圆D。校核按第四强度理论σ= [√3D12/(D12?D2)]P≤[σ]

(以能量为判据 ) [第三强度(以最大切应力为判据)暂不使用] D 1=D √[σ][

σ]?1.73P y

当材料为脆性材料时(江东厂)按第二强度理论

(以应变为判据) [第一强度理论(以最大拉应力)暂不使用]

脆性材料常用第二强度理论

δ≥D/2(√[σ]+0.4P y

[]y

?1)

σ=

(1.3D 12+0.4D 2)

D 12?D

p ≤[σ] D 1=D √[σ]+0.4P y [

σ]?1.3P y

P y 为试验压力

当缸的额定压力P n ≤16Mpa 时, P y =P n 当缸的额定压力P n >16Mpa 时, P y =P n

当选用无缝钢管时,计算的壁厚值应圆整为符合标准的壁厚值(GB8713—1988) D .缸体外径的计算 D 1=D+2δ D 1—

液压缸油口的直径计算

应根据活塞的最高运动速度υ和油口最高流速υo 而定。

d o =0.13D √υ/υo

υo—油口流速(m/min)

d o—液压缸口直径(m)

υ—活塞输出速度(m/min)

D—液压缸内径(m)

υ—液压缸最大输出速度(m/min)

缸底厚度计算

无孔底h=√P y/[σ]

有孔底h=√P y D/(D?d o)[σ]

d0—油口直径

缸头厚度计算

A.螺钉连接法兰,如图

h=√3F(D o?d cp)/πd cp[σ]图13号h—法兰厚度(m)

F—法兰受力总和(N)

F=πd2p/4 + π(d2h- d2)q /4

d —密封环内径(m)

d H—密封环外径(m)

P—系统工作压力(Pa)

q—附加密封力(Pa)

D0—螺孔分布圆直径(m)

d cp—密封环平均直径(m)[σ]—法兰材料许用应力 (Pa)

缸头联接形式多种,可按不同方法计算参考机械设计手册第4卷23—193页

液压缸的联接计算

缸盖连接计算

有多种缸底连接形式,常用焊接和螺栓联接两种

A.焊接联接计算

采用对焊,焊缝拉应力为

σ=4F/π(D12-D22)η

F—液压缸输出最大推力(N)

F=πD2P/4

D—缸内径(m)

p—系统最大工作压力(Pa)

D1—缸外径(m)

D2—焊缝底径(m)

η—焊接效率η=

如用角焊

σ=√2F/D1hη

h—焊角宽度(m)

B.螺栓联接的计算

螺纹处的拉应力为

σ=4kF/π2d21 z

螺纹的切应力

τ=K1KFd0/31z

合成应力

σn=√≈1.3σ?[σ]

z 为螺栓的个数

K为螺纹拧紧系数静载荷时 K=~

动载荷时 K=~4

K1为螺纹内摩擦系数 K1=

d1为螺纹内径(m)当采用普通螺纹时d1=

d0螺纹外径(m)

t—螺纹的螺距(m)

F—缸体螺丝处所受拉力

Z—螺栓数

τ—螺纹处的切应力

活塞与活塞杆的联接计算

A.采用螺纹联接其危险截面(螺纹的退刀槽)处拉应力为σ=4KF1/πd12 如图

切应力为τ=K1KF1d0/3

合成应力为

σn=√(σ2+3τ2)≤[σ]

F1—液压缸输出拉力(N)

F1=π(D2-d2)p /4

P—液压系统压力 Pa

d—活塞杆直径 m

[σ]

活—活塞杆材料许用应力Pa

[σ]=σs/n

[σ]—螺纹处的拉应力(Pa)

K—螺纹拧紧系数静载K=~动载K=~4

K1—螺纹内摩擦系数 K1=

d0—螺纹外径(m)

d1—螺纹内径 d1=

t—螺距

τ—螺纹处的切应力

[σ]

螺—螺纹材料的许用应力

[σ]

螺=σs/n

σs—螺纹材料的屈服点(Pa)

