微地震监测技术及在油气田开发中的应用新进展

微地震监测技术及在油气田开发中的应用新进展
微地震监测技术及在油气田开发中的应用新进展

微地震监测技术及在油气田开发中的应用新进展

【摘要】微地震监测技术在油气田开发中的应用得到快速发展,成为国内外研究的热点之一。本文介绍了微地震监测的原理以及在油气田开发中的应用新进展,重点分析总结了微地震监测技术在水力压裂裂缝监测,稠油热采状况监测,地应力监测等方面的应用情况;微地震监测技术的发展和应用为认识和开发油气田提供了有效的手段.

【关键词】微地震监测开发应用

图1?微地震监测技术原理

我们假设在o点有微小地震事件的发生,让地层剪切产生错动,因为错动而出现微地震波的震源。有别于一般的地震勘探,这种的震源能量不强,差不多等同数十克炸药所产生的能量。它会向外发出子波,在时间1t处纵波及横波发射到了a点,在时间2t处纵波及横波发射到了b点。设在b点的三分量检波器检测到了p波及s 波,通过对检波器得到的数据进行处理得到震源位置。

微地震监测技术是对生产活动中发生的微小地震进行勘测及研究,以此作为依据来控制生产活动的过程和结果,与地震勘探不同,

地震处理及解释软件发展现状

地震处理及解释软件发展现状 作者:发布时间:2010-04-08 10:51:27 地震资料处理技术的发展与计算机技术的发展息息相关。从模拟处理到数字处理;从简单的陆上二维资料处理到复杂的山地资料处理、全三维资料处理、高分辨率和深层资料处理等;从常规资料的处理到处理解释一体化的叠前深度偏移技术,每一次地球物理技术的进步都离不开计算机技术的进步和应用软件的发展。 以胜利油田的地震资料处理计算机装备为例,其发展过程已历经了数代的变化。从最早的IRIS60机、TIMAP—I、TIMAP4、VAX11/782、IBM3083,到并行计算SGI/Orgin2000和IBM—SP,以及目前正在迅猛发展的PC—CLUSTER,运算速度已从最初的每秒40万次提高到现在的每秒万亿次。 随着地震资料处理硬件装备的发展,处理软件也在不断地更新,处理技术日趋完善。勘探软件是现代地震勘探和油藏描述的基本必备工具,自上世纪70年代,国外的一些软件公司就已着手开发地震处理及解释软件系统,并初步形成了商业化软件,开始在全世界范围内推广和应用。进入上世纪90年代,比较成熟的处理软件有西方地球物理公司的Omega处理软件、法国CGG公司的GEOVECTEUR PLUS处理软件、LandMark公司的Promax处理软件、帕拉代姆公司的GeoDepth软件、Focus软件。国内较早从事勘探软件研究和开发的单位,主要是以东方地球物理公司(原石油物探局)为主,它的处理软件为Grisys处理软件。这些软件的处理技术水平各具特色。另外,随着油藏地球物理技术的发展,各种相关的特殊处理软件逐步发展与完善。 地震数据处理软件的发展 批处理阶段上世纪70~80年代末,由于计算机技术落后,限制了地震处理软件和处理技术的发展,地震处理软件一直处于批处理阶段,代表性的软件有:法国CGG公司的GEO—MASTER软件、美国GSI公司的TIPEX软件、美国WGC公司的IQ处理软件、美国CSD 公司DISCO软件等。 交互处理阶段上世纪90年代初,随着计算机技术的飞速发展,地震处理软件和处理技术发展很快。开始发展交互地震处理软件。代表性的软件有:法国CGG公司的

地震解释的现状及发展趋势

地震波地质信息综合解释 摘要:地震解释质量决定了一个区块勘探开发的方向和进程,地震解释的发展对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。本文主要从现今已经在应用的解释技术和方法以及近年来涌现出来的一些新思路、新方法展开论述。分别包括三维可视化技术、构造解释、构造解释和利用振幅属性预测含烃概率、利用波峰瞬时频率计算薄层厚度、多子波地震道分解和重构等。 关键字:地震解释、构造解释、振幅属性、波峰瞬时频率 引言:地震资料解释是勘探和开发地震的最后环节,其功能是将地震信息翻译成地质语言或符号;其目的是直接服务于勘探和开发。因此解释质量决定了一个区块勘探开发的方向和进程。地震勘探开发技术发展的目标都是为了提供更好的易于解释的具更高可信度的地震资料。地震解释现在更多地强调综合性和在地质规律控制下的地震解释。这对解释人员提出了更高的要求,即要求解释人员通晓地质知识,同时具有物探知识。地震解释从来就不是从事物探方法研究人员单纯可以从事的工作。地震解释已经开始从注重地震解释方法向注重多学科综合性的转变,现在更为明显!地震解释的另一个明显的趋势是强调在地质规律认识下的地震解释,即地震和地质的紧密结合。 一、地震综合解释的现今技术及方法 在地震综合解释方面,主要是以地震反演技术、多种属性分析技术及三维解释为主体的地震综合储层预测技术,通过与层序地层学、测井和地质等其他测量解释成果的结合给出地震资料综合解释的应用实例。例如AmoutColpaert应用神经网络将地震解释数据和井中岩石物理特性分析联合实现多属性分析,从而进行岩相预测。靶区的目标地层是岩溶发育的斜坡形向陆架坡过渡的碳酸盐岩地层,探区内井资料很少或几乎没有,作者综合应用了基于井资料的层序地层分析、岩石物理分析和多属性地震分析,对无井控制区的岩相进行了预测。其基本流程见图1。

