控制系统的校正

控制系统的校正
控制系统的校正

基于MATLAB 控制系统的校正设计

1实验目的

① 掌握串联校正环节对系统稳定性的影响。

② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设计。 2 设计任务

串联校正是指校正元件与系统的原来部分串联,如图1所示。

图1串联校正图

图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts +=>+,为串联超前校正;当()()111o aTs G s a Ts

+=<+,为串联迟后校正。

我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。

(1)打开 SISO 系统设计工具

在 MATLAB 命令窗口中输入 sisotool 命令, 可以打开一个空的 SISO Design Tool , 也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 所示。

图2 SISO系统的图形设计环境

(2)将模型载入 SISO设计工具

通过file/import命令,可以将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。

图3 Import System Data对话框

(3)当前的补偿器(Current Compensator)

图2中当前的补偿器(Current Compensator)一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和Bode图中添加零极点或移动曲线,该栏将自动显示补偿器结构。(4)反馈结构

SISO Design Tool 在缺省条件下将补偿器放在系统的前向通道中,用户可以通过“+/-”按钮选择正负反馈,通过“FS”按钮在如下图4几种结构之间进行切换。

图 4 SISO Design Tool 中的反馈控制结构

例1 图1所示的控制系统,原开环传递函数为

()()()

20.110.31o G s s s s =++ 用SISO 系统设计工具 (SISO Design Tool )设计超前校正环节,使其校正后系统的静态速度误差系数6v K ≤,相角裕度为45°,并绘制校正前后的Bode 图,并计算校正前后的相角裕度。

⑴ 将模型载入 SISO 设计工具

在 MATLAB 命令窗口先定义好模型()()()

20.110.31o G s s s s =

++,用MATLAB 编程如下:

num=2;

den=conv([0.1,1,0],[0.3,1]);

G=tf(num,den) 运行得到结果如下:

Transfer function:

2

----------------------

0.03 s^3 + 0.4 s^2 + s

输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,通过 file/import 令,可以将模型 G 载入SISO 设计工具中,如图5所示。

图5 改变增益后的系统

(2)调整增益

根据要求系统的静态速度误差系数6v K ≤,补偿器的增益应为 3,将图 5 中的C(s)=1 改为 3,如图5所示。从图中 Bode 相频图左下角可以看出相位裕度21.2γ?=,不满足要求。

(3)加入超前校正网络

在开环 Bode 图中点击鼠标右键,选择“Add Pole/Zero ”下的“Lead ”菜单,该命令将在控制器中添加一个超前校正网络。这时鼠标的光标将变成“X ”形状,将鼠标移到 Bode 图幅频曲线上接近最右端极点的位置按下鼠标,得到如图6所示的系统。

图 6 增加超前网络后的系统

从图中 Bode 相频图左下角可以看出相位裕度28.4γ?=,仍不满足要求,需进一步调整超前环节的参数。

(4)调整超前网络的零极点

将超前网络的零点移动到靠近原来最左边的极点位置,接下来将超前网络的极点向右移动,并注意移动过程中相角裕度的增长,一直到相角裕度达到45°,此时超前网络满足设计要求。如图7所示。

图 7 最后满足要求的系统

从图中可以看出来,超前网络的传递函数为()310.2610.054s s

++,最后系统的6v K =,46γ=?。

例2 图 1 所示的控制系统,原开环传递函数为

()()

0.21o k G s s s =+ 试用 SISO 系统设计工具(SISO Design Tool )设计超前校正环节,使其校正后系统的静态速度误差系数100v K ≤,相角裕度为30°,并绘制校正前后的 Bode 图,并计算校正前后的相角裕度。

例 3 使用 SISO Design Tool 设计直流电机调速系统。典型电机结构示意图如图8所示,控制系统的输入变量为输入电压()a U t ,系统输出是电机负载条件下的转动角速度()t ω。现设计补偿器的目的是通过对系统输入一定的电压,使电机带动负载以期望的角速度转动,并要求系统具有一定的稳定裕度。

图 8 直流电动机调速系统

直流电机动态模型本质上可以视为典型二阶系统,设某直流电机的传递函数为

()2 1.51440.02

G s s s =++ 系统的设计指标为:上升时间r t ﹤0.5s ,稳态误差ss e ﹤5%,最大超调量%10%p M <,幅值裕度20g L dB >,相角裕度40γ>?。

系统设计步骤:

(1) 调整补偿器的增益

如果对该系统进行时域仿真,可发现其阶跃响应时间很大,提高系统响应速度的最简单方法就是增加补偿器增益的大小。在 SISO 的设计工具中可以很方便的实现补偿器增益的调节:鼠标移动到 Bode 幅值线上,按下鼠标左键抓取 Bode 幅值线,向上拖动,释放鼠标,系统自动计算改变的系统增益和极点。

既然系统要求上升时间r t ﹤0.5s ,应调整系统增益,使得系统的穿越频率c ω位于3rad /s 附近。这是因为 3rad/s 的频率位置近似对应于 0.33s 的上升时间。 为了更清楚的查找系统的穿越频率,点击鼠标右键,在快捷菜单中选择“Grid ”命令,将在 Bode 图中绘制网格线。

观察系统的阶跃响应,可以看到系统的稳态误差和上升时间已得到改善,但要满足所有的设计指标,还应加入更复杂的控制器。

(2) 加入积分器

点击鼠标右键,在弹出的快捷菜单中选择“Add Pole/Zero ”下的“Integrator ”菜单,这时系统将加入一个积分器,系统的穿越频率随之改变,应调整补偿器的增益将穿越频率调整回 3rad/s 的位置。

(3) 加入超前校正网络

为了添加一个超前校正网络,在开环 Bode 图中点击鼠标右键,选择“Add Pole/Zero ”下的“Lead ” 菜单,该命令将在控制器中添加一个超前校正网络。这时鼠标的光标将变成“X ”形状,将鼠标移到 Bode 图幅频曲线上接近最右端极点的位置按下鼠标。