另外,如必要可对油缸导向套与缸头,导向套与油缸,活塞头与活塞杆作挤压计算。

活塞杆与活动横梁联接处作挤压计算。

液压缸试验台安全操作规程

液压缸试验台安全操作规程 1、合上设备电源控制柜总闸; 2、手动操作台“电源开关”钥匙按钮,照明灯亮。 3、检查被试油缸工作口与系统之间管线是否可靠连接; 4、参考被试油缸行程、缸径等因素,选择与之相适应的泵源系统,开启油泵,与之对应指示灯亮,让油泵在空负荷下运转15分钟; 5、确保“起动压力”测试项目中“起动压力调节”手柄完全松开,根据油缸测试前的初始状态,启动“后腔起动”或“前腔起动”按钮,按面板图标,手动调节“起动压力调节”手柄,使被试油缸能在无负载工况下起动,并全程往复运动数次,排尽油缸内空气; 6、被试油缸试运转后,在无负载工况下,调节“起动压力调节”手柄,使油缸无杆腔压力逐渐升高(双出杆活塞缸两腔均可),至油缸起动时,记录下最低起动压力; 7、关闭“起动压力”测试各动作按钮; 8、确保“试验压力”测试项目中“试验压力调节”手柄完全松开,手动“试验开关”至工作位置,“试验指示”灯亮,分别按“后腔启动”和“前腔启动”按钮,将被试油缸活塞分别停在油缸两端(单作用缸处于行程极限位置),缓慢调节“试验压力调节”手柄,向试验腔输入规定的试验压力,保压20min 以上; 9、观察被试油缸,全部零件不得有永久变形。手动“内泄漏开关”至工作位置,测定经活塞泄至未加压腔的泄漏量; 10、进行6、7、8、9各项试验操作时,测定活塞杆密封处的泄漏量(各结合面处不得有渗漏现象);

11、手动“油缸泄压”按钮,对油缸试验腔内的残余油压进行释放; 12、观察面板上“前腔压力”和“后腔压力”显示,待其降至不足1kgf /cm2 时(表压显示稳定,不再下降),拆掉被试油缸试验口的连接管线; 13、连接压缩空气管道于被试油缸无油腔,另一腔接回油箱; 14、开启空压机启动按钮,将油缸内贮存的油液返回油箱; 15、去掉被试油缸上的所有连接,油口按规定加保护,吊离试验台架,试验结束。 注意事项: ①“小油缸控制”须在“小泵运行”条件下进行,操作程序同上述; ②系统最高试验压力80MPa,所有被试油缸的“试验压力”各检测项目不得高于此压力; ③系统工作中如有压力突变,按台面“急停”按钮,强行中止设备运行。

液压缸设计说明书范本

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为0N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。

减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改进液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,经过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化能够提高工作可靠性,实

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压缸试验方法

目录 1 范围 ............................................... 错误!未指定书签。 2 规范性引用文件...................................... 错误!未指定书签。 3 术语和定义 ......................................... 错误!未指定书签。 4 符号和单位 ......................................... 错误!未指定书签。 5 试验装置和试验条件.................................. 错误!未指定书签。 5.1 试验装置................................................................................................................ 错误!未指定书签。 5.2 试验用油液............................................................................................................ 错误!未指定书签。 5.3 稳态工况................................................................................................................ 错误!未指定书签。 6 试验项目和试验方法.................................. 错误!未指定书签。 7 型式试验 (6) 8 出厂试验 ........................................... 错误!未指定书签。 9 试验报告 ........................................... 错误!未指定书签。 10 标注说明(引用本标准)............................. 错误!未指定书签。

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压油缸检验规范.

液压缸检验试验规程 编制: 审核: 批准: 秦冶自动化公司 二零一五年十一月

液压缸检验试验规范 1.0范围 适用于本公司液压缸的整个制作过程中的检验试验过程。 2.0检验试验流程(同液压缸的制作流程,图中棱形框为检验试验过程);