海上宽频地震采集技术新进展

*基金项目:国家科技重大专项“我国油气及煤层气勘探开发技术发展战略研究”(编号:2008ZX05043-003)。 第一作者简介:余本善,1982年生,博士,工程师,2012年毕业于中国地质大学(北京),目前从事物探前沿技术跟踪及战略研究工作。E-mail:yubs@https://www.360docs.net/doc/8f13730465.html, 海洋油气资源十分丰富。据最新资料显示,海洋油气探明储量约占全球探明储量的34%,而探明率仅有30%。随着陆上常规可采资源储量的不断减少,全球油气需求快速增加与油气资源相对匮乏的矛盾日益突出, 为满足人类日益增长的能源需求,走向海洋是未来油气勘探开发的必然选择。近几年,全球海洋油气年均投资突破1000亿美元,越来越多的石油公司、服务公司把海洋油气作为未来发展的重要战略接替区和技术创新的主攻方向。 海上拖缆地震技术是目前海洋油气勘查的主要手段,常规的海上拖缆采集一般是配置单一类型的水检,且各个检波器排列处于同一水平面上,这种采集方式具有施工灵活、作业效率高等特点,但是随着海上开发油气藏类型日益复杂,常规作业方式取得的资料已越来越难以满足海上精细化勘探的要求。 海上宽频地震勘探技术不但能改善盐下、玄武岩下等深层构造成像,还能提高薄层、隐蔽圈闭、特殊岩性体等难识别油区成像品质,因而能提高地震资料的解释精度,帮助寻找遗漏油藏,降低勘探风险[1~5]。宽频地震作为提高地震成像精度的重要方法,已经成为物探学 界的研究热点问题。近5年来国外海上宽频地震采集技术取得了飞速发展,出现了上下双缆采集、倾斜电缆采集、双检电缆采集、四分量拖缆采集等多种方法。 1 海上地震采集“鬼波” 海上拖缆地震采集一般是将震源和检波器沉放到水下一定深度,当震源激发出子波后,地震波在向下传播(简称下行波)的同时也向上传播(简称上行波)。由于海水面是一个很强的波阻抗界面,当上行波到达海面会产生强烈反射,再向下传播;同理,由地下反射回来的地震波,有的直接到达检波器,有的继续向上传播,经海面反射后到达检波器,这种海面反射波称为虚反射(也称鬼波)(图1)。研究表明,由于鬼波的陷频作用[6],在一定的水深范围内,震源沉放较浅,震源子波频谱较宽,高频效果越好,但低频部分相对缺失;震源沉放较深,低频成分相对丰富,但频带较窄。同理,检波器沉放深度对地震资料的频带也有着类似的影响。 2 倾斜电缆采集技术 倾斜电缆技术理论最早由C.Ray [7]于1982年提出,

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

前沿:海洋宽频带地震勘探新技术扫描

前沿:海洋宽频带地震勘探新技术扫描 文|吴志强 国土资源部海洋油气资源与环境地质重点实验室

1、概况 海洋地震勘探在海洋地质调查、油气藏勘探与开发中起到了无可替代的重要作用。随着勘探领域的不断拓展,地震勘探的难度越来越大。在深部地质调查和复杂构造、火山岩(或碳酸盐岩)屏蔽下的油气藏地震勘探中,为了获取目的层有效反射信号、实现精确成像,对地震数据采集的要求进一步提高,包括采集到低频、高频成分丰富的宽频带、高信噪比原始地震记录。地震信号中的低频信息具有穿透能力强、对深部目的层成像清晰的优势,同时也使地震反演处理结果更具稳定性。宽频带可产生更尖锐子波,为诸如薄层和地层圈闭等重要目标体的高分辨率成像提供全频带基础数据。 理论研究表明:当地震数据的频带宽度不低于两个倍频程时,才能保证获得较高精度的成像效果;频带越宽,地震成像处理的精度越高;增加低频分量的主要作用是减少子波旁瓣,降低地震资料解释的多解性,提高解释成果的精度。 图形象地展示了低频分量的重要性:高频分量丰富、但缺少低频分量的地震子波的主峰尖锐,却会产生子波旁瓣,使地震资料的精确解释变得困难且多解;高分辨率子波是在低频和高频两个方向都得到拓展的宽频带子波,这样子波的主峰尖锐、旁瓣少且能量低,能分辨厚度极小的薄层,地震解释的精度高。 现今地震资料反演处理大多是基于模型的地震反演,成功的关键是能否提取真实子波和建立精确的低频模型。常规地震数据中缺失低频信息,只能采用从测

