空间的角与距离的计算

空间的角与距离的计算
空间的角与距离的计算

空间的夹角与距离

一.复习目标:

1.了解异面直线掌握异面直线所成角的概念, 会通过平移,将空间问题转化为平面问题,从而求异面直线所成的角;

2.了解直线与平面所成角的概念,能作出斜线与平面所成的角,会在直角三角形中求斜线与平面所成的角;

3.理解二面角的概念,能熟练的掌握二面角的平面角的常用作法;

4.掌握点到平面距离的概念,能作出点到平面的距离,利用解直角三角形的方法求出距离;

5.了解直线到平面、两平行平面距离的概念,能将直线到平面、两平行平面的距离转化为点到平面距离并进行计算;

6.掌握将空间问题转化为平面问题的化归思想 二.尝试训练:

1.平面的一条斜线与平面所成的角为θ,则θ的范围是 ( )

A 、0 o≤θ≤90 o

B 、0 o<θ≤90 o

C 、0 o≤θ<90 o

D 、0 o<θ<90 o 2.平面外一条直线和这个平面所成的角为θ,则θ的范围是 ( )

A 、0 o≤θ≤90 o

B 、0 o<θ≤90 o

C 、0 o≤θ<90 o

D 、0 o<θ<90 o 3.两条异面直线所成的角为θ,则角的范围是 ( ) A 、0 o<θ<180 o B 、0 o≤θ≤90 o C 、0 o<θ≤90 o D 、0 o≤θ<90 o 4.已知正方体ABCD - 1A 1B 1C 1D 棱长为a,

异面直线 1A D 与B 1C 所成的角______;求异面直线A 1C 与BD 所成的角______;求异面直线

1A 1C 与A 1B 所成的角_____ 1A D 与 1B 1C 间的距离_____ 1A B 与 1B 1C 间的距离____. 5.在正方体ABCD - 1A 1B 1C 1D 中,E 为DD 1的中点,求二面角E -AC -D 的平面角的正切值.

7.长方体ABCD - 1A 1B 1C 1D ,AB =4,BC =2,A 1A =1,求异面直线B 1D 和 1B C 所成角的余弦.

8.在边长为a 的正方体ABCD - 1A 1B 1C 1D 中,求与 1A 1C 平面BD 1C 所成角的正弦.

9.在△ABC 中,∠ACB =90o,P 是平面ABC 外的一点,PA =PB =PC ,若AC =12,P 到平面ABC 的距离是8,求P 到BC 的距离.

三.知识回顾:

1.异面直线所成的角:

(1)空间等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,则这两个角相等.

(2)异面直线所成的角定义:已知两条异面直线a ,b ,经过空间的任一点o ,作两直线a ′∥a ,b ′∥b ,则a ′与b ′所成的锐角(或直角)叫做异面直线a 、b 所成的角. ]90,0(00∈θ 2.直线和平面所成的角:

(1)斜线与平面所成的角:斜线与斜线在平面内射影所成的角叫做斜线与直线所成的角; (2)结论:斜线与平面所成的角是斜线与平面内任意一条直线所成角中的最小的角; (3)直线与平面所成的角θ有三种情况:直线在平面内,θ=0o;直线与平面垂直, θ=90o;直线与平面斜交,θ∈(0o,90o). 3.二面角:

(1)二面角定义:从一条直线出发的两个半平面组成的图形叫做二面角;

(2)二面角的平面角:一个平面垂直于二面角的棱,并与两个半平面分别相交成两条射线,则这两条射线所成的角叫二面角的平面角; ]180,0[00∈θ (3)直二面角:平面角是直角的二面角叫直二面角.

(4)二面角平面角的常见作法①定义法:关键如何取点,注重等腰三角形中点的应用 ②三垂线法:过二面角一个平面α内一点A 作AB ⊥β垂足为B ,过A 作棱l 的垂线

垂足为O 连OB 则∠AOB 为二面角平面角,关键是找二面角两个平面中一个平面的垂线 4.点到平面的距离:

(1)过平面外一点p 作平面的垂线po ,o 为垂足,则线段po 的长度叫点p 到平面α的距离; (2)注意等积法的应用 5.直线到平面的距离:

此直线特指平面的平行直线,方法是在直线上任意找一点,这点到平面的距离就是直线到平面的距离.

