PN结及其特性详细介绍

PN结及其特性详细介绍
PN结及其特性详细介绍

PN结及其特性详细介绍

1. PN结的形成

在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半

导体和P型半导体的结合面上形成如下物理过程:

扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区(耗尽层)。由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P区的内电场

PN结的形成

当扩散和漂移运动达到平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。因此,在相对平

衡时,流过PN结的电流为0。

对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。在空间电荷区,由于缺少多子,所以也称耗尽层。由于耗尽层的存在,PN结的电阻很大。

PN结的形成过程中的两种运动:多数载流子扩散少数载

流子飘移

PN结的形成过程(动画)

2. PN结的单向导电性

PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

如果外加电压使PN结中:

P区的电位高于N区的电位,称为加正向电压,简称正偏;

P区的电位低于N区的电位,称为加反向电压,简称反偏。

(1) PN结加正向电压时的导电情况

PN结加正向电压时的导电情况如图所示。外加的

正向电压有一部分降落在PN结区,方向与PN结内电

场方向相反,削弱了内电场。于是,内电场对多子扩散

运动的阻碍减弱,扩散电流加大。扩散电流远大于漂

移电流,可忽略漂移电流的影响,PN结呈现低阻性。

P

N结加正向电压时的导电情况

(2) PN结加反向电压时的导电情况

外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场的作用下形成的漂移电流大于

扩散电流,可忽略扩散电流,PN结呈现高阻性。

在一定的温度条件下,由本征激发决定的少子浓

度是一定的,故少子形成的漂移电流是恒定的,基本

上与所加反向电压的大小无关,这个电流也称为反向

饱和电流。

PN结加反向电压时的导电情况(动画)

(3)PN结的伏安特性

PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。

3. PN结方程

根据理论分析,PN结两端的电压V与流过PN结的电流I之间的关系为:

其中:I S为PN结的反向饱和电流;V T称为温度电压当量,在温度为300K(27°C)时,V T约为26mV;

所以上式常写为:

PN结正偏时,如果V> V T几倍以上,上式可改写为:

即I随V按指数规律变化。

PN结反偏时,如果V > V T几倍以上,上式可改写为:

其中负号表示为反向。

4. PN结的击穿特性

如图所示,当加在PN结上的反向电压增加到一定数值时,反向电流突然急剧增大,PN结产生电击穿—这就是PN结的击穿特性。发生击穿时的反偏电压称为PN结的反向击穿电压V BR。

PN结的电击穿是可逆击穿,及时把偏压调低,PN结即恢复原来特性。电击穿特点可加以利用(如稳压管)。热击穿就是烧毁,是不可逆击穿。使用时尽量避免。

PN结被击穿后,PN结上的压降高,电流大,功

率大。当PN结上的功耗使PN结发热,并超过它的耗

散功率时,PN结将发生热击穿。这时PN结的电流和

温度之间出现恶性循环,最终将导致PN结烧毁。

5 . PN结的电容效应

PN结除了具有单向导电性外,还有一定的电容效应。按产生电容的原因可

分为:

(1) 势垒电容C B

势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图如下图。

(2) 扩散电容C D

扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图所示。

当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。PN结在反偏时主要考虑势垒电容。PN结在正偏时主要考虑扩散电容。

PN结物理特性及玻尔兹曼常数测量

P N结物理特性及玻尔兹 曼常数测量 Prepared on 21 November 2021

PN 结物理特性及玻尔兹曼常数测量 半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。 【实验目的】 1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。 2、在不同温度条件下,测量玻尔兹曼常数。 3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。 4、测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。 5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。 6、学会用最小二乘法拟合数据。 【实验仪器】 FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。 FD-PN-4 型PN 节物理特性测定仪 【实验原理】 1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系 (a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足: [] 1/0-=KT eU e I I (1) 式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,kT /e ≈ ,而PN 结正向压降约为十分之几伏,则KT eU e />>1,(1)式括号内-1项完全可以忽略,于是有: KT eU e I I /0= (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出e /kT 。在测得温度T 后,就可以得到e /k 常数,把电子电量作为已知值代入,即可求得玻尔兹曼常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分: [1]扩散电流,它严格遵循(2)式; [2]耗尽层复合电流,它正比于KT eU e 2/; [3]表面电流,它是由Si 和SiO 2界面中杂质引起的,其值正比于mKT eU e /,一般m >2。