井数据中提取低频分量再与地震数据反演的相对波阻抗合并处理方式得到绝对 波阻抗。 在目标地质体复杂、钻井少的探区,仅靠测井资料提取的低频分量难以反映复杂地质体横向变化,导致不精确或假的反演结果。为弥补该缺陷,一般采用从地震叠加速度提取低频分量方式,而叠加速度只能提供0~5Hz低频信息,无法弥补常规地震所缺少的0~10Hz低频分量。可见,地震数据中低频信息对保证地震岩性反演的精度意义重大。 然而,在海洋地震勘探中得到宽频带地震数据是比较困难的。 首先,在常规海洋地震数据采集中,电缆和气枪都要以固定深度沉放于海平面之下,以保证下传的激发能量最大化和降低接收环境噪声。 由于海平面是强反射界面,在激发和接收环节都会产生虚反射效应,从而压制了信号的低频和高频能量,并产生了陷波点,限制了地震勘探的频带宽度。例如,为了获得深部目的层有效反射信号,必须增加气枪阵列容量、加大沉放深度以得到穿透能力大、主频低的激发子波,并加大电缆沉放深度以减少对来自深部反射界面的低频反射信号的压制效应,由此带来的副作用是高频信号受到较大压制,降低了地震信号的频带宽度和分辨率。 在海洋高分辨率地震勘探中,一般采用较小气枪阵列容量和较浅沉放深度以得到高频成分丰富的激发子波,同时降低电缆沉放深度以降低接收环节对高频信号的压制效应,这样虽然提高了地震信号的频带宽度和视觉分辨率,但它是以牺牲低频信息和勘探深度为代价,处理后的成果数据缺少低频信息,给后续的反演处理带来较大困难。 勘探设备性能也限制海洋地震勘探获得宽频带地震数据的能力,电缆在移动时产生的机械和声波噪声掩盖了微弱的有效地震信号,降低了地震数据的频宽和信噪比,尤其是对高频段信号的影响幅度更大。到目前为止,常规海洋地震勘探中尚未找到完全有效压制虚反射效应的采集和处理方法。 近年来,针对海洋宽频带地震勘探面临的主要难题,在勘探设备方面进行了研发并取得重要进展。固体电缆的研制成功和工业化应用,有效地降低了电缆噪声,提高了对微弱高频信号的响应和记录能力;双检波器拖缆采集技术的发展与应用,压制了虚反射效应,拓宽了地震频带。 众所周知,气枪和电缆以一定深度沉放于海平面之下,海平面反射在上行波和下行波之间产生交互干涉的鬼波效应,对地震反射信号产生了压制和陷波作用,降低了原始地震资料的频带宽度。气枪和电缆沉放越深,对高频信号压制越大,越有利于低频信号;沉放越浅,对低频信号压制越大,越有利于高频信号。 为了压制虚反射效应,提高地震数据频带宽度,在海洋地震激发时借鉴陆上地震勘探压制虚反射的成功做法,开发了多层震源组合新技术代替传统的平面震源组合方式,激发地震子波的低频和高频分量都得到有效拓展和提升,因此其频带展宽、穿透能力增强。 在海洋地震信号接收环节,为有效削弱由海平面虚反射引起的陷波作用,利用电缆沉放深度的变化对不同频带的压制特性,采用上、下缆接收技术,既有效