6.两平行平面间的距离:

(1)作直线l 垂直于两个平行平面,则两个垂足之间的距离为两平行平面间的距离,两平行平面的公垂线段的长度叫做两平行平面的距离;

(2)在两平行平面的一个面上找一个点,这个点到另一个平面的距离就是两平行平面的距离 (3)直线与平面,两平行平面间距离一般可以转化为点到平面距离。 7.异面直线所成角:与两异面直线都垂直且都相交的的直线称为公垂直线,则两交点间的线段为公垂线段,公垂线段的长为两异面直线间距离 四.典型例题:

例1、 空间四边形ABCD 中AC=10,BD=6,M,N 分别是AB,CD 中点MN=7

练习:正四面体ABCD 中M,N 分别是AB,CD 中点求直线MN 与AC

例2、长方体中,AB=BC=2,1AA 1=,E,H 分别是111BB ,B A 中点 1)求EH 和1AD 所成角2)求1BD 和C B 1所成角

例3、Rt △ABC 中∠ACB=0

90,AC=BC=1,PA ⊥平面

1)求证:平面PAC ⊥平面PBC 2)求PC 和平面PAB 3)求点A 到平面PBC 距离

练习:正三棱柱111

C B A -ABC 中侧棱长和底面边长都为2,

D 是AC 中点 1)求证:D A BD 1⊥,2)求直线B A 1与平面11A ACC 3)求点1B 到平面BD A 1距离

例4、正四面体中各棱长均为a ,E 为AD 中点 1)求AB 2)CE 和底面BCD 所成角3)求二面角A-BC-D B

例5、底面是菱形的四棱锥P-ABCD 中PA ⊥平面ABCD ∠

1)求四棱锥P-ABCD 体积, 2)求二面角P-CD-A

例6、四棱锥

P-ABCD 中侧面PAB 是边长为1的正三角形,ABCD 为菱形,∠ABC=600

, 平面PAB ⊥平面ABCD ,1)求证

PC ⊥AB, 2)求二面角

练习:正三棱柱111C B A -ABC 中侧棱长为3,底面边长为21)求证AD ⊥平面D CC 1 2)求点C 到平面1ADC 距离 3)求平面ADC 和平面1ADC 所成二面角

例7、底面是直角梯形的四棱锥-ABCD 中0

90ABC =∠,SA 求四棱锥S-ABCD 体积,2)求平面SCD 和平面SAB 所成二面角

五、课后练习:

1、四面体ABCD 中AD=BC ,E,F 分别是AB,CD 中点 1)若EF=

AD 2

2

,求异面直线AD,BC 所成角 2)若EF=AD 2

3

求异面直线AD,BC 所成角

2、直三棱柱ABC-111C B A 中0

90ACB =∠,11E ,D 分别是

求异面直线11AE ,BD 所成角

3、△ABC 为等边三角形,边长为1,PC ⊥平面ABC ,PC=2,求1)PA 和平面PBC 所成角2)求点C 到平面PAB 距离

4、在正方体1111D C B A ABCD -中,E ,F ,G 分别是AB ,B 1C 1,AA 1的中点. (1)求证:GBD EF 平面⊥

D B

B

A

P

C

(2)求异面直线AD 1与EF 所成的角

.

5、正四棱锥P-ABCD 中底面边长为a,侧棱长为2a ,1)求侧棱和底面所成角2)求侧面和底面所成二面角

6、四棱锥P-ABCD 中底面是正方形,PD ⊥平面ABCD ,

EBD ,2)求EB 和平面ABCD 所成角正切值

3)求点C 到平面EBD 距离

7、如图,已知在四棱锥E-ABCD ,侧面EAB ⊥底面ABCD (1)求证:;BC AE ⊥

(2)求直线EC 与底面ABCD (3)求点D 到平面ACE 的距离。

A C

8、如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,PA=PD ,且PD 与底面ABCD 所成的角为45

(Ⅰ)求证:PA ⊥平面PDC ;

(Ⅱ)已知E 为棱AB 的中点,问在棱PD 上是否存在一点Q ,使EQ ∥平面PBC ?若存在,写出点Q 的位置,并证明你的结论;若不存在,说明理由。

9、如图,四棱锥P —ABCD 的底面是AB=2,BC=2的矩形,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD

(1)证明:侧面PAB ⊥侧面PBC ;

(1)求侧棱PC 与底面ABCD 所成的角; (3)求直线AB 与平面PCD 的距离.

10、三棱锥P-ABC 中,侧面PAC 是边长为8的正三角形,平面PAC ⊥平面ABC ,△ABC 是等腰直角三角形090ABC =∠ 1)求P-ABC 体积 2)求二面角P-AB-C

11、四棱锥P-ABCD 中ABCD 是边长为2a 的菱形,∠BAD=0

60,PA ⊥平面ABCD ,

a 3PA = 1)求二面角P-BD-A 2)求点A 到面PBD

距离

P

A

C

12、直三棱柱111C B A -ABC 中,1CC BC ==2, 2AB AC ==,BF ⊥1AB 垂足为F 。

1)求证AC ⊥BF 2)求1C 到平面C AB 1距离,3)求二面角A -C B -B 1

13、四棱锥P-ABCD 中底面是正方形,PD ⊥平面ABCD,PD=DC,E

EF ⊥PB 垂足为F ,1)求证PA ∥平面EBD 2)求证PB ⊥平面

14、ABCD 是边长为a 的正方形,沿对角线BD 折叠后使AC =a , (1)求证平面ABD ⊥平面BCD;

(2)求二面角A -CD -B 的正切值;

(3)求点B 到平面ACD 的距离.