大学物理实验PN结正向压降温度特性的研究实验报告

实验题目:PN 结正向压降温度特性的研究 实验目的:了解PN 结正向压降随温度变化的基本关系式。在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。学习用PN 结测温的方法。 实验原理:理想PN 结的正向电流I F 和压降V F 存在近似关系: )exp( kT qV Is I F F = 其中q 为电子电荷,k 为玻尔兹曼常数,T 为绝对温度,I S 为反向饱和电流: ]) 0(ex p[kT qV CT Is g r -= 由上面可以得到: 11)0(n r F g F V V InT q kT T I c In q k V V +=-??? ? ? ?-= 其中 () r n F g InT q KT V T I c In q k V V -=???? ? ?-=11)0( 在上面PN 结正向压降的函数中,令I F =常数,那么V F 就是T 的函数。 考虑V n1引起的线性误差,当温度从T 1变为T ,电压由V F1变为V F : [] r n F g g F T T q kT T T V V V V ??? ? ??---=111 1)0()0( )(111T T T V V V F F F -??+=理想 ()[] ()r T T q k T T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-????? ?---+=理想 两个表达式相比较,有: ()r F T T Ln q kT T T r q k V V )(1 1+-- =-=?理想 综上可以研究PN 结正向压降温度特性。 实验内容:1、求被测PN 结正向压降随温度变化的灵敏度S (mv/℃)。作?V —T 曲线(使用Origin 软件工 具),其斜率就是S 。 2、估算被测PN 结材料硅的禁带宽度E g (0)=qV g (0)电子伏。根据(6)式,略去非线性,可得

半导体PN结的物理特性及弱电流测量实验..

半导体PN 结的物理特性及弱电流测量实验 【实验目的】 1.在室温时,测量PN 结电流与电压关系,证明此关系符合指数分布规律。 2.在不同温度条件下,测量玻尔兹曼常数。 3.学习用运算放大器组成电流-电压变换器测量弱电流。 4.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。 5.计算在0K 温度时,半导体硅材料的近似禁带宽度。 【实验原理】 1. PN 结伏安特性及玻尔兹曼常数测量 由半导体物理学可知,PN 结的正向电流-电压关系满足: []1)/exp(0-=kT eU I I (1) 式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降 约为十分之几伏,则)/exp( kT eU >>1,(1)式括号内-1项完全可以忽略,于是有: )/exp(0kT eU I I = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出 kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼 常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT eU ;3)表面电流,它是由硅和二氧 化硅界面中杂质引起的,其值正比于)/exp( mkT eU ,一般m >2。因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。复合电流主要在基极出现,测量集电极电流时,将不包括它。本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全

实验十PN结物理特性测定

一、概述 半导体PN结的物理特性是物理学和电子学的重要基础内容之一。本仪器用物理实验方法,测量PN结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。本仪器同时提供干井变温恒温器和铂金电 U与热力学温度T的关系,求得该传感器的灵敏度,并近似求得阻测温电桥,测量PN结结电压 be 0K时硅材料的禁带宽度。 二、仪器简介 图1 PN结物理特性测定仪实验装置

FD-PN-4型PN 结物理特性测定仪主要由直流电源、数字电压表、实验板以及干井测温控温装置组成,如图1所示。 三、技术指标 1.直流电源:±15V 直流电源一组, 1.5V 直流电源一组 2.数字电压表:三位半数字电压表量程0—2V ,四位半数字电压表量程 0—20V 3.实验板: 由运算放大器LF356、印刷引线、接线柱、多圈电位器组成。TIP31型三极管外接。 4.恒温装置:干井式铜质可调节恒温,恒温控制器控温范围,室温至80℃;控温分辨率0.1℃; 5.测温装置:铂电阻及电阻组成直流电桥测温0℃(Ω=00.1000R )。 四、实验项目 1.测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。 2.较精确地测量玻尔兹曼常数。(误差一般小于2%) 3.测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。 4.近似求得0K 时半导体(硅)材料的禁带宽度。 5.学会用铂电阻测量温度的实验方法和直流电桥测电阻的方法。 五、注意事项 1.实验时接±12V 或±15V ,但不可接大于15V 电源。±15V 电源只供运算放大器使用,请勿作其它用途。 2.运算放大器7脚和4脚分别接+15V 和-15V ,不能反接,地线必须与电源0V (地)相接(接触要良好)。否则有可能损坏运算放大器,并引起电源短路。一旦发现电源短路(电压明显下降),请立即切断电源。 3.要换运算放大器必须在切断电源条件下进行,并注意管脚不要插错。元件标志点必须对准插座标志槽口。 4.必须经教师检查线路接线正确,学生才能开启电源,实验结束应先关电源,才能拆除接线。