地震数据处理解释技术发展研究

地震数据处理解释技术发展研究 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。…… 一、地震数据处理解释是地震勘探的主要组成部分 地震勘探就是通过人工地震反射波“给地球做CT”,让油气勘探者能够“看见”地层的地质构造和油藏情况,为石油公司“找油”做出含油气评价、提出钻井位置、模拟油藏未来的生产动态以便为后续油气藏开采和开发提供技术资料。 地震勘探包括地震采集、处理和解释三大部分:地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造解释、地层解释,岩性和烃类检测解释及综合解释,目的是利用地震反射波的地质特征和意义确定井位寻找石油。地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度和找油的成功率。 图1 地震勘探产业链构成 地震数据处理解释是地震勘探的主要组成部分,是石油天然气勘探开发产业链中对油田勘探开发效益影响最大、技术含量最高的一环。其原因有四:1、石油勘探地震数据处理解释与井位部署成功率、油田发现、油田采收率、油田增储上产等经济效益直接相关,是寻找油气资源的关键技术; 2、石油勘探技术发展的基础主要体现在地震数据处理环节中地震成像技术的发展;3、地震数据处理解释下游钻井业务等油气开采技术均十分成熟;4、上游地震数据采集依赖于先进的仪器设备,理论简单。综合而言,地震数据处理的质量和地震成像的准确度与清晰度直接决定油气资源的发现的成败和勘探成功率,是影响后期油田生产建设最重要的环节。 BP公司北海油田日产量与地震数据处理解释新技术的关系表明,新技术尤其是地震成像技术的发展和应用对于油田产量的增加影响极大。 图2 石油勘探地震数据处理解释技术对北海油田的产量的影响由此可见,地震数据处理解释是地震勘探的主要组成部分,其发展和技术进步对于解决人类能源供应问题具有十分重要的意义。 二、地震数据处理解释技术发展历程 地震数据处理解释技术中最核心的就是地震成像技术,因此地震数据处理解释技术的发展历程主要依据地震成像技术的发展水平进行划分。 地震数据处理解释最早出现于20世纪20年代初期。随后的40年间由于是对光点记录(1920—1950)和模拟记录(1950—1965)进行处理,在这一阶段地震处理解释技术发展缓慢,也没有可实用的地震成像技术出现。

微地震检测技术简介

微地震监测技术及应用 随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。 第一节微地震监测技术原理与发展 微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。微地震是一种小型的地震(mine tremor or microseismic)。在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。开采坑道周围的总的应力状态。是开采引起的附加应力和岩体内的环境应力的总和。 一、技术背景 岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。 二、微地震技术的发展 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得

微地震技术与压裂效果评价

微地震技术与压裂效果评价 摘要:本文就油田不同开发阶段,利用微地震监测技术对水力压裂人工裂缝实时监测,根据裂缝监测结果应用科学的评价方法,定量计算水力压裂措施前后渗流阻力及产量,是一项十分必要评价压裂效果的可靠方法。 关键词:微地震;监测;油气藏;地应力;储层;评价 目前提高低渗透油藏单井产量最有效的方法是对油层进行水力压裂改造。通过微地震监测技术,监测压裂人工裂缝形成过程中所诱发的微地震事件,通过对微地震事件反演及震源定位,就可以了解裂缝的产状,进而客观的描述压裂裂缝的再生作用导致的应力改变,以有效地提高油田开发水平。 1.微地震监测技术 微震动(包括微地震)监测技术是20世纪90年代发展起来的一项地球物理勘探新技术,应用于油气藏勘探开发、煤矿“三带”(冒落带,裂缝带和沉降带)监测,矿山断裂带监测,地质灾害监测等多个领域。目前微地震监测技术在国内外油气田勘探开发中的应用已经比较普遍。 1.1监测原理 油气水井新井投产或后期改造进行水力压裂时,在射孔位置,当迅速升高的井筒压力超过岩石抗压强度,岩石遭到破坏,形成裂缝,裂缝扩展时,必将产生一系列向四周传播的微震波,微震波被布置在压裂井周围的多个监测分站接收到,根据各分站微震波的到时差,会形成一系列的方程组,求解这一系列方程组,就可确定微震震源位置,进而计算出裂缝分布的方位、长度、高度及地应力方向等地层参数;同时结合井口压力监测可获得闭合压力、液体滤失系数、液体效率、裂缝宽度等参数。 1.2压裂效果评价方法 根据目前国际上通常评价系统,水力压裂前后几何渗流阻力(ΩrP)、产油量(q ) 、渗流阻力下降率(V )分别为: 2.微地震监测技术在青海柴达木地乌南油田应用实例 2.1乌南油田基本概况 乌南油田位于青海省柴达木盆地西部南区,为柴达木盆地茫崖坳陷区昆北断阶亚区乌北-绿草滩断鼻带上的一个三级构造,构造面积130km2 ,构造整体为一由东南向北西方向倾没的鼻状构造,构造轴向为北西向,构造西南翼地层倾角较大,东北翼地层倾角相对较小,主体部位轴向330度。区内断裂发育,大小断裂20余条,