从 Bode 图中可以看出幅值裕度还没有达到要求,还需进一步调整超前环节的参数。

(4)移动补偿器的零极点

为了提高系统的响应速度,将超前网络的零点移动到靠近电机原来最左边的极点位置,接下来将超前网络的极点向右移动,并注意移动过程中幅值裕度的增长。

也可以通过调节增益来增加系统的幅值裕度。

试按照上述方法调整超前网络参数和增益,最终满足设计的要求。

3 实验步骤及结果

上述例2中,试用 SISO 系统设计工具(SISO Design Tool )设计超前校正环节,使其校正后系统的静态速度误差系数100v K ≤,相角裕度为30°,并绘制校正前后的 Bode 图,并计算校正前后的相角裕度。

(1) 将模型载入 SISO 设计工具

在 MATLAB 命令窗口先定义好模型()()

0.21o k G s s s =

+ MATLAB 程序如下:

num=1;

den=conv([1,0],[0.2,1]);

G=tf(num,den) 输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,通过 file/import 命令,可以将模型 G 载入SISO 设计工具中,如图9所示:

图9 增益为1时SISO 系统

(2) 调整增益

根据要求系统的静态速度误差系数100v K ≤,补偿器的增益应为 100,将上图中的 C(s)=1 改为 100,如图10所示。从图中 Bode 相频图左下角可以看出相位裕度γ= 12.8°,不满足要求。

图10 增益为100的系统

(3)加入超前校正网络

在开环 Bode图中点击鼠标右键,选择“Add Pole/Zero”下的“Lead”菜单,该命令将在控制器中添加一个超前校正网络。这时鼠标的光标将变成“X”形状,将鼠标移到 Bode 图幅频曲线上接近最右端极点的位置按下鼠标,得到如下图11所示的系统:

图11 调节至相位裕度γ=12.9°的系统

从图中 Bode 相频图左下角可以看出相位裕度γ=12.9°,仍不满足要求,需进

一步调整超前环节的参数。

(4) 调整超前网络的零极点

超前网络的零点移动到靠近原来最左边的极点位置,接下来将超前网络的极点向右移动,并注意移动过程中相角裕度的增长,一直到相角裕度达到30°,此时超前网络满足设计要求,如图12所示。

图12相角裕度达到30°的系统

从图中可以看出来,超前网络的传递函数为()10010.2110.033s s

++,最后系统的100v K =,γ=30°。

3使用 SISO Design Tool 设计直流电机调速系统。

直流电机动态模型本质上可以视为典型二阶系统,设某直流电机的传递函数为

()2 1.51440.02

G s s s =++

系统的设计指标为:上升时间r t ﹤0.5s ,稳态误差ss e ﹤5%,最大超调量%10%p M <,幅值裕度20g L dB >,相角裕度40γ>?。

(1) 将模型载入 SISO 设计工具

在 MATLAB 命令窗口先定义好模型()2 1.51440.02

G s s s =

++ 编MATLAB 程序如下:

num=1.5;

den=[1 14 40.02];

G=tf(num,den)

输入sisotool命令,通过 file/import 命令,将模型G载入SISO工具中,如图13所示:

⑵调整补偿器的增益

鼠标移动到 Bode 幅值线上,按下鼠标左键抓取Bode 幅值线,向上拖动,释放

t﹤0.5s,鼠标,系统自动计算改变的系统增益和极点。既然系统要求上升时间

r

,位于3rad/s附近。这是因为3rad/s 应调整系统增益,使得系统的穿越频率

c

的频率位置近似对应于0.33s的上升时间。此时,系统增益为 34.8,如下图14所示。

观察系统的阶跃响应,可以看到系统的稳态误差和上升时间已得到改善,但要满足所有的设计指标,还应加入更复杂的控制器。

图14 增益为34.8时的系统

⑶加入积分器

点击鼠标右键,在弹出的快捷菜单中选择“Add Pole/Zero”下的“Integrator”菜单,系统加入一个积分器,系统的穿越频率随之改变,应调整补偿器的增益将穿越频率调整回3rad/s的位置,此时系统增益为108,如图15所示:

图15 加入积分器时的系统

⑷加入超前校正网络

在开环 Bode图中点击鼠标右键,选择“Add Pole/Zero”下的“Lead”菜单,该命令将在控制器中添加一个超前校正网络。这时鼠标的光标将变成“X”形状,将鼠标移到 Bode 图幅频曲线上接近最右端极点的位置按下鼠标。如图16所示:

图16 加入超前校正网格时的系统

从Bode图中可以看出幅值裕度还没有达到要求,还需进一步调整超前环节的参数。

⑸移动补偿器的零极点

为了提高系统的响应速度,将超前网络的零点移动到靠近电机原来最左边的极点位置,接下来将超前网络的极点向右移动,并注意移动过程中幅值裕度的增长。如图17所示:

图17移动补偿器的零极点时的系统

从图中可以看出,此时幅值裕度20.4g L dB =,相角裕度γ=65.4°,满足要求, 穿越频率c ω=3.99rad/s, 位于3rad/s 附近,观察其阶跃响应,可以看到系统的稳态误差和超调量均满足要求,此时补偿器的传递函数为