PN结物理特性测定2015

半导体PN 结的物理特性实验 实验目的 1.测量PN 结电流与电压关系,证明此关系符合指数分布规律。 2.测量玻尔兹曼常数。 3.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。 4.计算在0K 温度时,半导体硅材料的近似禁带宽度。 实验原理 1. PN 结伏安特性及玻尔兹曼常数测量 由半导体物理学可知,PN 结的正向电流-电压关系满足: []1)/exp(0-=kT eU I I (1) 式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降 约为十分之几伏,则)/exp( kT eU >>1,(1)式括号内-1项完全可以忽略,于是有: )/exp(0kT eU I I = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出 kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼 常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,

它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT eU ;3)表面电流,它是由硅和二氧 化硅界面中杂质引起的,其值正比于)/exp( mkT eU ,一般m >2。因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。复合电流主要在基极出现,测量集电极电流时,将不包括它。本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足(2)式。实验线路如图1所示。 图1 PN 结扩散电源与结电压关系测量线路图 2.PN 结的结电压be U 与热力学温度T 关系测量。 当PN 结通过恒定小电流(通常电流A I μ1000=),由半导体理论可得be U 与T 近似关系: go be U ST U += (5) 式中S ≈-2.3C mV o /为PN 结温度传感器灵敏度。由go U 可求出温度0K 时半导体材料的近似禁带宽度go E =go qU 。硅材料的go E 约为1.20eV 。 实验仪器 1. 直流电源、数字电压表、温控仪组合装置(包括±15V 直流电源、0-1.5V 及3.0V 直流电源、三位半数字电压表、四位半数字电压表、温控仪)。 2. TIP31型三极管(带三根引线)1个,3DG 三极管1个。

大学物理实验报告23-PN结温度传感器特性

天津大学 物理实验报告 姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师: 【实验名称】 PN 结物理特性综合实验 【实验目的】 1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律 2. 在不同温度条件下,测量玻尔兹曼常数 3. 学习用运算放大器组成电流-电压变换器测量弱电流 4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度 5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】 半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】 1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足: ]1)/[ex p(0-=kT eU I I (1) 当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有: 0exp(/)I I eU kT = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I U -关系值,则利用(1)式可以求出 /e kT 。在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。 实验线路如图1所示。

2、弱电流测量 LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。 运算放大器的输入电压0U 为: 00i U K U =- (3) 式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。因而有: 00(1) i i s f f U U U K I R R -+= = (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为 00 1i f f x s U R R Z I K K = =≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即: 图1 PN 结扩散电源与结电压关系测量线路图 图2 电流-电压变换器

PN结物理特性及玻尔兹曼常数测量.

PN 结物理特性及玻尔兹曼常数测量 半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。 【实验目的】 1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。 2、在不同温度条件下,测量玻尔兹曼常数。 3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。 4、测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。 5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。 6、学会用最小二乘法拟合数据。 【实验仪器】 FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。 FD-PN-4 型PN 节物理特性测定仪 【实验原理】 1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系 (a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足: [] 1/0-=KT eU e I I (1) 式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,kT /e ≈0.026v ,而PN 结正向压降约为十分之几伏,则KT eU e />>1,(1)式括号内-1项完全可 以忽略,于是有: KT eU e I I /0= (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)

PN结的物理特性—实验报告

半导体PN 结的物理特性实验报告 姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言 半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。 二、实验原理 1、 PN 结的物理特性 (1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。 (2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。在常温(T=300K )下和实验所取电压U 的范围内, 故①可化为 ②,两边取对数可得 。 (3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。 2、反向饱和电流I s (1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。 (2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为 ③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K 时材料的禁带宽度。两边取对数得 ,其中γlnT 随温度T 的变 化相比(eU-T )/kT 很缓慢,可以视为常数。 (3)当正向电压U 不变时作lnI-1/T 图像并进行线性拟合,得到拟合方程斜率(eU-E )/k ,代入已知常数便得0K 时PN 结材料的禁带宽度E ;当正向电流I 不变时作U-T 图并进行线性拟合,得到拟合直线截距E/e ,带入已知常数,便得0K 时PN 结材料的禁带宽度E 。 3、实验装置及其原理 (1)如图所示为由运算放大器组成的电流-电压变换器电路图,电压表V1测量的是正向电压U1,电压表V2测量的是正向电流I 经运算放大器放大后所对应的电压U2,分析电路后可知,正向电流I ≈U 2/R f ,其中R f 为反馈电阻。通过二极管的正向电流除了扩散电流外,还 (1)eU kT s I I e =-1 eU kT e >>eU kT s I I e =lnI lnI s eU kT =+0E kT s I I T e γ - =0eU E kT I I T e γ-=0ln lnI ln eU E I T kT γ-=++