3.0液压缸检验试验 3.1总要求 3.1.1所有参与液压缸检验试验人员熟悉相应的生产图中要求的结构、尺寸和各项性能指标的要求; 3.1.2 检验试验人员必须熟练掌握所使用的测量工具、仪表和设备的使用功能、适用范围和使用方法; 3.1.3所使用的测量工具、仪表必须定期检定和/或校准; 3.1.4在检验每个工件前,必须确认其标识号,并将该件的标识号记录在相应的检验试验表中相应栏内;3.1.5质检部门确定: 3.1.5.1检验区域:○1待检区;○2检验区;○3合格品区;○4不合格品区; 3.1.5.2工件状态标识:○1待检;○2合格;○3不合格; 3.1.6质检员在收到报检单、生产图和相关见证文件后,进行检验试验; 3.1.7质检员必须严格按图、有关技术文件和检验试验表的每一项要求,并记录在相应的检验试验表中;3.1.8对于不合格品,质检人员做好“不合格”标识,并将不合格的工件放在不合格品区域,填写《不合格品评审单》,进入不合格品处理流程; 3.1.9产品检验试验合格后,质检人员做好“合格”标识,工件进入下一流程,所有质量见证文件在质检部门留存;待产品入库(出厂)后整理归档; 3.2检验试验使用的工具、仪器、仪表、设备 3.2.1尺寸测量:卷尺,游标卡尺,内、外径千分尺,沟槽深度千分尺,沟槽宽度千分尺,角度千分尺, 塞尺,内、外圆角规,螺纹规; 3.2.2表面质量:粗糙度仪或粗糙度样块; 3.2.3压力试验:试验台,压力表; 3.2.4漆膜检验:漆膜测厚仪; 3.3采购物品的检验 3.3.1密封元件 3.3.1.1合格供方定期(每年)提供每种类别的密封元件的检验报告; 3.3.1.2采购人员提供报检单和采购清单,按采购清单所示的规格进行检验; 用卡尺进行尺寸检验,检验的目的是确认符合采购要求的规格,不做精确尺寸测量;在检验时必须注意避免量具的尖锐部位挤压密封元件的表面,造成密封元件表面划伤和压痕; 3.3.1.3目视检查表面磕伤、撕裂、划伤、尖角、毛刺; 3.3.1.4发现不合格的退回到采购部门,在相关文件中进行记录;并跟踪处理结果; 3.3.1.5保留检验记录和质量见证文件; 3.3.2原材料 3.3.2.1采购人员提供报检单、材质单和采购清单,按采购清单所示的规格进行检验; 3.3.2.2按炉批号进行原材料的化学性能和力学性能的复验,复验结果符合材质单; 3.3.2.3检验规格尺寸

液压缸组件设计说明书

晋中学院本科毕业设计 题目液压缸组件设计 院系机械学院 专业机械设计制造及其自动化姓名刘晓萍 学号0914112114 学习年限2009年9月至2013年6月指导教师李彩联职称讲师 申请学位工学学士学位 2013年05 月30 日

液压缸组件设计 学生姓名:刘晓萍指导教师:李彩联 摘要:在液压与气压传动系统中,会经常用到液压活塞缸的形式,它广泛地存在于各个领域中。通常活塞缸的组成部分是缸底、缸筒、活塞、活塞杆和端盖等主要部件。有时,在液压缸的连接处,比如缸体和缸盖法兰部分,缸盖与活塞部分,活塞与活塞杆部分等需要安装密封装置,以减少和防止外部灰尘或者内部油液的进出和泄露。缸体的运动过程中,由于惯性、速度、质量等原因,活塞在运动到行程终端时会与缸底发生碰撞,从而引起能量的损失和传动失衡,因此需要在缸体内部安装缓冲装置。此外,在必要时还需要在液压缸体的某些部位安装排气装置和防尘装置以使整个传动机构精度提高、效率提升。液压缸的设计需要根据已给数据和要求来进行,对液压缸的结构进行设计、选择、检验、制造等方面的考虑。 关键字:活塞;活塞杆;缸盖;缸体;

Design specification of the hydraulic cylinder assembly Author’s Name:Liu Xiaoping Tutor:Li Cailian ABSTRACT:The piston cylinder usually be used in the hydraulic and pneumatic drive system,the main part of the piston cylinder is bottom, cylinder, piston, piston rod and cover. To prevent the working medium to the outside of the cylinder or by a high-pressure chamber to the low pressure chamber leakage, a seal between the cylinder cover, piston and piston rod, piston rod with end caps, piston and cylinder device. The outside of the end cap is also equipped with dust-proof device. In order to prevent impact cylinder head, piston rapid movement to the stroke end cushioning device may also be provided in the end portion of the cylinder. The basic part of the cylinder by cylinder assembly, the piston assembly, the sealing member, and a buffer, the connection member. Further, according to the needs cylinder is also provided with the exhaust means and dustproof device. During the design of the hydraulic cylinder, in accordance with the requirements of the working pressure, velocity, working conditions, processing and disassembly repair sum considering the structure of the various parts of the cylinder. KEYWORDS:piston;piston rod;cylinder head;cylinder