()108(10.28)(10.028)

s C s s s +=+

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

纠偏说明书

K50纠偏控制系统

(请务必在使用之前阅读) 为了安全使用本产品 ▲在安装和使用之前,请务必详细阅读本说 明书,一定要注意安全,正确使用本产品, 并遵守本说明书中的各种规定。 ▲本纠偏控制器是采用CPU 控制的机电设备, 用来纠正卷材的偏移,所以要严格遵守机电 设备有关规定和法则,适用标准,进行搬 运、安装操作和维护。 在打开控制器准备安装和接线之前要断开控制器电源至少要5分钟。正确的配置和安装是控制器正常运行的前提。 对以下几点要特别注意: ● 安装工作必须在无电状态下进行。 ●容许保护等级:保护接地,只有正确连接保护接地,才能减少外界电磁干扰。●与电网断开后,要等电容放电完毕,才可进行操作。●不要让任何异物进入控制器内。 ●在使用前,要除去所有覆盖物,以防止控制器过热。●切勿在易燃易爆等危险环境中使用。 ●请勿将本产品安装在高温、潮湿等恶劣环境下。● 请勿将产品直接安装在易受震动冲击的环境中。 ● 任何单位部门(Kortis 和Kortis 指定公司除外)未经允许不得擅自拆卸、修理及更改产品。※注意:Kortis对由于不遵守本说明或适用规则而造成的损坏概不负责。 ※注意:因产品更新换代迅速,说明书有变动之处,恕不另行通知,本公司对此保留最终解释权。 危险 如果错误操作,将会产生危险情况,导致伤亡。 注意 如果错误操作,将会产生危险情况,造成设备损坏及财产损失。 设计注意事项

目 录 1.1 概述 1.2 功能及特点1.3 操作界面 第一章 系统概述 112 第二章 安装与配线 2.1 控制器安装 2.2 超声波传感器安装2.3 控制器基本配线 34第三章 编程方法 3.1 控制器菜单画面3.2 编程方法 3.3 画面说明及参数设置 678 第四章 调试运行 4.1 调试步骤 4.2 控制器内部菜单4.3 调试方法 9915 5.1 技术参数5.2 环境规格5.3 外形尺寸161617第五章 规格及维护 5.4 系统维护 19 5

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计 设计题目:基于Matlab的自动控制系统设计与校正

目录 目录 第一章课程设计内容与要求分析 (1) 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (3) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (10) 3.2.1原系统单位阶跃响应 (10) 3.2.2校正后系统单位阶跃响应 (11) 3.2.3校正前、后系统单位阶跃响应比较 (12) 3.4硬件设计 (13) 3.4.1在计算机上运行出硬件仿真波形图 (14) 课程设计心得体会 (16) 参考文献 (18)

第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 132R R R K c += ,1 )(13243 2>++=αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放 大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1)引入该校正装置后,单位斜坡输入信号作用时稳态误差1.0)(≤∞e ,开环截止频率ωc’≥4.4弧度/秒,相位裕量γ’≥45°; 2)根据性能指标要求,确定串联超前校正装置传递函数; 3)利用对数坐标纸手工绘制校正前、后及校正装置对数频率特性曲线; c R R

第6章控制系统的设计与校正参考答案.doc

习题六 1. 在题图6.1(a )(b)中,实线分别为两个最小相位系统的开环对数幅频特性曲线,图中虚线部分表示采用串联校正后系统的开环对数幅频特性曲线改变后的部分,试问: 1)串联校正有哪几种形式: 2)试指出图(a )、(b)分别采取了什么串联校正方法? 3)图(a )、(b)所采取的校正方法分别改善了系统的什么性能? L (ωL (ω 题图6.1 习题1图 答案:1)、相位超前校正、相位滞后校正、相位-超前校正 2)、图(a)串联相位滞后校正,图(b)串联相位超前校正。 3)、相位滞后校正提高了低频段的增益,可减少系统的误差。相位超前校正改善了系统的稳定性,使剪切频率变大,提高系统的快速性。 2. 单位反馈系统的开环对数幅频特性曲线)(0ωL 如题图6.2所示,采用串联校正,校正装置 的传递函数)1100 )(13.0() 110)(13()(++++=s s s s s G c 题图6.2 习题2图 (1)写出校正前系统的传递函数)(0s G ; (2)在图中绘制校正后系统的对数幅频特性曲线)(ωL ; (3)求校正后系统的截止频率c ω和γ。 解:(1))1100 )(110(100 )0++=s s s s G (2)20)1100 )(13.0() 13(100))()(+++==s s s s s G s G s G c ,)(ωL 曲线见答案图。

(3)10=c ω,?=?--?-+?=6.63100 10arctan 23.010arctan 90310arctan 180γ 题2解图 3. 已知最小相位系统的开环对数幅频特性)(0ωL 和串联校正装置的对数幅频特性)(ωc L 如题图6.3所示。 (1)写出原系统的开环传递函数)(0s G ,并求其相角裕度; (2)写出校正装置的传递函数)(s G c ; (3)画出校正后系统的开环对数幅频特性曲线)(ωL ,并求其相角裕度。 1 题图6.3 习题3图 解:(1))105.0)(1.0(100 )(0+= s s s s G ?-=4.33γ (2)1 1001 125.3)(++=s s s G c (3)) 1100)(105.0)(11.0() 1125.3(100)()()(0++++==s s s s s s G s G s G c 125.3=c ω ?=9.57γ

美塞斯纠偏系统

美塞斯(MC05)国际集团Fife 纠偏系统产品系列 卷材纠偏控制器 FIFE卷材(MC05)纠偏控制器功能强大,安装简单,操作方便,具有极高的动态响应水平以提高纠偏精确度并减少浪费。 D-MAX系列卷材纠偏系统 1.一个由功能弱碱、模块化的组件构成的完整系统,用以提高效率和卷装质量。 2.模块化设计理念,可以作为预接线控制器系统或者多功能组件中的独立功能模块使用。 3.控制器外观朴实,能够提供最高水平的纠偏精确,选用功能强大,例如调整联网和远程系统监控功能。 4.图形化的操作界面,简易明懂的操作语言,可以使您的安装和操作变得简单。 Polaris卷材纠偏控制器 1.精密的卷材纠偏控制器,安装和操作都很简单。 2. 5.67"×5.67"×4.06"(144mm×144mm×103mm)的小巧箱体,容易嵌入机器的控制板中。 3.直观而友好的操作界面能减少两批产品转换中的停工时间。