半导体PN结的物理特性研究数据处理特例

半导体PN结的物理特性数据处理数据记录: 室温:28.0℃θ1=28.0℃θ2=28.0℃ 0. 28 = θ℃ 数据处理: 1.按U2=BU1+A处理 表2 第2、和第1列数据的相关系数γ=0.844996;斜率B=54.03297 ;截距A= –18.3031。拟合方程为: U2=54.03297U1-18.3031 (1) 根据(1)式计算出表2中的第3 列U2的期望值U20;再根据(U2-U20)2 算出表2中第4列数据,第4列数据的 总和为: Σ(U2-U20)2=26.60278 (2) 根据表2第1、2列数据作图如图 1所示。从U1和U2的相关系数和图中数 据点的分布和线性趋势线的走向均可 看出,U1和U2并不相关,因此采用线性 相拟合并不好。 2.按U2=BU12+A进行拟合 表3 图 1 按线性拟合

表3第2、和第3列数据的相关系 数γ=0.8675393;斜率B=73.881948; 截距A=–8.550421。拟合方程为: U 2=73.881948U 12 -8.550421 (3) 根据(3)式计算出表3中的第4列U 2的期望值U 20;再根据(U 2-U 20)2 算出表3中第5列数据,第5列数据的 总和为: Σ(U 2-U 20)2 =23.011569 (4) 根据表3第3、2列数据作图如图1所示。从U 12 和U 2的相关系数和图中 数据点的分布和线性趋势线的走向均 可看出,U 12 和U 2并不相关,因此采用幂函数拟合并不好。 3.按U 2=AU 1B 进行拟合 对表4的第1、2列数据取对数构成表4中的第3 、4列。 图 2 按幂函数拟合

半导体PN结的物理特性及弱电流测量(精)

成都信息工程学院 物理实验报告 姓名: 石朝阳 专业: 班级: 学号: 实验日期: 2009-9-15下午 实验教室: 5102-1 指导教师: 【实验名称】 PN 结物理特性综合实验 【实验目的】 1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律 2. 在不同温度条件下,测量玻尔兹曼常数 3. 学习用运算放大器组成电流-电压变换器测量弱电流 4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度 5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】 半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】 1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足: ]1)/[exp(0-=kT eU I I (1) 当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有: 0exp(/)I I eU kT = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I U -关系值,则利用(1)式可以求出 /e kT 。在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。 实验线路如图1所示。

2、弱电流测量 LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。 运算放大器的输入电压0U 为: 00i U K U =- (3) 式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。因而有: 00(1) i i s f f U U U K I R R -+= = (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为 00 1i f f x s U R R Z I K K = =≈ + (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即: 图1 PN 结扩散电源与结电压关系测量线路图 图2 电流-电压变换器

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体PN结的物理特性

半导体PN结的物理特性 简介:半导体PN结的物理特性是物理学和电子学的重要基础内容之一,它在实践中有着广泛的应用,如各种晶体管、太阳能电池、半导体制冷、半导体激光器、发光二极管都是由半导体PN结组成。本实验主要研究的两个问题是: (1)测量PN结扩散电流与电压的关系; (2)研究PN结电压与热力学温度的关系。 一、实验目的 (1)了解用运算放大器测量弱电流的原理和方法; (2)测量PN结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数; (3)测量PN结结电压与温度的关系,求出PN结温度传感器的灵敏度; (4)计算在绝对零度时,半导体材料的禁带宽度。 二、实验仪器:FD-PN-4 PN结物理特性实验仪