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

液压缸试验方法

液压缸试验方法 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

目录

液压缸试验方法 1 范围 本标准规定了液压缸试验方法。 本标准适用于以液压油(液)为工作介质的液压缸(包括双作用液压缸和单作用液压缸)的型式试验和出厂试验。 本标准不适用于组合式液压缸。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 14039-2002 液压传动油液固体颗粒污染等级代号(ISO 4406:1999,MOD) GB/T 17446 流体传动系统及元件术语(GB/T 17446-1998,idtI SO 5598:1985) 3 术语和定义 在GB/T 17446中给出的以及下列术语和定义适用于本标准。 最低起动压力the minimum pressure 液压缸起动的最低压力。 无杆腔the cavity with out piston rod 液压缸没有活塞杆的一腔。 有杆腔the cavity with piston rod 液压缸有活塞杆伸出的一腔。 负载效率load efficiency 液压缸的实际输出力与理论输出力的比值。 4 符号和单位

本标准使用的符号及其单位见表l。 表1 符号和单位 5 试验装置和试验条件 试验装置 5.1.1液压缸试验装置见图1和图2。试验装置的液压系统原理图见图3~图5。 图1 加载缸水平加载试验装置 图2 重物模拟加载试验装置 1——过滤器; 2——液压泵; 3——溢流阀; 4——单向阀; 5——电磁换向阀; 6——单向节流阀; 7——压力表开关; 8——压力表; 9——被试缸; 10——流量计; 11——温度计。 图3 出厂试验液压系统原理图 1——过滤器; 2——液压泵; 3——溢流阀; 4——单向阀; 5——流量计; 6——电磁换向阀; 7——单向节流阀; 8——压力表; 9——压力表开关;

液压油缸课程设计说明书

课程设计说明书(液压油缸的压力和速度控制)

目录 1、设计课题 (3) 1.1设计目的 (3) 1.2设计要求 (3) 1.3设计参数 (3) 1.4设计方案 (3) 2、设计方案 (4) 2.1工况分析 (4) 2.2拟定液压系统 (6) 3、机械部分计算 (9) 3.1液压缸的设计计算 (9) 3.2液压缸的校核计算 (12) 3.3液压缸结构设计 (15) 3.4选择液压元件 (17) 4 、系统的验算 (20) 4.1.压力损失的验算 (20) 4.2 系统温升的验算 (21) 5、电气部分设计 (23) 5.1控制系统基本组成 (23) 5.2PLC控制系统的流程图 (24)

1 设计课题 1.1设计目的 通过课程设计培养学生综合运用所学知识和技能、提高分析和解决实际问题能力的一个重要环节,专业课程设计是建立在专业基础课和专业方向课的基础上的,是学生根据所学课程进行的工程基本训练,课程设计的目的在于: 1、培养学生综合运用所学的基础理论和专业知识,独立进行机电控制系统(产品)的初步设计工作,并结合设计或试验研究课题进一步巩固和扩大知识领域。 2、培养学生搜集、阅读和综合分析参考资料,运用各种标准和工具书籍以及编写技术文件的能力,提高计算、绘图等基本技能。 3、培养学生掌握机电产品设计的一般程序和方法,进行工程师基本素质的训练。 4、树立正确的设计思想及严肃认真的工作作风。 1.2设计要求 执行元件:液压油缸; 传动方式:电液比例控制; 控制方式:PLC控制; 控制要求:速度控制; 控制精度:0.01 1.3设计参数 油缸工作行程——600 mm; 额定工作油压——6.5MPa; 移动负载质量——1000 kg; 负载移动阻力——5000 N; 移动速度控制——0.2m/s; 1.4设计方案 利用设计参数和控制要求设计出液压油缸,进而设计出液压系统,通过PLC 对液压油缸进行速度控制。