地震勘探技术新进展_杨勤勇

第25卷第1期2002年2月 勘探地球物理进展 Progress in Exploration Geophysics Vol.25,No.1 Feb.2002地震勘探技术新进展 杨勤勇1徐丽萍2 (1.中国石化石油勘探开发研究院南京石油物探研究所,江苏南京210014; 2.西北石油局规划设计研究院,乌鲁木齐830011) 摘要:近几年来,地震勘探技术得到了很大的发展。超万道地震仪的投入使用,以及优化采集设计技术的发展,有效地提高了采集效率和资料质量;叠前深度偏移技术使复杂构造的成像更为清晰;3D可视化技术和虚拟现实技术大大提高了地震解释的能力、精度和速度;地震属性技术的发展把地震解释向定量化解释推进了一步;井中地震技术、多波多分量地震技术以及时延地震技术的发展,有力地增强了油气静态描述和动态监测的能力;复杂介质中地震波传播规律的研究向传统的层状介质理论发起了冲击。 关键词:可视化;虚拟现实;地震属性;成像;井中地震;VSP;多分量;时延地震 中图分类号:TE132.1+1文献标识码:A 地震勘探是利用地层岩石的弹性特性来研究地下地质结构,推断岩体物性,预测油气的一种勘查方法。几十年来,地震勘探以其高信噪比、高分辨率、高保真度、高精确度、高清晰度和高可信度等赢得了广大用户的信任,成为找油找气的关键技术。在油气勘探开发中,应用地震勘探已有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘查方面取得了重大成果,给油气公司带来了可观的经济效益。 近几年来,以PC计算机群大规模投入使用,可视化、虚拟现实、网络技术飞速发展为标志,以高分辨率地震、3D地震为代表,以4D地震、井中地震、多波多分量地震为发展前沿的地震勘探技术正跃上新的台阶,高密度采集和3D空间成像归位技术以其精确、灵活显示等优点,在国内外已卓有成效地用于查明各种复杂构造油气藏和隐蔽油气藏。 1主要进展 1.13D可视化技术[1~4] 可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物内部结构。方法包括以图形为基础(或称为面可视化)和以体素为基础(体可视化)的可视化。在以体素为基础的体可视化中,每一个数据采样点被转换成一个体素(一个3D象素的大小近似于面元间隔和采样间隔)。每一个体素有一个对应于源3D数据体的值,一个RGB(红色、绿色、蓝色)色彩值以及可被用来标定数据透明度的暗度变量。 多年来,许多公司致力于地学可视化应用软件的开发,取得了可喜的成果。在3D图形工作站环境支持下,各种基于数据体操作、图素提取与曲面造型、体绘制技术的应用软件相继出现,它们基本上代表了当今综合解释工作站3D可视化软件功能的发展水平(见表1)。 表1有代表性的可视化解释处理软件 公司软件 Landmark 3DVI(3D体积解释) Voxcube(3D立体动画) Geoquest GeoViz(交互3D解释) Paradigm Voxel Geo(真3D地震解释系统) DGI Earth Vision (基于3D空间地质建模) Photo3DViz(3D体可视化) 体可视化允许解释人员直接进行地层解释,识别地震相,改进油藏特征描述。它通过数据的3D 立体显示,使解释人员能够作构造、断层、地层沉积、岩性、储集参数和油气等的交互解释。解释结果在三度空间内立体显示,可以激发资料处理解释人员的科学灵感,赋予他们无限的想像空间与创造力,极大地提高了工作效率和工作质量。 1.2虚拟现实技术 虚拟现实(Virtual Reality,简写为VR)是一种 收稿日期:2001-12-31 作者简介:杨勤勇(1964-),高级工程师,1985年毕业于中国地质大学物探系,现从事情报研究。