4.高动态响应性能,确保恒定、优质的卷装。 CDP-01纠偏卷材控制器 1.具有高品质的动态响应性能,能够驱动单个、两个或者三个纠偏器同时使用。 2.内置信号放大器,专门用于红外感应器在检测透明卷材时将信号放大,提高检测精确。 3.不需要PLC也可以同时控制多达3套纠偏系统。 网络通讯 可选的串行总线通讯协议转换器,使您可以通过现有的ContrklNet,DeviceNet,InterBus,Profi-Bus,ModBus/TCP ErtherNet,或EtherNet IP获得纠偏数据。 动力装置 不管您选用什么样的控制系统,FIFE动力装置都肯有足够的灵活性来满足任何卷材和载荷方面的要求。 1.适合于承受较大载荷的放卷?收卷电气液压式或气动液压式纠偏系统。

带钢纠偏控制系统设计

目录 摘要 (4) Abstract .................................................................................................. 错误!未定义书签。引言 . (5) 1 电液伺服控制系统 (7) 1.1电液控制系统的发展历史概述 (7) 1.2电液伺服控制系统的特点和构成 (8) 1.3电液伺服控制系统的发展趋势 (8) 2 带钢纠偏控制系统设计 (9) 2.1带钢纠偏控制系统原理 (9) 2.1.1课题背景 (9) 2.1.2带钢纠偏控制系统简介 (9) 2.1.3带钢纠偏控制系统工作原理 (9) 2.2带钢纠偏控制系统设计 (10) 2.2.1控制系统参数及基本要求 (10) 2.2.2控制系统设计方案 (11) 2.2.3纠偏液压站原理图设计 (12) 2.3带钢纠偏控制系统元件设计选型 (14) 2.3.1光电传感器设计 (14) 2.3.2电液伺服阀设计选型 (19) 2.3.3液压缸设计选型 (21) 2.3.4系统其他元件设计选型 (22) 3 带钢纠偏控制系统建模及仿真 (23) 3.1带钢纠偏控制系统模型建立 (23) 3.1.1伺服阀传递函数 (23)

3.1.2卷取机传递函数 (24) 3.1.3其他元件传递函数 (24) 3.2带钢纠偏控制系统仿真 (25) 3.2.1系统调节品质分析 (25) 3.2.2系统的闭换阶跃响应 (28) 3.3常规PID控制器 (29) 3.3.1 PID控制算法简介 (30) 3.3.2常规PID仿真及结果分析 (34) 4 智能PI控制器的设计及仿真 (36) 4.1智能PI控制器设计原理 (36) 4.2智能PI控制器仿真及结果分析 (39) 4.2.1智能PI控制器仿真 (39) 4.2.2结果分析 (40) 5智能PI控制器的全数字实现 (43) 5.1计算机控制系统简介 (43) 5.1.1计算机控制系统概述 (43) 5.1.2计算机控制系统的组成 (43) 5.1.3 计算机控制系统的结构 (44) 5.2 最小应用系统的设计 (45) 5.3 系统的软件设计 (46) 5.3.1主程序设计 (46) 5.3.2 8279键盘中断程序 (49) 5.3.3 8279显示子程序 (52) 5.3.4 中断服务程序 (54) 结论 (64)

第六章 控制系统的校正与设计 习题

第六章控制系统的校正与设计 6-1 试对以下特性的一阶网络,确定其电路结构、电阻和电容值、放大器的增益和复平面图: a)ω=4 rad/sec时相位超前60°,最小输入阻抗50000Ω和直流衰减为10db。 b)ω=4时相位之后60°,最小输入阻抗50000Ω和高频衰减-10db。 c)频率范围ω=1至ω=10rad/sec内,滞后-超前网络具有衰减10db和输入阻抗50000Ω。 在以上所有情况,电阻最大值接近1MΩ,电容约10μF。而且假设网络负载阻抗实质上是无穷大。 6-2 习题6-2图所示包含局部速度反馈回路的单位反馈系统。 a)当不存在速度反馈(b=0)时,试确定单位跃阶输入下系统的阻尼系数、自然频率、最大超调量以及由单位斜坡输入下所引起的稳态误差。 b)试决定当系统等效阻尼系数增加至0.8时的速度反馈常数b。 c)按速度反馈和0.8的阻尼系数,确定单位阶跃输入下系统的最大超调量和单位斜坡输入下引起的稳态误差。 d)试说明斜坡输入下具有速度反馈和不具有速度反馈,但阻尼系数仍为0.8的两系数,怎样使它们的稳态误差相同。 习题6-2图 6-3 如若系统的前向传递函数为20/s(1+s),重做习题6-2. 6-4 习题6-4图所示为一个摇摆控制系统的方块图。它可以提供足够的抗扰动力矩的动特性,以限制导弹摇摆偏移速度[12].扰动力矩由倾斜角的变化和操纵控制偏差产生。决定摇摆控制系统特性的主要限制是副翼的伺服响应。 a)试确定习题6-4图所示系统的传递函数C(s)/R(s) b)设若由共轭主导极点支配瞬态响应,为满足系统的等效阻尼系数接近于0.5,和等效自然频率近于4rad/sec,试说明对副翼的伺服响应参数的要求。