液压缸装配出厂试验规范

工程液压缸装配 试验出厂工艺规范 一、设备及工量具、装配工装: 1、粗、精洗工作台;外滑环加热装置;无水空压机;烘干机等。 2、各引进套、装配器、整形器等装配工装。 3、各类清洗工具、去毛刺工具、砂纸、油石、抛光膏(粉)、面粉等。 二、准备 1、配套:按装配图上的“零件明细表”领取合格的零件成品、密封件标件等。未经检查合格的零配件不得进入装配。 2、清理: A:检查并最终清除所有机加工零件、标准件、塑料件、橡胶件飞边、毛刺、锈迹。活塞杆应擦拭干净并检查是否有掉铬、碰伤现象,缸筒油口倒角及毛刺应特别注意。清除时,零件不能有损伤,同时复查各零件外观是否合格; B:密封件应小心拆除保护装置; 3、清洁: A:清洗前用压缩空气吹净工作台及待装配零件各部位的异物,再用煤油(密封件不用燃油清洗)或清洗剂清洗干净。要注意缸筒内孔、缸头各内孔、活塞、导向套各油槽的细小异物;有螺纹的零件应用和好的面团进行粘连去除污物。B:清洗后要用压缩空气将零件吹干或烘干; C:采用干式装配的零件进行干燥处理; D:所有待装配的零件清洗、清理后都要放置在装配点的干净工位器具上; E:清理、清洗所有装配工具、工装。 4、要求: A:部装前、自检时严禁带线手套、帆布手套;部装中允许带绵质薄手套。 B:所有零部件必须先行自检,然后通知检验进行检查,合格后方可进行下一步组装。 5、零件检验 装配钳工做好自检工作,再向检验员提请检查。装配检验员必须按上述要求进行巡检和完工检查。 三、组装 1、组装活塞:分别装配活塞密封组件和支承环;活塞密封(材料为填充PTFE

必须在50°C~60°C的油温中浸泡后才可装配)装配后必须进行整形。活塞为螺纹式时,将0形圈装入内台阶孔的O形圈槽内。 2、组装导向套: 分别装配轴用组合密封、Y型密封圈、防尘圈(或支承环)和O型圈,组装导向套必须采用干式装配。 3、组装活塞杆: A:活塞杆小端为卡键式:将活塞杆小端装上O型圈,然后装配活塞组件,再按图纸要求装轴用卡键、卡键帽、轴用挡圈及其它零件。整体焊接式活塞 杆,须先装导向套组件,再装活塞组件。 B:活塞杆小端为螺纹式:将活塞组件旋入活塞杆上拧紧到位,注意不能损伤O 形圈,然后装锁紧螺母压紧(装配前清除紧定螺钉孔的油脂),装钢球、紧定螺钉(装配前涂紧固胶)。整体焊接式活塞杆,须先装导向套组件,再装活塞组件。C:活塞杆杆端为叉头时,最后装叉头。 4、缸体组装: A:缸体为卡键式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、孔用卡键、挡环、轴用挡圈及其它零件(注意装配导向套时若O型圈过油口,必须用堵塞堵住油口以免损坏密封件)。 B:缸体为法兰式:将已组装好的活塞杆装入缸体,再按图纸要求装导向套、弹垫、螺钉(螺栓),按装配图拧紧力矩要求拧紧螺钉(螺栓)。螺钉、螺栓须按拧紧力矩表的拧紧力矩紧固。特殊油缸按图纸的技术要求执行。 C:缸体为螺纹式:将已组装好的活塞杆装入缸体,再按图纸要求装螺纹式导向套,拧紧。配钻紧定螺钉孔,清除铁屑,抹紧固胶,装紧定螺钉拧紧。 5、装配过程中的要求 A:保护零件的已加工面的尺寸精度和表面粗糙度,夹持零件要加垫软金属垫块,装拆要用规定的装配工具,在装配的全过程中,不能对零件(组件、部件)进行有损锤击和切削加工,禁止使用如锉刀、刮刀、油石等切削刀具。个别需要进行配制、配研组装的零件完工后,要在指定的工位清洁被研制零件的各表面。B:保持各密封件在装配过程中的正确位置和形状,密封件的表面不得出现划伤、拉毛、切边等损伤。 C:保证零部件的配合性质,对过盈配合的固紧零件须注意公差要求,对间隙配合的运动零件要保证运动灵活。如:关节轴承须转动灵活、衬套须紧固等。 D:配合件和紧固件所用的螺钉、螺母、定位销等在装配时须涂上机油且保证按