浅谈页岩气地震勘探技术_王万合

科技·探索·争鸣 科技视界 Science &Technology Vision Science &Technology Vision 科技视界0序言 页岩气是指以吸附、游离或溶解状态赋存于泥页岩中的天然气,其特点是页岩既是源岩,又是储层和封盖层。在埋藏温度升高或有细菌侵入时,泥页岩中的有机质,甚至包括已生成的液态烃,就裂解或降解成气态烃,游离于基质孔隙和裂缝中,或吸附于有机质和黏土矿物表面,在一定地质条件下就近聚集,形成页岩气藏[1]。页岩气作为一种非常规天然气资源,已经越来越得到各国的重视。 1地震勘探技术 目前,国内已陆续开展了部分地区的页岩气地震勘探试验,如对施工观测系统选择的试验等,获得了一些原始地震数据以及时间剖面,根据剖面相位、波组特征分析,取得了一些有价值的结论。就页岩气地震勘探而言,若想解决好反射波(组)与页岩层段之间的相互关系,并为井位布设和后期进一步的勘探开发提供科学依据,笔者认为应从以下几个方面的进行研究。1.1构造情况 对于页岩,其本身即是生气场所也是重要的盖层,在构造转折带、地应力相对集中带以及褶皱-断裂发育带,通常是页岩气富集的重要场所。在这些地区,裂缝发育程度较高,能够为页岩气提供大量的储集空间。成藏之后发生的构造运动也能诱发页岩裂缝的发育,也有利于页岩气的富集,但这可能会破坏页岩本身作为盖层的部分[2],若是通过运移机制进入页岩外部的储集层,则外部储集层构造特征的研究也十分重要。地震勘探技术以物性差异(波阻抗差异)为基础,是一种探测构造最有效、经济的地球物理方法。因此,通过地震勘探技术探明勘探区内的构造情况,再根据页岩气的沉积储层预测,可有效获得区内页岩气有利区。1.2储层标定 储层的标定是确定页岩层段的主要手段,但前提是勘探区内必须有已知的页岩气勘探孔,通过钻井揭露的页岩层段情况,结合地震反射波组特征,对地质主要层位进行标定,从而获得区内不同时代地层反射波(组)特征,根据该特征可实现对全区页岩层段的波组追踪,从而为后期确定储层的厚度、埋深及属性提取研究提供了坚实的基础。1.3厚度预测 厚度预测是页岩气勘探孔位选定及页岩气储量预测的基础,同时,更要注重优质页岩的厚度预测,因为优质页岩是页岩气赋存的主要载体,优质页岩与普通泥页岩的差别主要表现在自然伽马曲线上,虽然优质页岩速度并不一定比普通页岩层低,但是它的自然伽马数值要比普通泥页岩高,利用此特征,通过拟声波曲线重构,重构的曲线具有低频声波及高频自然伽马信息,它能够对优质页岩层进行很好的预测[3]。 1.4埋深计算 根据合成记录结果确定的目标层位,对地震数据进行连续追踪,获得页岩气储层的全区时间场,利用钻孔反算的速度及叠加速度值,可获得区内近似的平均速度场,通过网格化数据,利用时深转换公式:储层埋深=时深转换深度-(基准面-地震测量高程),可获得区内储层埋深等值线,为钻孔的布设及后期勘探、开发提供科学依据。1.5地震多属性提取技术研究 地震数据体中含有丰富的地质信息,如果有效提取、优选敏感信息对页岩气藏进行预测,是页岩气地震勘探成功的关键一环,页岩的孔隙度、泊松比等在常规地震时间剖面上可能无法反映,但通过地震波属性提取,建立页岩的孔隙度等与地震属性的相互关系,提取相关信息,可较好的解决页岩气的丰度等重要信息,以往多事利用某一相对敏感性属性信息进行解释,现如今已是结合了地质模型正演、地质统计学、函数逼近、神经网络、统计模式识别、模糊模式识别等数学方法综合预测,为提高储层预测的可靠性提供了更多的途径。1.6“甜点”预测 页岩气地震勘探的主要目的就是寻找页岩气勘探开发的有利区域———“甜点”,为井位部署和开发方案的制订提供科学依据,通过区域内构造的分布情况、页岩气储层的厚度及埋深、多属性优选、分析和提取技术,按照埋深介于1000~3000m 范围、构造相对简单、优质页岩厚度大于30m 的原则,最终可获得“甜点”的分布规律,为目标区块井位的部署及开展其它相关工作提供了较为全面、详实的数据[3]。 2结论 页岩气作为一种非常规能源,是一种近源岩、“自生自储自盖型”油气藏,其成气、运移和储集过程复杂,成藏模式多样化。 地震勘探因其高效、经济,是常规能源勘探的重要手段,通过对地震波场的进一步的认识,建立地震波场与页岩气藏之间的相互关系,也必将在页岩气勘探领域内大显身手。 通过地震勘探在页岩区域内构造、储层的厚度及埋深、敏感属性与页岩气的相关性等研究,可获得较为可靠的页岩气“甜点”区,为下一步页岩气的钻井布设、勘探、开发提供科学依据。【参考文献】 [1]郭思刚,梁国伟.大方地区页岩气采集参数试验分析[J].油气藏评价与开发, 2011,1(5):71-75. [2]邢恩袁,庞雄奇,欧阳学成,等.浅析页岩气成藏模式[C]//第五届油气成藏机理与油气资源评价国际学术研讨会论文集.2009:914-919. [3]李志荣,邓小江,杨晓,等.四川盆地南部页岩气地震勘探新进展[J].天然气工业,2011,31(4):40-43. [责任编辑:庞修平] S ※基金项目:中煤科工集团青年科技创新基金项目(2013XAYFX004)。 作者简介:王万合(1981—),男,汉族,安徽蒙城人,2007年毕业于中国地质大学〈武汉〉地球探测与信息技术专业,硕士,中煤科工集团西安研究院有限公司,工程师,从事煤田地质勘探、非常规气藏勘探研究及城市活断层探测工作。 浅谈页岩气地震勘探技术 王万合 (中煤科工集团西安研究院有限公司,陕西西安710077) 【摘要】本文讲述了对页岩气的基本认识,提出了页岩气地震勘探勘探应着重解决的几个方面,即寻找页岩区构造,储层标定,页岩的厚度预测和埋深计算,并对页岩气敏感属性进行优选、分析和提取,获得页岩气藏与地震数据体间的相互关系,从而实现对页岩气“甜点”的预测。 【关键词】页岩气;地震勘探;甜点 A Brief Talk about the Technology of Seismic Exploration on Shale Gas WANG Wan-he (Xi ’an Research Institute,China Coal Technology and Engineering Group Corp.,Xi ’an Shaanxi 710077,China ) 【Abstract 】This article tells us basic understanding about shale gas ,and proposes us several aspects should be focused on about the technology of seismic exploration in shale gas,that is structure for shale area,reservoir calibration,the thickness forecast and depth calculation,optimalizes,analyses,and extracts sensitive properties about shale gas.Then obtains the relationship between seismic data volume and shale gas reservoirs,So as to achieve the prediction of “The dessert ”on shale gas. 【Key words 】Shale gas;Seismic exploration;The dessert 项目与课题 58