纠偏原理及其应用

纠偏院里的分析与应用 1带钢连续处理过程的跑偏分析 工程设计和应用中,无论带钢形状的板形缺陷、塔形卷曲、处理线设备安装偏差及调整不当、处理工艺对带钢的影响等都会导致运动的带钢在生产线上发生偏移[2]。 各种形式的板形缺陷主要有:带钢断面形状、平坦度、带头焊接没对齐或偏斜。当带钢在运动过程中,它的形状并不能得到纠正。依照拱形的大小,会产生相应大小的跑偏。 设备精度包括转向辊、张力辊及活套车等安装精度、夹送辊压力不均、各种辊子辊面不均匀磨损等因素均会造成带钢横向跑偏。 根据带钢的运行行为,辊子上的带钢总是趋向于以90 o 的夹角垂直辊子轴线方向运行。事实上,辊子轴线不平行,甚至带钢拱形都会导致带钢进人辊子的角度偏离90 o 。偏离的大小,记为跑偏角。那么,跑偏理论计算公式为: F = K·L·tanα ( l ) 式中 F——跑偏量,mm ; K——跑偏系数; L——自由带钢长度,mm ; α——跑偏角,度。 带钢的跑偏速度与带钢跑偏角、辊子的输送速度有关。 Vα=v k·V c·tanα(2) 式中 Vα——带钢跑偏速度,mm/s ; v k——跑偏速度系数,其大小与辊子表面状态、带钢与辊子包角等有 关,理想状况下可取1.0 ; V c——辊子圆周线速度,mm/s; α——跑偏角,度。 实际上,各种辊子在长期运行过程中,由于单边磨损大而成锥形。由于锥形辊使带钢张力分布不均匀,使带钢总是向粗的一端跑偏,而锥度的大小影响了跑偏的速度。 张力控制带钢张力波动,特别是由于带钢张力不足或张力控制调整不当,会引起带钢张力的强烈波动,从而造成带钢运行过程中横向跑偏。 高的单位面积张力可以消除部分带钢弯曲及本身缺陷,从而每个转向辊上带钢的横向偏差都会得到消减。可是,由于带钢的材料属性以及用于控制带钢张力的张力辊的驱动运行的限制,带钢张力增加是受限制的。 2带钢对中纠偏原理研究

液压纠偏系统简介

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 液压纠偏系统简介 液压纠偏系统简介. txt27 信念的力量在于即使身处逆境,亦能帮助你鼓起前进的船帆;信念的魅力在于即使遇到险运,亦能召唤你鼓起生活的勇气;信念的伟大在于即使遭遇不幸,亦能促使你保持崇高的心灵。 液压纠偏系统简介一、概述: 随着现代化轧机速度的提高,对带钢的传送速度也大大的提高了,这样相应的辅助设备的速度也必须提高。 为保证带钢在轧制过程中在轧制中心线附近运行,且保证卷取时带卷边缘整齐,从而避免因带材偏离轧制中心线发生的刮坏设备或带材边缘损坏,影响产品质量的事故发生,同时大量减少带边剪切量。 所以带钢的边缘控制和机组上的对中控制是带材连续作业上必不可少的环节。 产生带钢偏离轧制中心线的原因有多种,主要是辊系的倾斜,带钢厚度不均、辊距与带钢宽度的比值、辊型结构、带钢的张力等,若参数选择不当都会引起带钢偏离轧制中心线,所以带钢在运行过程中的横向偏离中心线是不可避免的,必须加以控制。 常用的控制方式有四种: 1、机械式: 如能自动定心的双锥辊,导向轨等。 1 / 14

2、电动式: 采用光电检测器,将偏离信号送至控制柜,从而控制直流电机进行纠偏。 3、气液方式: 采用气动检测喷嘴,通过膜片控制射流管喷射的油压推动滑阀控制油缸进行纠偏。 4、光电液方式: 采用光电检测器将偏离信号经放大器放大,控制电液伺服阀推动油缸进行纠偏。 这四种控制方式中前三种纠偏速度较慢,满足不了现代化高速生产的需要。 而第四种控制方式采用的是电液伺服控制,这种控制方式的信号传输快,电反馈和校正方便,它的检测精度高,检测光电头距离大可达一米左右,可直接方便的装在带钢运行线路上。 而且系统动态性能好。 因此本设计中我采用光电液控制方式。 按控制对象不同可分开卷机、卷取机和摆动辊三种。 为了保证在轧制过程中带材边缘位置不变,保持在轧制中心线附近运行,控制误差为1~2mm,因此,我在本设计中采用了开卷机边缘控制方式。 二、冷轧带钢液压纠偏系统的组成和工作原理 1、组成: 如图(一)所示该系统由光电检测器(包括液压缸),放大

控制系统滞后-超前校正设计

课 程 设 计 题 目: 控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是 ) 2)(1()(++= s s s K s G 要求系统的静态速度误差系数110v K S -≥,相角裕度 45≥γ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

(1)用MATLAB画出满足初始条件的最小K值的系统伯德图,计算系统的幅值裕度和相角裕度。(2)前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 (3)用MATLAB画出未校正和已校正系统的根轨迹。 (4)用Matlab画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。 (5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和MATLAB输出。说明书的格式按照教务处标准书写。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ................................................................................................................... I 摘要 ................................................................................................................. II 1设计题目和设计要求 .. (1) 1.1题目 (1) 1.2初始条件 (1) 1.3设计要求 (1) 1.4主要任务 (1) 2设计原理 (2) 2.1滞后-超前校正原理 (2) 3设计方案 (4) 3.1校正前系统分析 (4) 3.1.1确定未校正系统的K值 (4) 3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹 (4) 3.1.3未校正系统的相角裕度和幅值裕度 (7) 3.2方案选择 (7) 4设计分析与计算 (8) 4.1校正环节参数计算 (8) 的确定 (8) 4.1.1已校正系统截止频率ω c ω的确定 (8) 4.1.4校正环节滞后部分交接频率 a ω的确定 (8) 4.1.1校正环节超前部分交接频率 b 4.2校正环节的传递函数 (8) 4.3已校正系统传递函数 (9) 5已校正系统的仿真波形及仿真程序 (10) 5.1已校正系统的根轨迹 (10) 5.2已校正系统的伯德图 (11) 5.3已校正系统的单位阶跃响应曲线 (12) 6结果分析 (13) 7总结与体会 (14) 参考文献 (14) 本科生课程设计成绩评定表........................................ 错误!未定义书签。

自动控制原理_线性系统串联校正

或施二佥2罟 W口h;u 】Institute of Technology 线性系统串联校正 专业班级______________________________________ 学号_________________________________________

姓名_________________________________________ 任课老师______________________________________ 学院名称___________ 电气信息学院_____________

