第八章记数据统计法—卡方检验法

第八章记数据统计法—卡方检验法
第八章记数据统计法—卡方检验法

第八章记数数据统计法—卡方检验法

知识引入

在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。

卡方检验是专用于解决计数数据统计分析的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。

在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。

第一节卡方拟合性检验

一、卡方检验的一般问题

卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为:

这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。它主要应用于两种情况:

卡方检验能检验单个多项分类名义型变量各分类间的实际观测次数与理论次数之间是否一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。这一类检验称为拟合性检验。

拟合性检验的零假设是观测次数与理论次数之间无差异。其中理论次数的计算一般是根据某种理论,按一定的概率通过样本即实际观测次数来计算。这里所说的某种理论,可能是经验规律,也可能是理论分布。确定理论次数是卡方检验的关键。

拟合性检验自由度的确定与两个因素有关:一是分类的项数,二是在计算理论次数时,所用统计量或约束条件的个数,这两者之差即为自由度。由于一般情况下,计算理论次数时只用到“总数”这一统计量,所以自由度一般是分类的项数减1。但在对连续数据分布的配合度检验中,常常会用数据个数、平均数、标准差等统计量来计算理论次数,所以此时的自由度应从总分类项中减去更多的个数。按照检验中理论次数的定义不同,拟合性检验有以下集中应用。

二、检验无差假设

所谓无差假设,是指各项分类的实计数之间没有差异,也就是说各项分类之间的概率相等(均匀分布),因此理论次数完全按概率相等的条件来计算。即任一项的理论次数都等于总数/分类项数。因此自由度也就等于分类项数减1。

【例1】随机地将麻将色子抛掷300次,检验该色子的六个面是否均匀。结果1-6点向上的次数依次是,43,49,56,45,66,41。

解:每个类的理论次数是300/6 = 50,代入公式:

因此,在0.05的显著性水平下,可以说这个色子的六面是均匀的。

【例2】随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。

解:如果没有显著的差异,则赞成与反对的各占一半,因此是一个无差假设的检验,于是理论次数为60/2=30,代入公式:

所以对于文理分科,学生们的态度是有显著的差异的。

三、检验假设分布的概率

这里的假设分布可以是经验性的,也可以是某理论分布。公式中所需的理论次数则按照这里假设的分布进行计算。

【例3】国际色觉障碍讨论会宣布,每12个男子中,有一个是先天性色盲。从某校抽取的132名男生中有4人是色盲,问该校男子色盲比率与上述比例是否有显著差异?

解:按国际色觉障碍讨论会的统计结果,132人应该有132/12=11人是色盲,剩下的121人非色盲,代入公式有:

因此,在0.05和显著性水平下,该校男子色盲比率与国际色觉障碍讨论会的统计结果有显著差异,显然根据比例可知该校的色盲率小于国际色觉障碍讨论会的统计结果。

【例4】在英语四级考试中,某学生做对了80个四择一选择题中的28题,现在要判断该生是否是完全凭猜测做题。

解:假如该生完全凭猜测做题,那么平均而言每道题做对的可能性是1/4,因此80个题中平均而能做对80/4=20题,代入公式有:

因此,该生可能会做一些题。

四、连续变量分布的拟合性检验

对于一组连续数据,经常需要对其次数分布究竟服从哪种理论分布进行探讨,这一方面的主要应用就是在前面经常所提到的总体正态性检验。首先要将测量数据整理成次数分布表和画出次分布图,并据此选择恰当的理论分布。这些理论分布是多种多样的,例如有正态分布、均匀分布等。然后根据选择的理论分布计算出理论次数,就可以计算卡方统计量并进行显著性检验了。若差异显著,说明所选择的理论分布不合适,可以再选一个理论分布进行检验,直至完全拟合。当然有时也只需检验是否与某确定的理论分布相符,如正态性检验(参见教材有关内容)。

对连续随机变量分布的吻合性检验,关键的步骤是计算理论次数与确定自由度。理论次数的计算是按所选理论分布规律,并利用观测数据的有关统计量来计算各分组(次数分布表中)理论次数。自由度则是用分组数减去计算理论次数时所用统计量的数目。

这种拟合性检验计算较为繁琐,不做要求。

五、小理论次数时的连续性校正

卡方检验中,当某分类理论次数小于5时,卡方统计量不能很好地满足卡方分布,此时需要对卡方统计量进行校正,称为卡方的连续性校正,其公式如下:

尽管采用此方法校正后,卡方统计量能较为接近卡方分布,不过我们仍然建议在实际中最好增大样本的容量,尽量减少出现这种不大服从理论分布的情况。

第二节独立性检验

卡方检验还可以用于检验两个或两个以上因素(各有两项或以上的分类)之间是否相互影响的问题,这种检验称为独立性检验。例如要讨论血型与性格的关系,血型有A、B、AB、O四类,性格采用心理学上的A型性格来划分,即有A型和B型两种,每个人可能是它们之间交叉所形成的8种类型中的一种,那么倒底它们之间有不有关系,就可以用卡方独立性检验。

卡方独立性检验用于检验两个或两个以上因素(各有两项或以上的分类)之间是否相互影响的问题。所谓独立,即无关联,互不影响,就意味着一个因素各个分类之间的比例关系,在另一个因素的各项分类下都是相同的,比如在血型与性格关系中,如果A型性格人群中各血型的比例关系,与B型性格人群中各血型的比例关系相同,就可能说血型与性格相互独立,当然这里的“两者比例相同”在统计的意义下,应表述为“两比例差异不超过误差范围”,因为就算总体之间相互独立,收集到两个比例完全相同的样本的可能是很小很小的,甚至是不可能的。相反,若一个因素各个分类之间的比例关系,在另一个因素的各项分类下是不同的,则它们之间相关。假如A型性格中A型血的比例高于B型性格中A型血的比例,而且达到显著水平,那么就可以说血型与性格之间相关,不相互独立。

卡方独立性检验的零假设是各因素之间相互独立。因此理论次数的计算也是基于这一假设,具体计算时,采用列联表的方式,后面将举例说明。

【例1】某校对学生课外活动内容进行调查,结果整理成下表,表中彩色格子里的数是原始数据的汇总数,括号内的数是理论次数(是按下面将要介绍的原理计算得来的),此外的是原始数据。

性别(因素2)

课外活动内容(因素1)

小计和(fx) 体育文娱阅读

男生21(15.3) 11(10.2) 23(29.5) 55

女生 6(11.7) 7(7.8) 29(22.5) 42

小计和(fy) 27 18 52 97

由于所有学生参加三项活动的比例是27:18:52,因此如果课外活动的选择与性别没有关系的话,男女生参加这三项活动的比例也应是这同一比例,而男女各自的人数可以计算,所以每格内的理论次数的计算方法如下:

男生中

参加体育活动的理论人数:55×27/97=15.3

参加文娱活动的理论人数:55×18/97=10.2

参加阅读活动的理论人数:55×52/97=29.5

女生中

参加体育活动的理论人数:42×27/97=11.7

参加文娱活动的理论人数:42×18/97= 7.8

参加阅读活动的理论人数:42×52/97=22.5

我们将行列的小计和分别用f x和f y来表示,总人数用N 来表示时,上述计算理论次数的方法可以表示为:

fe ij = fx i× fy j/N

所以,卡方独立性检验的公式可以表示如下,其中最后一个式子比较便于计算,fxy 表示每格的原始数据。

由于在计算理论次数时,用了按每个因素分类的小计和(fx 和fy,其个数分别记为R 个和C 个),和总和N ,而总和又可由按每个因素分类的小计和计算得来,因此若从总分类个数R×C中减去R+C,则将总和重复减去了,因此要补1 个自由度回来,所以最终独立性检验的自由度表示为:

上述例题最终计算得:

或者:

这两个公式的计算结果有一点点差异,这完全是计算误差即四舍五入引起的。

df = (3-1)(2-1) = 2,而χ20.05(2) = 5.99,所以在0.05的显著性水平下,拒绝零假设,即可以认为性别与课外活动内容有关联,或者说男女生在选择课外活动上存在显著的差异。

四格表独立性检验

对于两个都只作两项分类的因素,它们的数据整理成的是一个2×2 的表格,一般称为四格表,对于四格表教材里给出了一个更简洁的公式:

公式中,a、b、c、d的规定要求是a和d必须呈对角线。该公式的含义非常明确,即当对角线单元格中的次数差异越大时,卡方检验越容易显著,自然也就意味着两变量间的关联越密切。掌握了一般的R*C表计算后,四格表计算相对简单地多。这里不再展开。

注意,在独立性检验中,同样存在某格的理论次数小于等于 5 的问题,如同拟合性检验中一样,我们仍然建议在实际中最好增大样本的容量,尽量减少出现这种不大服从理论分布的情况。