B B 1

2018届高三数学每天一练半小时:第55练 空间角与距离 含答案

一、选择题 1.如图所示,已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 上的投影D 为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为【 ) A.34 B.54 C.74 D.34 2.已知正三棱柱ABC -A 1B 1C 1的体积为94 ,底面是边长为3的正三角形.若P 为△A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为【 ) A.π6 B.π3 C.π4 D.23 π 3.如图所示,在三棱锥S —ABC 中,△ABC 是等腰三角形,AB =BC =2a ,∠ABC =120°,SA =3a ,且SA ⊥平面ABC ,则点A 到平面SBC 的距离为【 ) A.3a 2 B.a 2

C.5a 2 D.7a 2 二、填空题 4.如图,在等腰直角三角形ABD 中,∠BAD =90°,且等腰直角三角形ABD 与等边三角形BCD 所在平面垂直,E 为BC 的中点,则AE 与平面BCD 所成角的大小为________. 5.如图所示,在三棱锥S -ABC 中,△SBC ,△ABC 都是等边三角形,且BC =1,SA =32 ,则二面角S -BC -A 的大小为________. 6.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,给出以下命题: ①异面直线C 1P 与B 1C 所成的角为定值; ②二面角P -BC 1-D 的大小为定值; ③三棱锥D -BPC 1的体积为定值; ④异面直线A 1P 与BC 1间的距离为定值. 其中真命题的个数为________. 三、解答题 7.【2016·潍坊模拟)如图所示,底面ABC 为正三角形,EA ⊥平面ABC ,DC ⊥平面ABC ,EA =AB =2DC =2a ,设F 为EB 的中点.

空间两点之间的距离公式

空间两点间的距离公式 教学目标: 1、通过特殊到一般的情况推导出空间两点间的距离公式 2、感受空间两点间距离公式与平面两点间距离公式的联系与区别 教学重点 两点间距离公式的应用 教学难点 利用公式解决空间几何问题 教学过程 一、复习 1、空间点的坐标的特点 2、平面两点间的距离公式P 1(x 1,y 1),P 2(x 2,y 2) ________________ 线段P 1P 2中点坐标公式______________ 二、新课 1、设P 的坐标是(x,y,z),求|OP| |OP|=___________________________ 2、空间两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),求 |P 1P 2| |P 1P 2|=___________________________ 线段P 1P 2中点坐标公式_________________ 例:()()间的距离求空间两点1,0,6523 21--,P ,,P 练习:()()()513432251,,,C ,,,B ,,A ABC 的三个顶点已知? (1)求。ABC 中最短边的边长 ? (2)求边上中线的长度AC

例:试解释()()()365312222=-+++-z y x 的几何意义。 练习:1、已知()1,,222=++z y x z y x M 满足则M 点的轨迹为_________________ 2、求P ??? ? ??66,33,22到原点的距离。 3、()()。a AB a ,B ,,A 的值求设,4,,3,0210= 4、在长方体1111D C B A ABCD -,AD=2,AB=3,AA 1=2,E 为AC 中点,求D 1E 的长。 三、小结

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

空间坐标计算距离

空间坐标计算距离及计算器算角度 在空间中坐标计算距离: 设A(x1,y1,z1),B(x2,y2,z2) |AB|=√[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2] (工程中Z项为0,开根号时忽略Z的值---数值过小可忽略) |AB|=√[(x1-x2)^2 + (y1-y2)^2 ] 角度计算方法: Rab(锐角) Rab=acrtan[(Yb-Ya)/(Xb-Xa)] (计算出来为十进制度表示法,转换为度分秒见下) α=360°-Rab 例:后视点D41(3137842.164,537144.921)前视点D41-1 (3137826.46,537253.133)求S,α。 ①S= √[(Yb-Ya)^2+(Xb-Xa)^2] =109.346m Rab=acrtan[(Yb-Ya)/(Xb-Xa)] =acrtan(108.212/15.704) =acrtan6.890728(最好保留6位) ②计算器算acrtan6.890728 输入6.890728 点计算器上Inv +tan显示atand(6.890728)=81.742736(此时为十进制度数)再点dms(转换度分 秒)=81.4433即为81°44′33″ ③最后α=360°- 81°44′33″=278°15′26″ 计算器算角度转换度分秒 点开始----程序----附件----计算器