、实验目的 1 ?熟练掌握用MATLAB?句绘制频域曲线。 2 ?掌握控制系统频域范围内的分析校正方法。 3 ?掌握用频率特性法进行串联校正设计的思路和步骤 、基础知识 控制系统设计的思路之一就是在原系统特性的基础上,对原特性加以校正, 使之达到要求的性能指标。最常用的经典校正方法有根轨迹法和频域法。而常用 的串联校正装置有超前校正、滞后校正和超前滞后校正装置。本实验主要讨论在 MATLAB^境下进行串联校正设计。 、实验内容 校正装置,使校正后系统的静态速度误差系数 K v 20s 1 ,相位裕量 50°,增 益裕量 20lgK g 10dB 解:(1)根据题意,则校正后系统的增益 K 20, 20 取 GS ) E 求出现系统的相角裕度 num0=20; den 0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margi n(num 0,de n0); [mag1,phase1]=bode (num 0,de n0 ,w); [gm1,pm1,wcg1,wcp1] margi n(num 0,de n0) 运行结果: ans = Inf 12.7580 Bode 图如下: 1 ?某单位负反馈控制系统的开环传递函数为 G(s) 中,试设计一超前 Inf 4.4165

纠偏控制器使用说明:

纠偏控制器使用说明 1. ( 〃以十进制表示的传感器检测有效距离: 〃 STUP输入 〃错误信息 〃在参数设定模式下,显示屏显示参数号(例F3)按SETUP 键显示此参数的设定值。 (2)条形显示管:显示马达位置。在进入参数设定模式时,显示一连续从底部到顶部不断移动的光标。 (3)如何进入和退出功能设定: 在MAN或AUTO模式下均可按ENTER+RIGHT键进入参数设定模式。 按RIGHT或LEFT键可选择不同的参数。

退出参数设定模式同时按ENTER+LEFT键或选择参数F60. 关于参数的设定模式下如何操作参阅参数设定。 (4)在MAN模式下如何进行纠偏(相应的MAN 指示灯亮) 【1】在手动模式下纠偏 …按MAN键进入手动控制模式(通常它是用来中断纠偏调整)。MAN 键的功能也可通过外部控制(详细信息参阅参数设定F42)【2】驱动中心 …同时按SETUP+S.C键,驱动器定位在行程的中心位置(当限位开关位置改变时数码管显示的数值将超出〒80,此时应按照参数 F21进行设定。 【3】手动驱动器定位: …按LEFT和RIGHT键使驱动器定位在目标点上,同时按SETUP+LEFT 或RIGHT键时可连续移动。 【4】驱动位置显示 …按SETUP键显示驱动器相对参考点的位置,显示值单位是mm,0表示行程的中心位置。 (5)在AUTO模式下如何进行纠偏(相应的AUTO指示灯亮)【1】在AUTO模式下纠偏 …按AUTO键进入自动纠偏控制模式。 … AUTO键的功能也可通过外部控制(详细信息参阅参数设定F42)【2】设置传感器有效范围值---SETUP----

第六章 控制系统的综合与校正范文

第六章 控制系统的综合与校正 6.1引 言 图6-1为一自动绕线机的原理图,当其正常工作时,要求绕线电机以较快的转速将电枢线绕到转子上,而由绕线电机及测速器构成的单位负反馈系统的开环传递函数为 0(0.11)(0.21) k G s s s = ++ 其中,0k 为开环增益。为了保证绕线速度,0k 的取值不能太少,一般取010k =。由此,可以画出绕线电机的Bode 如图6-2所示,其相位裕度为0.2γ=-?,不能满足系统稳定的要求。由于绕线电机及测速器的特性不可改变,所以只有通过设计适当的控制器来实现自动绕线机的正常工作。自动控制系统中控制器的设计又叫做系统的综合与校正。 控制器 绕线电机 步进电机 气动卡盘 转子 电枢线 图6-1 自动绕线机 ω

本章主要介绍控制系统的综合与校正。所谓综合或校正,就是在系统中不可变部分的基础上,加入一些元件(称校正元件),使系统满足要求的各项性能指标。一般情况下,控制系统的固有部分即不可变部分由已知的元件组成,因而其特性也是已知的。固有部分的参数除了增益以外,其余大多数参数是不可改变的,因而也叫不可变部分。通常,提高系统的性能指标,仅仅靠提高增益是不能完成的。所以,提高系统的性能指标往往需要引入新的元件来校正系统的特性。 控制系统中通常有两种校正方式,即串联校正和反馈校正。校正元件可以串联在前向通道之中,形成串联校正,如图6-3所示。也可接在系统的局部反馈通道之中,形成并联校正或反馈校正,如图6-4所示。 图6-3 串联校正系统方框图 图6-4 反馈校正系统方框图 串联校正的方法中,根据校正环节的相位变化情况,可分为超前校正、滞后校正、滞后超前校正。按照运算规律,串联校正又可分为比例控制、积分控制、微分控制等基本控制规律以及这些基本控制规律的组合。 经典控制理论中系统校正的方法主要有根轨迹法和频率特性法。本章主要介绍频率特性法。频率特性设计法根据系统性能指标的要求,以系统的开环对数频率特性(Bode图)为设计对象,使系统的开环对数幅频特性图满足系统性能指标的要求。具体来说就是:1,系统的低频段具有足够大的放大系数,有时候也要求具有足够大的斜率以满足系统对稳态误差的要求。2,系统的中频段以-20dB/dec的斜率通过0dB线,并且保证足够的中频段宽度以满足性能指标对相位裕度的要求。3,高频段一般不作特殊设计,而是根据被控对象自身特性进行高频衰减。 6.2 基本控制规律 站在系统设计的角度,控制系统的校正又可以看成是控制系统的控制器设计。控制系统