三、 实验原理 1.PN 结伏安特性及玻尔兹曼常数的测量 半导体在常温下PN 结电压与电流有如下指数关系: 0qU kT S I I e = (1) 公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。 2.弱电流测量 实验装置如图1所示,所用PN 结由三极管提供,LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器,它可对弱电流放大并转换成电压形式。其工作原理如图2所示,S I 为被测弱电流,r Z 为电路的等效输入阻抗, f R 为负反馈电阻,运放的开环放大倍数为0K ,运算放大器的输出电压为: 00i U K U =- (2) 由于运放输入阻抗i r 为无限大,反馈电阻f R 流过的电流近似为S I , 00 00 1 () (1)i S f f f U U U I U R R R K -= =-+ ≈- (3) 只要测得输出电压0U 和已知f R 值,即可求得S I ,将上式代入0qU kT S I I e =可 得: 102qU kT U U Ae == (4) 图1 PN 结扩散电源与结电压关系测量线路图

PN结物理特性的测量

.::PN结物理特性的测量::. 图一PN结物理特性的测量实验装置全图 伏安特性是PN结的基本特性,测量PN结的扩散电流与PN结电压之间的关系,可以验证它们遵守波尔兹曼分布,并进而求出波尔兹曼常数的值.PN结的扩散电流很小,为10-6~10-8 A数量级,所以在测量PN结扩散电流的过程中,运用了弱电流测量技术,即用运算放大器对电流进行电流-电压变换。

图二PN结形成示意图 .::实验预习::. 1. LF356运算放大器介绍 利用LF356运算放大器可以组成电流-电压变换器,如图1所示.LF356运算放大器是一个集成运算放大器,Rf为反馈电阻,若Rf → ∞时,输出电压U0与输入电压Ui的比值叫做运算放大器的开环增益K0.运算放大器的输入阻抗r很大,理想情况下r → ∞,可以认为反馈电流等于信号源的输入电流Is.Zr为电流—电压变换器的等效输入阻抗,因为反馈电流等于信号源的输入电流Is,输入电流Is可以写为 【实验内容】 实验线路图如图1所示.在常温和零温(冰水混合物)下测量硅三极管发射极与基极之间的电压U1和相应的LF356输出电压U2 .通过调节100可调电位器改变U1的值,尽量在线性区域多测量数据点.根据公式(7)拟合求波尔兹曼常数k B. .::实验仪器::. 【实验仪器】

±15V 直流稳压电源,TIP31型硅三极管,LF356集成运算放大器,四位半数字万用表,电阻,电容,电位器,导线,实验接线板等. TIP31型硅三极管,LF356集成运算放大器的管脚如图2所示. 图3 .::思考题::. 【思考题】

1.得到的数据一部分在线性区,一部分不在线性区,为什么?拟合时应如何注意取舍? 数据不在线性区有两种情况:1.u1较小时,2.u1较大时 1).u1较小时,公式不满足 2).u1较大时,p-n结所通过的电流虽可增加,但放大器的输出电压达到饱和。 2.减小反馈电阻的代价是什么?对实验结果有影响吗? 反馈电阻减小使输出电压减小,在一定范围瑞影响不大 .::参考资料::. 有关PN结的介绍 纯净的半导体称为本征半导体,为研究半导体的性质,必须对其掺杂形成P 型半导体和N型半导体(掺杂的浓度可以达到1017个/cm3)。当P型和N型半导体通过工艺方法结合,在两者的交接面处就形成PN结。当不加外电压时,每个区域中的多数载流子都向较低浓度的区域扩散(电子从N型区向P型区扩散;空穴从P型区向N型区扩散)。这就在结中留下丁固定的电离中心(施主和受主),形成一个空间电荷区域(耗尽层),该区有一个从N型区指向P型区的电场。在N 型区与P型区之间存在一个电动势,它对载流子建立起—个势垒并使N型区的能量比P型区的低一些。当费米能级在整个材料内为一常数时,平衡才能达到。这种扩散电流被少数载流子电流(电子从P型向N型扩散,空穴从N型向P型扩散)所补偿。 当加上偏压时势垒高度或者变低或者升高。在第一种情况下(加正向偏压),扩放电流随电压十分迅速地增加,在第二种情况下(加反向偏压),仅仅由于少数载流子引起的电流是很小的,并随着所加的电压有很微小的变化(同正向电流比较)。 其实,我们所说的二极管就是一个PN结,具有单向导通性。通过试验可以得到二极管的伏安特性。