手动液压叉车设计说明书

手动液压叉车课程设计设计报告 课程:专业综合实践 班级:机自3093 学院:机械工程学院 指导老师:吴彦农 设计:王晓波王彬谷泓毅 日期: 2012.12.30

叉车设计摘要 叉车是物流系统中最常用的装卸、搬运设备。本文介绍了世界范围内叉车的市场,叉车发展趋势以及叉车的结构特点,了解液压起重机械设计的主要参数:根据液压起重机械的特点,设计液压手动叉车参数有:起重量、跨距、幅度起重高度、各机构的工作速度及起重机各机构的工作类型。叉车的主要参数首先由使用单位根据生产需要提出,具体数字应按国家标准或工厂标准来确定,同时也要考虑到制造厂的现实生产条件。因此,在确定参数时应当进行调查研究,充分协商和慎重确定。 现代叉车技术发展的主要趋势是充分考虑舒适性、安全可靠性和可维护性 ,产品专业化、系列多样化,大量应用新技术,完善操控系统,重视节能和环保 ,全面提升产品的性能和品质。 通过对国际国内叉车造型设计的现状分析运用工业设计的理论和方法,研究了叉车造型设计的要素及设计原则:造型要求简洁明快、线条流畅,以体现车身的力度感与坚实稳重的感;色彩.力求单纯,给人以轻松、愉悦的感觉,主色调以明度较高的黄色、橙色为宜;车身前后左右要求有宽大的玻璃,仪表具有良好的可读性。研究结果对叉车设计具有重要的实际指导意义。 关键词:叉车;载重;提升机构 第 1章绪论 1.1课题发展现状和前景展望 叉车是应用十分广泛的流动式装卸搬运机械,是物料搬运机械(国外称为工业车辆或地面运输车辆)的一种,是实现物流机械化作业,减轻工人搬运劳动强度,提高作业效率的主要工具。叉车又名铲车、万能装卸车或自动装卸车。它是由在无轨底盘上加装专用装卸工作装置构成的。叉车具有通用性强、机动灵活、活动范围大等特点,所以它广泛用于车站、港口码头、机场、仓库以及工矿企业等部门,用来实现机械化装卸、堆垛和短距离运输,是物流系统不可缺少的机械设备。而叉车中进行装卸作业的直接工作的装置是叉车起重系统,货物的卸放、堆垛最终都是由其完成的,所以它是叉车最重要的组成部分。在我国国民经济的发展中,各行各业对叉车的需求量逐年增加。据国家权威机构研究预测,在今后几年我国叉车年需求量将超过15万台。叉车产业市场潜力巨大,发展前景广阔。 1.2课题主要内容和要求 实验室提供液压千斤顶,螺旋千斤顶实物样品,要求参照其工作原理设计用于较重货物的装卸、移动的省

液压缸尺寸计算

液压缸尺寸计算 The following text is amended on 12 November 2020.

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F F=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F F=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载荷) 3、密封阻力F F=(1?F F)F,其中F是作用于活塞上的载 荷,且F=F F ,F F是外载荷,F F=F F+F F,其中F F是 F F 液压缸的机械效率,取F F=0.95 综上可得:外载荷F F=59036N,密封阻力F F=2952N,总 载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为F=12MPa1(由于 总载荷为61988N大于50000N,故根据手册选取工作压力 为12MPa) 2、选择执行元件液压缸的背压力为F2=1MPa(由于回油路 带有调速阀,且回油路的不太复杂,故根据手册选取被压 压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=F1F1?F2F2 F1----------液压缸工作腔压力(Pa)

F 2----------液压缸回油腔压力(Pa ) F 1----------无杆腔活塞有效作用面积,F 1= πD 24,D 为活塞直径(m ) F 2----------有杆腔活塞有效作用面积,F 2= π4(D 2?d 2),d 为活塞杆直径 (m ) 选取d/D=(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm , d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩 强度即可。σ= F 14πd 2=21.9MPa<[σ]=100MPa,故满足强度要求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: F 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为 108mm ,即可得液压缸壁厚为δ =9mm。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]= 100MPa。 由于该缸处于低压系统,故先按薄壁筒计算,σ=F F F 2δ,其中工作压 力P =F =12MPa ≤16MPa 1,可取F F =1.5F 1,则σ=90MPa<[σ]= 100MPa,故满足强度要求。 又由于D /δ=10,故可将该缸筒视为厚壁,则δ的校核应按下面公式 进行。