这个计算器有两种模式,点《查看》有一个下拉菜单,有标准型和科学型。选择科学型。在输入区下方有一排选项十六进制;十进制;八进制;二进制;角度;弧度;梯度。一般默认就是十进制和角度,如不是则应点上十进制和角度。 例:把18.69和15.5度转换成度分秒(电脑配置的科学计算器可能没有Hyp可少这一步) 先输入18.69---再钩上Hyp---再点dms。这时就显示18.4124, 这就是18度41分24秒。 输入15.5---钩上Hyp---点dms。显示15.3,就是15度30分。 如把度分秒转换为度(接上例) 先输入18.4124---钩上Ⅰnv---再点dms,就转换成度了18.69度。 要求函数值就必须输入度数,输入度数后正弦点sin;余弦点cos ;正切点tan,函数值直接就显示出来了。

空间点到直线的距离公式

空间点到直线的距离公式 y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)空间点到直线距离点(x0, y0, z0),直线L(点向式参数方程):(x-xl)/m=(y-yl)/n=(z- zl)/p=t。 (1)式(1)的注释:点(xl, yl, zl)是直线上已知的一点,向 量(m, n, p)为直线的方向向量,t为参数方程的参数。空间直线 的一般式方程(两个平面方程联立)转换为点向式方程的方法, 请参考《高等数学》空间几何部分。设点(x0, y0, z0)到直线L 的垂点坐标为(xc, yc, zc)。因为垂点在直线上,所以有:(xc-xl)/m=(yc-yl)/n=(zc-zl)/p=t (2)式(2)可变形为:xc=m*t+xl, yc=n*t+yl, zc=p*t+zl、 (3)且有垂线方向向量(x0-xc, y0-yc, z0-zc)和直线方向向量(m, n, p)的数量积等于0,即:m*(x0- xc)+n*(y0-yc)+p*(z0-zc)=0 (4)把式(3)代入式(4),可消去未知 数“xc, yc, zc”,得到t的表达式:t=[m*(x0-xl)+n*(y0- yl)+p*(z0-zl)]/(m*m+n*n+p*p) (5)点(x0, y0, z0)到直线的距离d就是该点和垂点(xc, yc, zc)的距离:d=√[(x0-xc)^2+(y0-yc)^2+(z0-zc)^2] (6)其中xc, yc, zc可以用式(3)和式(5)代入消去。 第 1 页共 1 页

高考数学分类专题复习之2425空间角与距离

O a b 600 第二十四、二十五讲 空间角与距离 ★★★高考在考什么 【考题回放】 1.如图,直线a 、b 相交与点O 且a 、b 成600 ,过点O 与a 、b 都成600角的直线有( C ) A .1 条 B .2条 C .3条 D .4条 2.(江苏?理)正三棱锥P-ABC 高为2,侧棱与底面所成角为45,则点A 到侧面PBC 的距离是( B ) A .54 B .56 C .6 D .64 3.(全国Ⅰ?理)如图,正四棱柱1111D C B A ABCD -中,AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .54 4.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于 3 π . 5.(四川?理)如图,在正三棱柱ABC-A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面 ACC 1A 1所成的角是 6π . 6.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点, (1) 求直线A 1C 与DE 所成的角; (2) 求直线AD 与平面B 1EDF 所成的角; (3) 求面B 1EDF 与 面ABCD 所成的角。 【专家解答】 (1)如图,在平面ABCD 内,过C 作CP//DE 交直 线AD 于P ,则CP A 1∠(或补角)为异面直线A 1C 与 DE 所成的角。在ΔCP A 1中,易得 a P A a DE CP a C A 2 13 ,25,311== ==,由余弦定理得1515cos 1=∠CP A 。 故异面直线A 1C 与DE 所成的角为15 15 arccos 。 (2)ADF ADE ∠=∠ , ∴AD 在面B 1EDF 内的射影在∠EDF 的平分线上。而B 1EDF 是菱形,∴DB 1 为∠EDF 的平分线。故直线 AD 与面B 1EDF 所成的角为∠ADB 1.在RtΔB 1AD 中, ,3,2,11a D B a AB a AD ===则3 3cos 1= ∠ADB 。 故直线AD 与平面B 1EDF 所成的角为3 3arccos 。 (3)连结EF 、B 1D ,交于点O ,显然O 为B 1D 的中点,从而O 为正方体ABCD —A 1B 1C 1D 1的中心,作OH⊥平面ABCD ,则H 为正方形ABCD 的中心。再作HM⊥DE,垂足为M ,连结OM ,则OM⊥DE(三垂线定理),故∠OMH 为二面角B 1-DE-A 的平面角。 在RtΔDOE 中,23,22a OD a OE ==a DE 2 5 =, 则由面积关系得a DE OE OD OM 1030 =?=。 在RtΔOHM 中6 30 sin = =∠OM OH OMH 。 O