半导体物理---PN结习题

PN 结作业题 1、 For a silicon step pn junction, the n side has a net doping of 183210D N cm -=? and the p side has a net doping of 153510A N cm -=?. (1) Find the junction width. (2) Find the widths of the n side of the depletion region and the p side of the depletion region . (3) What is the built-in voltage? 2、 对GaAs 材料突变PN 结,完成第1题给出的计算要求。 3、(1) 如果PN 结的N 区长度远大于L p , P 区长度为W p , 而且P 区引出端处少数 载流子电子的边界浓度一直保持为0,请采用理想模型推导该PN 结电流-电压关系式的表达形式(采用双曲函数表示) (2) 若P 区长度远小于n L ,该PN 结电流-电压关系式的表达形式将简化为什么形式? (3) 若P 区长度远小于n L ,由上述(2)的结果推导PN 结总电流中()n p I x -和 ()p n I x 这两个电流分量之比的表达式? (4) 如果希望提高比值()/()n p p n I x I x -, 应该如何调整掺杂浓度A N 和D N 的大小? 提示: 两个区域可以分别采用两个坐标系,将坐标原点分别位于势垒区两个边界处,可以大大简化推导过程中的表达式 4. 已知描述二极管直流特性的三个电流参数是S I =1410-A 、SR I =1110-A 、KF I =0.1A 。请采用半对数坐标纸,绘制正偏情况下理想模型电流,势垒区复合电流和特大注入电流这三种电流表达式的I -V 曲线,并在此基础上绘制实际二极管电流随电压变化的曲线。 (提示:特大注入条件下,?? ? ??=KT eVa I I I 2exp KF S ) 5、A one-side step n p +junction diode with 17310a N cm -= and 19310d N cm -=has a junction area of 2100m μ. It is known that, for the minority carrier, 6310n s τ-=?, 220/n D cm s = (1) Please compare the junction capacitance and the diffusion capacitance under reverse bias (5a V V =-) (2) Compare the junction capacitance and the diffusion capacitance under forward bias (0.75a V V =+)

复旦大学 物理实验(上) 半导体PN结的物理特性实验报告

半导体PN结的物理特性 实验目的与要求 1、学会用运算放大器组成电流-电压变换器的方法测量弱电流。 2、研究PN结的正向电流与电压之间的关系。 3、学习通过实验数据处理求得经验公式的方法。 实验原理 PN 结的物理特性测量 由半导体物理学中有关PN 结的研究,可以得出PN 结的正向电流一电压关系满足 (1) 式中I是通过PN 结的正向电流,I0是不随电压变化的常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降. 由于在常温(300 K)下,KT/e =0,026 V,而PN 结正向压降约为十分之几伏,则e eU/kT>>l,(1)式括号内-1 项完全可以忽略,于是有 (2) 即PN 结正向电流随正向电压按指数规律变化. 若测得PN 结I-U关系值,则利用(2)式可以求出e/kT. 在测得温度T 后,就可以得到e/k 常数,然后将电子电量作为已知值代入,即可求得玻尔兹曼常数k。 在实际测量中,为了提高测量玻尔兹曼常数的正确性,利用集成运算放大器组成的电流-电压变换器输人阻抗极小的特点,常用半导体三极管的集电极c与基极b短接(共基极)来代替PN结进行测量. 具体线路如图下 实验仪器 PN结实验仪、TIP31型三极管、恒温装置 1 、直流电源和数字电压表,包括—15 V——0——+ 15V直流电源、1.5 V直流电源、0—— 2 V三位半数字电压表、四位半数字电压表. 2、LF356 集成运算放大器,它的各引线脚如2脚、3 脚、4 脚、6 脚、7 脚由学生用棒针