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

液压系统的设计说明

目录 摘要 (2) 前言 (3) 第1章液压传动概述 (4) 1.1 液压传动的工作原理及组成 (4) 1.2 液压传动的特点 (5) 1.3 液压工作的介质 (6) 第2章总评方案 (8) 2.1 工况分析 (8) 2.2 确定液压系统方案 (9) 第3章确定主要参数 (15) 3.1 计算液压缸的尺寸流量 (15) 3.2 计算液压泵的电机功率 (19) 3.3 液压泵的气穴、噪声 (23) 第4章选择液压元件 (25) 4.1 选择阀的类型 (25) 4.2 选择液压元件确定辅助装置 (27) 总结 (32) 致谢 (33) 参考文献 (34)

摘要 面对我国经济近年来的快速发展,机械制造工业的壮大,在国民经济中占重要地位的制造业领域得以健康快速的发展。制造装备的改进,使得作为制造工业重要设备的各类机加工艺装备也有了许多新的变化,尤其是孔加工,其在今天的液压系统的地位越来越重要。 镗床液压系统的设计,除了满足主机在动作和性能方面规定的要求外,还必须符合体积小、重量轻、成本低、效率高、结构简单、工作可靠、使用和维修方便等一些公认的普遍设计原则。液压系统的设计主要是根据已知的条件,来确定液压工作方案、液压流量、压力和液压泵及其它元件的设计。 综上所述,完成整个设计过程需要进行一系列艰巨的工作。设计者首先应树立正确的设计思想,努力掌握先进的科学技术知识和科学的辩证的思想方法。同时,还要坚持理论联系实际,并在实践中不断总结和积累设计经验,向有关领域的科技工作者和从事生产实践的工作者学习,不断发展和创新,才能较好地完成机械设计任务。 关键词:液压缸液压泵换向阀

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

液压锁和五星轮式液压马达.

液压锁: 液压锁实质是由两个液控单向阀组成。作用是互锁。 图中虚线所框出的部分就是液压锁。 液压锁的作用是互锁,当图中滑阀位于中位时,液压油缸在两个单向阀的作用下左右油缸处于静止状态。 当滑阀处于右位机能时,此时右路单向阀进油,同时控制油路把左路单向阀打开泄油,液压油缸的活塞与活塞杆左移; 当滑阀处于左位机能时,此时左路单向阀进油,同时控制油路把右路单向阀打开泄油,液压油缸的活塞与活塞杆右移。 五星轮式液压马达:

静力平衡式低速大扭矩马达也叫无连杆马达或五星轮式液压马达,国外把这类马达称为罗斯通(Roston马达。 这种马达是从曲柄连杆式液压马达改进、发展而来的,连杆已由一个滑套在偏心轮5外面的五星轮3所代替,而配油轴和输出轴也已做成一体,成为偏心轴5,从配油套引入的油液,经曲轴的内部钻孔,还可穿过偏心轮和五星轮3,一直通入到空心柱塞2中,因而也就取消了壳体中的流道。 液压马达五星轮3滑套在偏心轴的偏心轮上,由于受柱塞底部端面的约束,则五星轮3只能作平面运动而不能转动。在它的五个平面中各嵌装一个压力环4,压力环的上平面与空心柱塞2的底面接触,柱塞中间装有弹簧,以防止液压马达启动或空载运转时柱塞底面与压力环脱开。高压油经配流轴中心孔道通到曲轴的偏心配油部分,然后经五星轮中的径向孔、压力环、柱塞底部的贯通孔而进入油缸的工作腔内。在图示位置时,配流轴上方的三个油缸通高压油,下方的两个油缸通低压回油。 在这种结构中,五星轮取代了曲柄连杆式液压马达中的连杆,压力油经过配流轴和五星轮再到空心柱塞中去,液压马达的柱塞与压力环、五星轮与曲轴之间可以大致做到静压平衡。在工作过程中,这些零件还要起密封和传力作用。

液压缸设计

液压缸设计 指导书 河南理工大学机械与动力工程学院 热能与动力工程系

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的液压缸设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名合格的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供热能专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容:主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒 内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验

相关文档
最新文档