电液伺服控制系统设计

电液伺服控制系统的设计与仿真 引言 电液伺服系统具有响应速度快、输出功率大、控制精确性高等突出优点,因而在航空航天、军事、冶金、交通、工程机械等领域得到广泛应用。随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着液压系统逐渐趋于复杂和对液压系统仿真要求的不断提高,传统的利用微分方程和差分方程建模进行动态特性仿真的方法已经不能满足需要。因此,利用AMESim、Matlab/Simulink等仿真软件对电液伺服控制系统进行动态仿真,对于改进系统的设计以及提高液压系统的可靠性都具有重要意义。 1 液压系统动态特性研究概述 随着液压技术的不断发展与进步和应用领域与范围的不断扩大,系统柔性化与各种性能要求更高,采用传统的以完成执行机构预定动作循环和限于系统静态性能的系统设计远远不能满足要求。因此,现代液压系统设计研究人员对系统动态特性进行研究,了解和掌握液压系统动态工作特性与参数变化,以提高系统的响应特性、控制精度以及工作可靠性,是非常必要的。 1.1 液压系统动态特性简述 液压系统动态特性是其在失去原来平衡状态到达新的平衡状态过程中所表现出来的特性,原因主要是由传动与控制系统的过程变化以及外界干扰引起的。在此过程中,系统各参变量随时间变化性能的好坏,决定系统动态特性的优劣。系统动态特性主要表现为稳定性(系统中压力瞬间峰值与波动情况)以及过渡过程品质(执行、控制机构的响应品质和响应速度)问题。 液压系统动态特性的研究方法主要有传递函数分析法、模拟仿真法、实验研究法和数字仿真法等。数字仿真法是利用计算机技术研究液压系统动态特性的一种方法。先是建立液压系统动态过程的数字模型——状态方程,然后在计算机上求出系统中主要变量在动态过程的时域解。该方法适用于线性与非线性系统,可以模拟出输入函数作用下系统各参变量的变化情况,从而获得对系统动态过程直接、全面的了解,使研究人员在设计阶段就可预测液压系统动态性能,以便及时对设计结果进行验证与改进,保证系统的工作性能和可靠性,具有精确、适应性强、周期短以及费用低等优点。 1.2 仿真环境简介 基于Matlab平台的Simulink是动态系统仿真领域中著名的仿真集成环境,它在众多领域得到广泛应用。Simulink借助Matlab的计算功能,可方便地建立各种模型、改变仿真参数,有效解决了仿真技术中的问题。Simulink提供了交互的仿真环境,既可通过下拉菜单进行仿真,也可通过命令进行仿真。虽然Simulink提供了丰富的模块库,但是在Matlab/Simulink下对液压系统进行建模及仿真需要做很多简化工作,而模型的简化使得仿真结果往往出现一定的误差。AMESim (Advanced Modeling Environment for Simulation of Engineering Systems)是法国IMAGINE公司开发的一套高级仿真软件。它是一个图形化的开发环境,用于工程系统的建模、仿真和动态性能分析。AMESim的特点是面向工程应用从而使其成为汽车、航天和航空等工业研发部门的理想仿真工具。研究人员完全可以用AMESim的各种模型库来设计系

实验4 控制系统校正

实验4 控制系统的校正 1、主要内容 控制系统的校正及设计上机实验 2、目的与要求 熟悉应用 MATLAB 软件设计系统的基本方法 熟悉应用 SISO Design Tool 进行系统设计的基本方法 通过学习自行设计完成一个二阶系统串联校正设计任务 3、重点与难点: 自行设计完成一个二阶系统串联校正设计任务 自行设计完成一个二阶系统并联校正设计任务 一、实验目的 1、掌握串联校正环节对系统稳定性的影响; 2、了解使用 SISO 系统设计工具(SISO Design Tool )进行系统设计。 二、设计任务 串联校正是指校正元件与系统的原来部分串联,如图 1 所示。 图 中 ,()c G s 表 示 校 正 部 分 的 传 递 函 数 , 0()G s 表 示 系 统 原 来 前 向 通 道 的 传 递 函 数 。 当 1()(1)1c aTs G s a Ts +=>+时,为串联超前校正;当1()(1)1c aTs G s a Ts +=<+时,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MA TLAB 命令窗口中输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 为一个 DC 电机的设计环境。 (2)将模型载入 SISO 设计工具 通过 file/import 命令,可以将所要研究的模型载入 SISO 设计工具中。点击该菜单项后,将弹出 Import System Data 对话框,如图 3 所示。 (3)当前的补偿器(Current Compensator ) 图 2 中当前的补偿器(Current Compensator )一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和 Bode 图中添加零极点或移动曲线,该栏将自动显示补偿器结构。

控制系统的校正

基于MATLAB 控制系统的校正设计 1实验目的 ① 掌握串联校正环节对系统稳定性的影响。 ② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设计。 2 设计任务 串联校正是指校正元件与系统的原来部分串联,如图1所示。 图1串联校正图 图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts +=>+,为串联超前校正;当()()111o aTs G s a Ts +=<+,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MATLAB 命令窗口中输入 sisotool 命令, 可以打开一个空的 SISO Design Tool , 也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 所示。

图2 SISO系统的图形设计环境 (2)将模型载入 SISO设计工具 通过file/import命令,可以将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。 图3 Import System Data对话框 (3)当前的补偿器(Current Compensator) 图2中当前的补偿器(Current Compensator)一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和Bode图中添加零极点或移动曲线,该栏将自动显示补偿器结构。(4)反馈结构 SISO Design Tool 在缺省条件下将补偿器放在系统的前向通道中,用户可以通过“+/-”按钮选择正负反馈,通过“FS”按钮在如下图4几种结构之间进行切换。

美塞斯FIFE纠偏系统介绍(纠偏控制器)

美塞斯FIFE纠偏系统介绍 控制器 纠偏控制器(MC16) 型号为4008301898的FIFE产品平滑而高效的卷材生产始于正确的纠偏控制系统。FIFE?为您提供一系列的自动控制系统,使您获得精密而可靠的纠偏性能、以及将来升级您生产线的灵活性。 卷材纠偏控制器 FIFE卷材纠偏控制器功能强大、安装简单、操作方便,具有极高的动态响应水平以提高纠偏精度并减少浪费。 D-MAXTM 系列卷材纠偏系统 ●一个由功能强大、模块化的组件构成的完整系统,用以提高效率和卷半质量 ●模块化设计理念,可以作为预接线控制器系统或者多功能组件中的独立功能模块使用●控制器外观朴实,能够提供最高水平的纠偏精度,选用功能强大,例如高速联网和远程 系统监控功能 ●图形化的操作界面,简明易发的操作语言,可以使 您的安装我操作变得简单 POLARIS TM卷材纠偏控制器 ●精密的卷材纠偏控制器,安装和操作都很简单 ● 5.67”x5.67”x4.06”(144mm x 144mm x 103mm)