引线连接;待测样品TIP31型三极管的e、b、c 三电极可以从机壳右面接线柱接入 3、不诱钢保温杯組合,它包括保温杯、内盛少量油的玻璃试管、搅拌器水银温度计等. (实验时,开始保温杯内为适量室温水,然后根据实验需要加一些热水,以改变槽内水的温度; 测量时应搅拌水,待槽内水温恒定时,进行测量) 实验内容 一、必做部分: 1、在室温(保温杯加入适量的自来水,为什么?)下,测量PN结正向电流与电压的关系。·粗略测量PN结正向电压U1及正向电流所对应的电压U2之间的关系。(U2何时出现饱合?为什么会出现饱合?) ·由粗测结果确定仔细测量的范围(U2大致的变化范围是多少?);约测12-16组数据。·用最小二乘法对实验数据分别作线性、指数、乘幂等函数的拟合,由求得的回归系数和标准偏差来判断各函数的优劣。 ·计算玻尔兹曼常数k。 2、保持PN结正向电压不变,测量PN结正向电流与温度的关系。 ·温差不小于30℃,不少于7组数据。(如何保持PN结的正向电流不变?) ·以此推算反向饱和电流与温度的关系,并计算0K时PN结材料(硅)的禁带宽度。 3、保持PN结正向电流不变,测量PN结正向电压与温度的关系。 ·温差不小于30℃,不少于7组数据。 ·以此推算正向电压与温度的关系,并计算0K时PN结材料(硅)的禁带宽度。 实验数据记录 1、粗测: 粗测时分为三个阶段,第一阶段是V2<0,此时V1<274.66mV,当V2=0时,V1=274.66mV 接下来是第二阶段,V2>0,V1和V2都发生变化,但V2变化幅度逐渐变小,直至几乎不变,当V2=13.503V时,不论V1如何变化,V2都几乎不再发生变化,刚到达此值时,V1=0.4745V 再后来是第三阶段,V1继续变化,但V2几乎不变。 则所取细测范围为274.66mV~0.4745V之间。 细测:(小数点后5位的原测量时单位为mV) 组数V1/V V2/V T/°C 1 0.27320 0.00004 23.7 2 0.28617 0.00420 23.8 3 0.29920 0.01117 23.8 4 0.31217 0.0224 5 23.8 5 0.3252 0.04145 23.8 6 0.3382 0.07314 23.8 7 0.3512 0.12625 23.9 8 0.3642 0.21435 23.9 9 0.3772 0.3617 23.9 10 0.3902 0.6053 23.9 11 0.4032 1.0102 23.9 12 0.4162 1.6975 24.0 13 0.4292 2.8294 24.0 14 0.4422 4.7240 24.1 15 0.4552 7.8870 24.1 16 0.4682 13.108 24.1

半导体PN结的物理特性测量 终定稿

半导体PN 结的物理特性测量 实验目的 (1) 了解用运算放大器测量弱电流的原理和方法。 (2) 测量PN 结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数。 实验仪器 PN 结物理特性实验仪 实验原理 1.PN 结 介于导体与绝缘体之间的物质叫半导体,在半导体中只有一种载流子导电,只有电子(负电荷)导电的半导体叫N 型半导体,只有空穴(正电荷)导电的半导体叫P 型半导体。以一定的工艺制成的P 型半导体和N 型半导体相邻的交接处,由于自由扩散形成的结叫PN 结。 三极管制造工艺的特点:发射极高掺杂浓度;基极很薄几微米到十几微米,减小复合电流;集电极低掺杂浓度,面积较大,有利于接收电子。发射结正向偏置,集电结反向偏置。 2.PN 结伏安特性及玻尔兹曼常数的测量 半导体在常温下PN 结电压与电流有如下指数关系: 0qU kT S I I e = (1) 公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。 3. 弱电流测量 实验装置如图1所示,所用PN 结由三极管提供,加在三极管B 、E 间的电压1U 则通过的电流为e I ,三极管电流分布满足e b c I I I =+,又因为b I 很小,所以e c I I ≈;LF356是一个高输入阻抗 集成运算放大器,用它组成电流-电压变换器,把c I 放大成2U ,且它们之间满足线性关系,因此可以说1U 与2U 之间满足指数函数关系,那么1U 与流过PN 结的电流e I 也满足指数关系。其工作原理

大学物理实验报告 PN结的温度特性的研究及应用

大学物理实验报告 PN结的温度特性的研究及应用得分教师签名批改日期 深圳大学实验报告 课程名称: 大学物理实验(三) 实验名称: pn结的温度特性的研究及应用 学院: 组号指导教师: 报告人: 学号: 班级: 实验地点实验时间: 实验报告提交时间: 1 一、实验设计方案 1、实验目的 了解PN结正向压降随温度变化的基本关系式。 在工作电流恒定的情况下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和 被测PN结材料的禁带宽度。 设计用PN结测温的方法。 2、实验原理 2.1 、PN结正向压降和工作电流、及所处的温度的关系: PN 结正向压降和工作电流、及所处的温度的基本函数关系如下: ,,KcKT, ----------(1) 0lnlnVVTTVV,,,,,,,,,,,FgLNLqIqF,, 其中: 导带