地震解释技术现状及发展趋势

第21卷 第2期地 球 物 理 学 进 展V ol.21 N o.22006年6月(页码:578~587) P ROG RESS IN G EOP HY SICS June. 2006 地震解释技术现状及发展趋势 张进铎 (东方地球物理公司研究院,涿州072751) 摘 要 本文以我国塔里木油田石油地球物理勘探实例为基础,概述了石油勘探过程中地震解释技术类型、特征、现状和发展趋势.本文认为,在地震勘探技术飞速发展的今天,地球物理学家及地质学家希望获得的地震信息,应当是能够直接反应地下岩石物理特性或油气水的分布,而利用常规的地震解释技术是很难做到这些;随着石油勘探的进一步深化,一些新的地震解释技术涌现出来,并在油气勘探与开发过程中发挥着巨大作用.未来的石油勘探将会面临前所未有的困难,新情况、新问题将层出不穷,地震解释技术也同样面临着考验,因此,只有立足在现有的成熟解释技术之上,并不断探索新的技术与思路,才能与未来的石油勘探步伐相一致. 关键词 塔里木盆地,地震相干技术,地震相分析技术,波阻抗反演技术,三维可视化技术中图分类号 P631 文献标识码 A 文章编号 1004-2903(2006)02-0578-10 Present status and future trend of seismic data interpretation techniques ZH ANG Jin -duo (Geoph ysical R esearc h Institute ,BGP ,CN PC,Zh uoz hou 072751,China) Abstract Dur ing the o il and gas explorat ion techniques develo ping ,g eophysicists and g eolo gists ho pe to use the seis -mic data to recog nize the ro ck features and o il and water dist ributions,it is difficult to do these by using the o rdinary seism ic data inter pr etatio n techniques.A few new techniques have been used with the oil and gas ex plor ation dev elop -ments,and t hese techniques have a lot of adv ant ages in practical a pplies.O il and g as ex plo ratio n w ill be faced w ith many difficulties in t he future,new co nditions and new pr oblems w ill be generated,the seismic dat a interpretation techniques w ill be also faced w ith new tests,so,w e must use mature techniques now ,and at the same time,dev elo ping new techniques and methods to match the steps in the future o il and gas ex plor ation. Keywords T ar im basin,seismic co her ent technique,seismic face technique,seismic inv ersion t echnique,3D v isualiza -t ion technique 收稿日期 2005-04-10; 修回日期 2005-08-20. 作者简介 张进铎(1966-),男,河北徐水人,硕士学位,高级工程师,从事三维地震解释与地震解释新技术应用工作.地址:河北省涿州市 贾秀路东方地球物理公司研究院总工办.(E -mail:peter_zhang@https://www.360docs.net/doc/8f13730465.html,) 0 引 言 近年来,随着科学技术的迅速发展,在石油、天然气勘探领域中,地震资料解释和地质综合研究技 术有了飞速发展,新技术新方法层出不穷,以地震相干解释技术[1~5]、地震相分析技术[6~8]、波阻抗反演 技术[9,10]、三维可视化解释技术[11] 等为代表的一系 列新的地震解释技术[12] 在实际工作中得到了全面推广应用和发展. 现今的地震资料解释已不仅仅满足于常规的构造解释,它更倾向于以地震信息为主,借助先进的解 释技术,开展储层特征综合分析、油气藏分布规律等 更深层次的研究. 1 目前主要地震解释技术类型和现状 1.1 地震相干解释技术 地震相干解释技术[13]就是利用地震波形相干原理,计算中心地震道和指定相邻道的相干系数,将普通地震资料转换成相干系数资料,以突出地震资料中的异常现象. 该技术能快速建立起断裂系统、特殊岩性体的空间展布形态,指导岩性体和断层的剖面解释及平

微地震监测技术(公开)

微地震监测技术
北京阳光杰科科技有限公司 2012年6月
GNT International Inc.