空间角与距离求法(高二)

1 空间角与点面距离求法 求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结. 1.空间角的求法 在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式 (1) b a ,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做 向量a 与向量b 的夹角,记作>≤≤=< . (3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,222222||z y x b ++= , 212121z z y y x x b a ++=? . 二、两条异面直线所成的角 (1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b ' 所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角). (2) 范围: 异面直线a 和b 所成的角为θ: 900≤<θ, 则cos 0≥θ . (3) 求法: ▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角.. 时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b 分别是异面直线a 和b 的方向向量,则 | ||||||||||||,cos |cos b a b a b a b a b a ??=??=><=θ . 说明: ① 其中=θ或- 180 ; ② 在计算b a ?时可用向量分解或坐标进行运算. 三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角) 如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

2.4空间直角坐标系与空间两点的距离公式

2.4. 空间直角坐标系与空间两点的距离公式 课程学习目标 [课程目标] 目标重点:空间直角坐标系和点在空间直角坐标系中的坐标及空间两点距离公式.目标难点:确定点在空间直角坐标系中的坐标,以及空间距离公式的推导. [学法关键] 1.在平面直角坐标系中,过一点作一条轴的平行线交另一条轴于一点,交点在这个轴上的坐标,就是已知点相应的一个坐标,类似地,在空间直角坐标系中,过一点作两条轴确定的平面的平行平面交另一条轴于一点,交点在这条轴上的坐标就是已知点的一个相应的坐标. 2.通过类比平面内两点间的距离公式来理解空间两点的距离公式 研习点1.空间直角坐标系 为了确定空间点的位置,我们在空间中取一点O作为原点,过O点作三条两两垂直的数轴,通常用x、y、z表示. 轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合. 这时,我们在空间建立了一个直角坐标系O-xyz,O叫做坐标原点. 如何理解空间直角坐标系? 1.三条坐标轴两两垂直是建立空间直角坐标系的基础; 2.在空间直角坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合; 3.如果让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系; 4.在平面上画空间直角坐标系O-xyz时,一般情况下使∠xOy=135°,∠yOz=90°. 研习点2.空间点的坐标 1.点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴,这个平面与x轴的交点记为P x,它在x轴上的坐标为x,这个数x就叫做点P的x坐标;2.点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴,这个平面与y轴的交点记为P y,它在y轴上的坐标为y,这个数y就叫做点P的y坐标;3.点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴,这个平面与z轴的交点记为P z,它在z轴上的坐标为z,这个数z就叫做点P的z坐标; 这样,我们对空间的一个点,定义了一组三个有序数作为它的坐标,记做P(x,y,z),其中x,y,z也可称为点P的坐标分量.

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

必修2空间角和空间距离(理科)

空间角和空间距离 空间角 (1)两条异面直线所成的角: 两条异面直线a、b,经过空间任意一点O作直线c∥a,d∥b,我们把直线c和d所成的锐角(或直角)叫做异面直线a与b所成的角。 注意:①两条异面直线a,b所成的角的范围是(0°,90°]. ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出. ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法: (i)在空间任取一点,这个点通常是线段的中点或端点. (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角(锐角或直角),这时我们要注意两条异面直线所成的角的范围. (2)直线与平面所成的角 1)直线与平面斜交时,直线与平面所成的角是指这条直线和它在平面上的射影所成的锐角. 2)直线与平面垂直时,直线与平面所成的角为. 3)直线与平面平行或在平面内时,直线与平面所成的角为. 显然,直线与平面所成的角的范围为. 4)求一条斜线和平面所成的角:做出这条斜线在平面内的射影,再确定斜线和射影所成角的大小即可。 斜线在平面内的射影:从斜线上除斜足外的任意一点向平面引垂线,过斜足和垂足的直线叫做斜线在这个平面内的射影,斜线上任意一点在平面内的射影一定在斜线的射影上。 (3)二面角 (1)二面角的定义 一条直线出发的二个半平面所形成的图形称为二面角,这条直线称为二面角的棱,二个半平面称为二面角的面. (2)二面角的平面角的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做二面角的平面角.注意:①二面角的平面角两边必须都与棱垂直. ②二面角的平面角的大小是由二面角的两个面的位置关系所确定的,与定义中棱上任一点的选择无关,也就是二面角的平面角不只一个,但这些平面角的大小是相等的. ③二面角的平面角的范围是,当两个半平面重合时,; 相交时;共面时.平面角是直角的二面角叫做直二面角. (3)二面角的平面角的确定与求法