的小巧箱体,容易嵌入机器的控制面板中 ●直观而友好的操作界面能够减小两批产品转换中的停工时间 ●高动态响应性能,确保恒定,优质的卷装 CDP-01 卷材纠偏控制器 ●具有高品质的动态响应性能,能够驱动 单个、两个或者三个纠偏器同时使用 ●内置信号放大器,专门用于红外感应器 在检测透明卷材时将信号放大,提高检 测精度 ●不需要PLC也可以同时控制多达3套纠 偏系统 网络通讯 可选的串行总线通讯协议转换器,使您可以通过现有的ControlNet,DeviceNet,InterBus,Profibus,Modbus/TCP Ethernet,或Ethernet IP获得纠偏数据。 动力装置 不管您选用什么样的控制系统,FIFE动力装置都具有足够的灵活性来满足任何卷材和载荷方面的要求。 ●适合于随较大载荷的放卷/收卷电气液压式或气动液压式纠偏系统 ●紧凑、模块化的结构是完全独立可用的 ●几乎不需要维护

带钢纠偏控制系统

摘要 本设计是针对钢带在卷取机上绕卷运行时发生的左右偏移而提出控制方案及具体处理方法。采用智能PID控制算法,对钢带的偏移量进行实时的控制,使之在左右偏移时偏移量控制在安全的范围内。主要是对系统数学模型的建立和数据处理的算法分析。深入阐述了纠偏控制系统设计思想及实现方法,对提高带钢生产效率和产品质量具有积极的意义。 关键字:钢带;纠偏控制;智能PID控制;卷取机

Abstract This design is for the steel strip in the coiling machine on the occurrence of the left and right deviation and put forward the control scheme and specific processing method. The PID control algorithm is adopted to control the steel strip, and the offset is controlled in the range of safety. Is mainly about the establishment of the system mathematical model and data processing algorithm analysis. The design idea and realization method of deviation correction control system are introduced, which has positive significance to improve the production efficiency and product quality. Keywords:steel strip; deviation control; intelligent PID control; coiling machine

实验3:控制系统的校正与设计

实验三控制系统的校正与设计 一、实验目的 1. 加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。 二、实验仪器 1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台 三、实验内容 1.串联超前校正 (1)系统模拟电路图如图5-1,图中开关S断开对应未校情况,接通对应超前校正。 图5-1 超前校正电路图 (2)系统结构图如图5-2 图5-2 超前校正系统结构图 图中 Gc1(s)=2 2(0.055s+1) Gc2(s)= 0.005s+1 2.串联滞后校正 (1)模拟电路图如图5-3,开关s断开对应未校状态,接通对应滞后校正。

图5-3 滞后校正模拟电路图 (2)系统结构图示如图5-4 图5-4 滞后系统结构图 图中 Gc1(s)=10 10(s+1) Gc2(s)= 11s+1 3.串联超前—滞后校正 (1)模拟电路图如图5-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。 图5-5 超前—滞后校正模拟电路图 (2)系统结构图示如图5-6。 图5-6超前—滞后校正系统结构图 图中 Gc1(s)=6

6(1.2s+1)(0.15s+1) Gc2(s)= (6s+1)(0.05s+1) 四、实验步骤 1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信 正常后才可以继续进行实验。 超前校正: 3.连接被测量典型环节的模拟电路(图5-1)。电路的输入U1接A/D、D/A卡的DA1输出, 电路的输出U2接A/D、D/A卡的AD1输入,将将纯积分电容两端连在模拟开关上。检查无误后接通电源。 4.开关s放在断开位置。- 5.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。鼠标单击按钮, 弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量 p和调节时间ts。 6.开关s接通,重复步骤5,将两次所测的波形进行比较。并将测量结果记入下表中:

实验三控制系统综合

实验三控制系统设计 一、实验目的 掌握串联频域校正以及极点配置等控制系统常用设计方法。 二、实验题目 1. 考虑一个单位负反馈控制系统,其前向通道传递函数为: k s(s 2) a)试分别采用串联超前和串联滞后装置对该系统进行综合,要求系统的速度误 差系数为20( 1/s),相角裕量大于50。。 b)对比两种设计下的单位阶跃响应、根轨迹图以及bode图的区别 采用串联超前装置实验代码 t=[0:0.01:2]; w=logspace(-1,2); kk=40; Pm=50; ng0=kk*[1]; dg0=[1,2,0]; gO=tf(ng0,dg0); %原系统开环传递函数? [ngc,dgc]=fg」ead_pm(ng0,dg0,Pm,w); % 调用子函数fg」ead_pm? gc=tf(ngc,dgc) %超前校正装置传递函数? g0c=tf(g0*gc); % 校正后系统开环传递函数? b1=feedback(g0,1);% 校正前系统闭环传递函数? b2=feedback(g0c,1); %校正后系统闭环传递函数? step(b1,'r--',b2,'b',t); % 绘制校正前后系统阶跃响应曲线? grid on, % 绘制校正前后系统伯德图? figure,bode(g0,'r--',g0c,'b',w); % 绘制校正前后 系统伯德图? grid on rlocus(g0c) % 绘制校正后系统根轨迹图? [gm,pm,wcg,wcp]=margi n( g0c) 执行结果 dgc = 0.05451.0000 gc = 0.2292 s + 1 0.05452 s + 1 Con ti nu ous-time tran sfer fun cti on. gm = Inf

相关文档
最新文档