,19q,,1.610C,为电子的电荷。禁带 EeV,gF-23-1,K=1.38×10JK,为玻尔兹曼常数, 价带T――绝对温度。 图1 半导体的能带结I――PN结中正向电流。 f 构γ 是热学中的比热容比,是常数。 V(0)是绝对零度时PN结材料的导带底和价带顶的电势差。(半导体材料的能带理论中,把未g 排满电子的能量区域称作价带,空着的能量区域叫导带,不能排列电子的能量区域叫禁带,如图1所示。E叫禁带宽度.) g ,,KTKc,,lnVT 其中,是线性项。是非线性相。 0lnVVT,,,,,, NL,,LgqqIF,, 非线性项较小,(常温下)可忽略其影响,在恒流供电条件下PN结的V对T的依赖关系F取决线性项,即正向压降几乎随温度升高而线性下降。 2.2、PN结测温的方法 如果PN结正向压降在某一温度区域和温度变化恒定电流I F成线性关系,就可以利用这一特性将它作为温度传感器的 转换探头,原理如图2所示。将PN结做成的温度探头放在待温度显示结电压V F测环境中,通以恒定电流,温度变化可以引起结电压变化,图2 PN结测温原理测量结电压,将它转换成温度显示,从而达到测量温度的 目的。 2 在计算机实测实验过程中。将电压转换成温度显示是很简单的,只需作一个计算就可以了。 2.3、实验装置: 温度传感器

PN结特性和玻尔兹曼常数测定

PN 结特性和玻尔兹曼常数测定 1、实验目的 1.在同一温度下,正向电压随正向电流的变化关系,绘制伏安特性曲线; 2.在不同温度下,测量玻尔兹曼常数; 3.恒定正向电流条件下,测绘PN 结正向压降随温度的变化曲线,计算灵敏度,估算被测PN 结材料的禁带宽度 2、实验仪器 1.FB302A 型PN 结特性研究与玻尔兹曼常数测定仪 2.温度传感器PT100 3.PN-Ⅱ型PN 结综合实验仪 3、实验原理 3.1.PN 结伏安特性与玻尔兹曼常数测定 由半导体物理学可知,PN 结的正向电流-电压关系满足: 01be eU kT I I e ??=- ??? (1) 式(1)中I 是通过PN 结的正向电流,0I 是不随电压变化的常数,T 是热力学温度,e 是电子的电量, U 为PN 结正向电压降。由于在常温()300T K ≈时,/0.026kT e V ≈,而PN 结正向电压下降约为十分之几伏,则1be eU kT e ,于是有: 0be eU kT I I e = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I U -关系值, 则利用(1)式可以求出/e kT 。在测得温度后,就可以得到常数,把电子电量作为已知值代入,就可以求得玻尔兹曼常数,测得的玻尔兹曼精确值为

2311.38110k J K --=??。 为了精确测量玻尔兹曼常数。不用常规的加正向压降测正向微电流的方法, 而是采用11nA mA 范围的可变精密微电流源,能避免测量微电流不稳定,又能准确地测量正向压降。 3.2.弱电流测量 以前常用光点反射式检流计测量6111010A A -- 量级PN 扩散电流,但该仪器有 许多不足之处且易损坏。本仪器没有采用高输入阻抗运算放大器组成电流-电压变换器(弱电流放大器)测量弱电流信号,温漂大、读数困难等。为了更精确地测量玻尔兹曼常数,而设计了一个能恒流输出11nA mA 范围的精密微电流源。解决了在测量中很多不稳定因素,能准确地测量正向压降。 3.3.PN 结的结电压be U 与热力学温度T 关系测量 PN 结通过恒定小电流(通常电流1000I A μ=),由半导体物理可知be U 和T 近 似关系: be go U ST U =+ (3) 式(3)中 2.3o S mV C ≈-为PN 结温度传感器灵敏度。由go U 可求出温度OK 时半导体材料的近似禁带宽度go go E qU =。硅材料的go E 约为1.20eV 。 4、实验内容与主要步骤 1.实验系统检查与连接: (1)NPN 三极管的bc 极短路,be 极构成一个PN 结,并用长导线连接测量仪,可方便插入加热器。 (2)用七芯插头导线连接测试仪器与加热器。“加热功率”开关置“断”位置,在连接插头时,应先对准插头与插座的凹凸定位标记,即可插入。带有螺母的插头待插入后与插座拧紧,导线拆除时,直插式的应拉插头的可动外套,带有螺母的插头应旋松,决不可鲁莽左右转动或硬拉,否则可能拉断引线影响实验。 2.转动“加热功率”开关,从“断”至“低”,此时测试仪上将显示出室温为R T ,

相关文档
最新文档