空间角与距离知识点与题型归纳总结

空间角与距离知识点与题型归纳总结 知识点精讲 一、 空间角的定义和范围 (1) 两条异面直线所成角θ的范围是0]2π(,,当θ=2 π 时,这两条异面直线互相垂直。 (2) 斜线AO 与它在平面α内的射影AB 所成角θ叫做直线与平面所成的角。 平面的斜线和平面所成的角,是这条斜线和这个平面内的任一直线所成角中最小的角,如果直线 和平面垂直,那么直线与平面所成的角为 2 π ;如果直线和平面平行或直线在平面内,那么就是直线和平面所成的角为0.直线和平面所成的角的范围为[0]2π,;斜线和平面所成的角的范围为(0,).2 π (3) 从一条直线出发的两个半平面所组成的角叫做二面角,这条直线叫做二面角的棱,这两个半平 面叫做二面角的面,棱为l ,两个平面分别为α,β的二面角记做α-l -β,二面角的范围是[0,]π (4) 一个平面垂直于二面角的公共棱l ,且与两个半平面的交线分别是射线OA ,OB ,则∠AOB 叫做二面角的平面角,平面角是直角的二面角叫做直二面角,相交成直二面角的两个平面垂直。 二、 点到平面距离的定义 点到平面的距离即点到它在平面内的正射影的距离。 题型归纳及思路提示 题型1 空间角的计算 思路提示 求解空间角如异面直线所成角,直线与平面所成角,二面角的平面角的大小;常用的方法有:(1)定义法;(2)选点平移法;(3)垂线法:(4)垂面法;(5)向量法。 一、异面直线所成的角 方法一:通过选点平移法将异面直线所成的角转化为共面相交的两直线的夹角来求解,但要注意 两条异面直线所成角的范围是0]2π (,。 方法二:向量法,设异面直线a 和b 的方向向量为a r 和b r ,利用夹角余弦公式可求得a 和b 的夹 角大小α,且|| cos cos ,|||| a b =|a b |a b α?<>=r u u r r r u r u u r 。 例8.59 直三棱柱111ABC A B C -中,若∠BAC =90°,AB =AC =1AA ,则异面直线1BA 与1AC 所成的角等于( ) A.30° B.45° C.60° D.90° 分析 通过选点平移法将异面直线所成的角转化为相交直线的夹角,在三角形中利用余弦定理来求解.

空间角与距离

空间角与距离 考点1 求异面直线所成的角 1.如图所示,在长方体ABCD -EFGH 中,AB =23,AD =23,AE =2,则BC 和EG 所成角的大小是________,AE 和BG 所成角的大小是________. 2空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E 、F 分别为BC 、AD 的中点,求EF 与AB 所成角的大小. 3(2018·全国卷Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( ) A. 22 B.32 C.52 D.72 4.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为(C) A.32 B.155 C.105 D.33 5.四棱锥P -ABCD 中,底面是边长为2的正方形,若四条侧棱相等,且该四棱锥的体积V =46 3 ,则直线PA 与底面ABCD 所成角的大小为( ) A .30° B .45° C .60° D .90°

6棱长都为2的直平行六面体ABCD -A 1B 1C 1D 1中,∠BAD =60°,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为 . 7已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为9 4 ,底面是边长为3的正三角形.若P 为底面A 1B 1C 1 的中心,则PA 与平面ABC 所成角的大小为( ) A.5π12 B.π3 C.π4 D.π6 8已知四棱锥P -ABCD ,底面ABCD 是菱形,PD ⊥平面ABCD ,∠DAB =60°,E 为AB 中点,F 为PD 中点,PD =AD. (1)证明:平面PED ⊥平面PAB ; (2)求二面角P -AB -F 的平面角的余弦值. 9如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上. (1)证明:AP ⊥BC ; (2)已知BC =8,PO =4,AO =3,OD =2.求二面角B -AP -C 的大小.