内容提要
? 微地震技术三种数据采集方法 ? 微地震数据处理 ? 微地震解释与应用 ? 微地震应用实例
GNT International Inc.
https://www.360docs.net/doc/8f13730465.html,

微地震监测技术
微地震监测技术是采集地下岩石破裂所产生的地震波,通过处理、解释以 了解地下岩石破裂的位置、破裂程度、破裂的几何形态等的技术;可用于 石油工业的压裂监测,以及矿山、大坝、地下结构等的长期监测
GNT International Inc.
https://www.360docs.net/doc/8f13730465.html,

微地震监测的三种探测方法 微地震技术三种数据拾取方法
井下 地表 埋置
井下探测区域 地表系统探测区域
井下系统探测装置 系统设计 (平坦地形 ) 系统设计 (多山地形 )
预警系统监测区域
? 地震检波器串 ?径向排列系统, 8-16 臂, 1000 道 ?井筒中储层段放置10-50 个3-C 地震检波器 ?采取初至处理 ?监测井距压裂井距小于200米 ?可用于观测多井压裂 ?用于标定地表系统 ?灵活和快速的探测
大面积油藏监测系统
?埋于100-300英尺(约30-90米) 的3-C 检波器 ?每个排列配备80 – 100个检波器
?由客户数据建立速度模型 ?标定速度模型 ?事件可能发生区域的数据叠加 ?在叠加数据中搜寻裂缝事件 ?按时间和空间输出事件位置
?大面积覆盖 ?长期监测的最佳商业和技术选择
预备埋入的3C地震检波器
3C 井下地震检波器
准备井下系统
用于调配的四轮摩托 为直升机调 配准备的地 震检波器和 电缆
录音舱
直升机调配
用于系统 部署的直 升机
进行中的浅孔钻探
埋入式3C地震检波器站
埋入式 3C 地震检波器站
在靠近作业井较近距离内,井下监测具有较高的精度
用于短期微地震震监测的灵活技术
用于长期和大范围监测的最具经济有效的方法
GNT International Inc.
https://www.360docs.net/doc/8f13730465.html,

微地震监测技术及应用

微地震监测技术及应用 摘要微地震监测工艺包括近震研究的定位与地壳构架成像,微地震监测各类定位手段需创建不同目标函数,地震定位情况的实质为求得目标函数的极小值。NA拥有不依靠于模型初始值选用,不会收敛与部分极小值,比以往线性近似手段有更大的精度与稳定性。经过地震信息的震相研究,走时拾取反演能够得到地震干扰区的地震波速度系统,当前已推行使用在石油、气田勘察开发和页岩开发领域;矿山开挖中矿震、岩爆,煤和瓦斯突出,承压水突水检测;水利项目施工坝址、边坡可靠性以及天然滑坡检测等诸多方面。 关键词微地震;监测方法;运用;研究 1 微地震具体定位手段 微震监测方法是在地震监测方法的前提下发展起来的,其在原理上和地震监测、声发射监测方法一样,是依靠岩体受力损坏阶段破裂的声、能原理。 近震3D空间微地震定位忽视深度后能视为平面微地震定位情况,使用三点定位几何手段,在已知三个测量点坐标与地层介质传递速度基础上,经过三点到时就能够明确震源部位[1]。O0是坐标原点,以R,R+ΔR1,R+ΔR2分别是半径作圆,三圆交点就是震源,如图1所示。 天然微地震出现频率相对偏低,地震震相容易区别,常体现出单事件特点。精确的定位手段均是创建在3D空间前提下,常见的微地震震源定位基本手段包括Geiger法、网格检索手段等线性优化途径;还有遗传算法、模拟退火以及邻近算法等非线性优化手段[2]。 2 微地震监测运用 2.1 矿山安全开挖微地震监测 伴随开挖深度增大,地压、瓦斯以及地下承压水等安全情况突出,微地震监测技术起到关键的作用。冲击地压属于矿山内损坏行最大的地压问题,出现时大小不同的煤块以较大的速度飞向巷道,对矿山设备以及人员生命的威胁较大,因此对其研究具有重要作用[3]。统计结构显示,大概50%的矿震是因为沙砾岩等重点层损害造成的,僅有少数矿震造成了冲击地压情况,表示矿震和冲击地压的差异。冲击地压与地震一样均是和地球中物理损坏相关联的岩体可靠性现象,其出现时均表现为较短时间内散发大量的应变能。 使用弹性波和岩体破裂的相关观念和技术,探究地下采空区不明水体的蓄积与成灾过程,研究显示,在突水问题前存在明确的弹性波波束比低值异常、振幅比高值异常、振动主频低值异常、波形变异和隔水岩墙破裂出现前的微震频度异常。

相关文档
最新文档