浅谈空间距离的几种计算方法

空间距离 常见问题: (1)点到平面的距离;(2)两条异面直线的距离;(3)与平面平行的直线到平面的距离;(4)两平行平面间的距离。 一、点到平面的距离 求解点到平面的距离常用的方法有以下几种: 1、由已知的或可以证明垂直的关系,则垂线段的长度就是点到平面的距离。 2、过点作已知平面的垂线,可以找到垂足的位置,从而得到点到平面的距离。例如在正三棱锥中,求顶点到底面的距离,可以过正三棱锥的顶点作底面的垂线,垂足为底面正三角形的中心,然后通过计算求得距离。又例如若已知所在的平面与已知平面垂直,可以过点作两平面交线的垂线,此点与垂足间的距离即为点到平面的距离。 3、用等体积法求解点面距离。 例1、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。 解:(1)连接FC,EC, 由已知FC=22, 41=∴FC ,3482511=++=EC , 1091=+=EF 10 104 1023416102cos 1212121-=??-+=?-+=∠FC EF EC FC EF EFC 10 1031011sin 1=-=∠∴EFC 610 10341021sin 21111=??=∠?=∴?EFC FC EF S EFC 设1C 到EF 的距离为d ,则510610 1212,621===∴=?EF d d EF (2)设C 到平面EF C 1的距离为h

EFC C EF C C V V --=11 131311CC S h S EFC EF C ?= ?∴?? 又451212221132125=??-??-??-?=?EFC S 3 246224111 =?=?=∴??EF C EF C S CC S h 二、两条异面直线的距离 1、对于特殊的图形,可以作出异面直线的公垂线段并证明,然后算出公垂线段的长度。 2、转化为两个平行平面的距离,再转化为点面的距离进行计算。 例3、三角形ABC 是边长为2的正三角形, ?P 平面ABC ,P 点在平面ABC 内的射影为 O ,并且PA = PB = PC =3 。求异面直线PO 与BC 间的距离。 分析:过点P 作平面ABC 的垂线段PO ,但是必须了解垂足O 的性质,否则计算无法进行。为此连结OA ,OB ,OC (如图). 则由PA =PB =PC 可得OA =OB =OC ,即O 是正三角形ABC 的中心.于是可以在直角三角 形PAO 中由PA =2 6 3 ,OA = 2 3 3 ,得PO =2 3 3 。有了以上基础,只要延长AO ,交BC 于D ,则可证明OD 即为异面直线PO 与BC 间的距离,为 3 3 。 三、直线到平面的距离 直线到平面的距离是过直线上任意一点向平面作垂线所得垂线段的长度,一般求解都是转化为求点到平面的距离。 例4、已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点。求11C B 到平

浅谈空间距离的几种计算方法

浅谈空间距离的几种计算方法 【摘要】 空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。 【关键词】 空间距离:点线距离点面距离异面直线距离公垂线段等体积法【正文】 空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。 这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。对学生来说是较难掌握的一种方法,难就难在“一作”上。所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。 一、两点之间的距离 两点间的距离的计算通常有两种方法: 1、可以计算线段的长度。把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。 2、可以用空间两点间距离公式。如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。

第37讲空间夹角与距离

D B A C α 第三十七讲 空间夹角和距离 一、复习目标要求 1.能借助空间几何体内的位置关系求空间的夹角和距离; 2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 二、2010年命题预测 空间的夹角和距离问题是立体几何的核心内容,高考对本讲的考察主要有以下情况:(1)空间的夹角;(2)空间的距离;(3)空间向量在求夹角和距离中的应用。 预测2010年高考对本讲内容的考察将侧重空间向量的应用求夹角、求距离。课本淡化了利用空间关系找角、求距离这方面内容的讲解,而是加大了向量在这方面内容应用的讲解,因此作为立体几何的解答题,用向量方法处理有关夹角和距离将是主要方法,在复习时应加大这方面的训练力度。 题型上空间的夹角和距离主要以主观题形式考察。 三、知识精点讲解 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 (1)异面直线所成的角的范围是2 , 0(π 。求两条异面直线所成的角的大小一般方法是 通过平行移动直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用三角形来求角。 (2)直线与平面所成的角的范围是2 , 0[π。求直线和平面所成的角用的是射影转化法。 具体步骤如下: ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,α为斜线与平面内任何一条直线所成的角,则有αθ≤; (3)确定点的射影位置有以下几种方法:

高考数学试题-第2018讲空间中的夹角和距离 最新

普通高中课程标准实验教科书—数学[人教版] 高三新数学第一轮复习教案(讲座12)—空间中的夹角和距离 一.课标要求: 1.掌握两条直线所成的角和距离的概念及等角定理;(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。 2.掌握点、直线到平面的距离,直线和平面所成的角; 3.掌握平行平面间的距离,会求二面角及其平面角; 二.命题走向 高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展,从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 预测18年高考试题: (1)单独求夹角和距离的题目多为选择题、填空题,分值大约5分左右;解答题中的分步设问中一定有求夹角、距离的问题,分值为6分左右; (2)选择、填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提。 三.要点精讲 1.距离 空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的。 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 (1)两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度。 (2)点到平面的距离 平面外一点P在该平面上的射影为P′,则线段PP′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。○2等体积法。 (3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离; (4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。

空间的角度与距离(附答案)

基础训练34(A) 空间的角度与距离 ●训练指要 掌握空间有关的角与距离的概念、范围、计算方法,会计算有关的距离和角. 一、选择题 1.(2001年全国高考题)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为P1、P2、P3. 若屋顶斜面与水平面所成的角都是α,则 A.P3>P2>P1 B.P3>P2=P1 C.P3=P2>P1 D.P3=P2=P1 2.给出下列四个命题: ①如果直线a∥平面α,a 平面β,且α∥β,则a与平面α的距离等于平面α与β的距离; ②两条平行直线分别在两个平行平面内,则这两条平行直线的距离等于这两个平面间的距离; ③异面直线a、b分别在两个平行平面内,则a、b的距离等于这两个平面的距离; ④若点A在平面α内,平面α和β平行,则A到平面β的距离等于平面α与平面β的距离. 其中正确的命题的个数是

A.1 B.2 C.3 D.4 3.如图,正三棱柱ABC —A 1B 1C 1的各条棱长均相等,则AC 1与平面 BB 1C 1C 所成角的余弦值等于 A.4 10 B.66 C.26 D.2 10 二、填空题 4.二面角α—l —β的面α内有一条直线a 与l 成45°的角,若这个二面角的平面角也是45°,则直线a 与平面β成角的度数为_________. 5.三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离的比为1∶ 2∶3,PO =214,则P 点到这三个平面的距离分别是_________. 三、解答题 6.如图,在正三棱锥P —ABC 中,侧棱长3 cm ,底面边长2 cm ,E 是BC 的中点,EF ⊥P A ,垂足为F . (1)求证:EF 为异面直线P A 与BC 的公垂线段; (2)求异面直线P A 与BC 间的距离. 7.如图,正四棱锥S —ABCD 的所有棱长都相等,过底面对角线 AC 作平行于侧棱SB 的截面交SD 于E . (1)求AB 与SC 所成角的大小; (2)求二面角E —AC —D 的大小; (3)求直线BC 与平面EAC 所成角的大小. 8.在棱长为a 的正四面体ABCD 中,M 、E 分别是棱BD 、BC 的中点,N 是BE 的中点,

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

立体几何三空间的角与距离.

、空间的角与距离 1?异面直线所成的角: 范围是(0,—]; 2 一般方法是平移直线,构造三角形,把异面问题转化为共面问题来解决。平移时,固定一条,平移另一条( 在某平面 内),或两条同时平移到某特殊位置,顶点选择在特殊位置上; 2?直线与平面所成的角: 范围是[0,—]。 2 关键是:找过斜线上一点与平面垂直的直线 ;连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;把该角置 于三角形中计算。 注:确定点的射影位置有以下几种方法: ① 结论:如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上; ② 两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上; ③ 利用三棱锥的有关性质: a 若侧棱相等或侧棱与底面所成的角相等,则顶点落在底面上的射影是底面三角形的外心; b. 若顶点到底面各边距离相等或侧面与底面所成的角相等,则顶点落在底面上的射影是底面三角形的内心 c. 如果侧棱两两垂直或各组对棱互相垂直,则顶点落在底面上的射影是底面三角形的垂心; 3.二面角 二面角的范围一般是指 (0,]。 作二面角的平面角常有三种方法 ① 定义法: ② 三垂线定理法:自二面角的一个面上一点向另一 面引垂线,再由垂足向棱作垂线得到棱上的点 垂 足),斜足与面上一点连线和斜足与垂足连线所 夹的 角,即为二面角的平面角; ③垂面法: 作与棱垂直的平面,截二面角得两条射线所成的角就是二面角的平面角。 ④面积射影法:S S c o s (S 为原斜面面积 ,S 为射影面积,为斜面与射影所成二面角的平面角 它对于任意多边形都成立,是求二面角的好方法 .当作角困难时,易求斜面及射影面积,可直接用公式求出二面角的大小。 二.空间的距离 (1) 点到平面的距离常用求法 (点到直线的距离、直线到平面的距离及平面与平面间的距离(仅平行时)略) ① 定义法:作垂线 ② 转移法:平行线转移或中点转移(斜线中点)等 ③ 等体积法: (2) 异面直线间的距离常有求法: 异面直线a,b 间的距离为a,b 间的公垂线段的长. ① 定义法 ② 转化为线面距离: 找或作出过b 且与a 平行的平面,则直线 a 到平面的距离就是异面直线 a,b 间的距离. ③ 转化为面面距离: 找或作出分别过a,b 且与b , a 分别平行的平面,则它们距离就是异面直线 a,b 间的距离. 1、已知四棱锥 P — ABCD 底面ABCD 是菱形 DAB 60 , PD 平面ABCD PD=AD 点E 为AB 中点,点F 为PD 中 (或旁心); (