此外,在独立性检验中,若拒绝了零假设,即各因素之间有关联,则如同方差分析中仅判定了存在交互作用一样,只是一个总体的结果,并不能回答具体关联的形式的问题。如果各因素之间独立,则到此为止,若各因素间有关联,还应该作进一步的分析,具体搞清楚各变量的次数间是如何关联的。对此卡方检验有一些办法,但不如参数检验中那样严格。卡方独立性检验一般也仅限于两变量间的关联考察,对于多个名义型变量,往往采用分拆一个变量分别进行独立性检验的办法,然后试图整合多次检验的结果。这种做法就显得更牵强一些。

品质相关

卡方检验既然是用来解决变量间关联性的,则也可以构造和积差相关或等级相关系数一样的相关程度的度量,称为品质相关。常用的品质相关有以下几种:

1、Φ相关系数

Φ相关只适用于四格表,它要求两变量是不同性质的。Φ相关的公式实际上是根据四格表的卡方值变换而来的,通过变换使得其取值大约在正负1之间,这样便于联系一般的相关系数的含义进行解释。在卡方检验一节,我们曾讲到卡方值的大小反映了实际次数与理论次数之间差异的大小,而独立性检验中的理论次数是根据两变量独立的假设计算出来的,因此卡方值的大小也就反映了两变量距独立有多远,离独立越远就越相关,因此卡方值本身就反映了两变量间相关的程度。Φ相关的计算公式如下:

Φ相关系数依分子的正负号可取正负值。不过,所有的品质相关几乎都不是独立构造的,而都是对卡方检验中卡方统计量的变换。因此实际上,只要进行了卡方独立性检验,则这两步过程就一次解决了。计算品质相关系数只是为了更好地理解两变量间关系的密切程度。

2、列联相关C系数

列联相关实际上是将Φ相关的适用情况从四格表扩展到一般的列联表。列联相关公式的来历也基本上与Φ相关相同。列联相关公式为:

该系数的取值也在0和1之间,不会取到1。与使用Φ相关一样,使用列联相关之前,最好先检验两变量是否相关,只有两变量相关时,这一系数才有意义。

阅读材料

班上要选班长,有两名候选人A和B,他们获得的票数分别是45和49。班主任认为票数悬殊太小,不足以说明B更受欢迎,因此决定让二者各任一周班长,两周后再进行公开投票。B很不服气,认为老师偏心,请你为他主持公道,你能不能用统计学的知识来说明这次投票的结果?先想一想

这个案例可以用卡方分布来检验两名候选人的票数是否有显著差异。

得出的显著性水平是0.68,显然,二者所得票数确实无显著差异,老师的决策是对的。

《化妆品微生物标准检验方法》GB 79181~5——87

一、总则 General Principle 1 范围 本规范规定了化妆品微生物学检验总则。 本规范适用于化妆品样品的采集、保存、供检样品制备。 2 仪器和设备 2.1 天平。 2.2 高压灭菌器。 2.3 振荡器。 2.4 三角瓶。 2.5 玻璃珠。 2.6 玻璃棒。 2.7 刻度吸管。 2.8 研钵。 2.9 均质器。 2.10 恒温水浴箱。 2.11 采样用具:不锈钢勺,剪刀,开罐器等。 3 培养基和试剂 3.1 生理盐水 成分:氯化钠8.5g 蒸馏水加至1000 mL 溶解后,分装到加玻璃珠的三角瓶内,每瓶90mL,103.43kPa(15 lb)20min高压灭菌。3.2 SCDLP液体培养基 成分:酪蛋白胨17g 大豆蛋白胨3g 氯化钠5g 磷酸氢二钾 2.5g 葡萄糖 2.5g 卵磷脂1g 吐温80 7g 蒸馏水1000mL 制法:先将卵磷脂在少量蒸馏水中加温溶解后,再与其它成分混合,加热溶解,调pH为7.2~7.3,分装,103.43kPa(15lb)20min高压灭菌。注意振荡,使沉淀于底层的吐温80充分混合,冷却至25℃左右使用。 注:如无酪蛋白胨和大豆蛋白胨,也可用多胨代替。 3.3 灭菌液体石蜡。 3.4灭菌吐温80。

4 样品的采集及注意事项 4.1 所采集的样品,应具有代表性,一般视每批化妆品数量大小,随机抽取相应数量的包装单位。检验时,应分别从两个包装单位以上的样品中共取10g或10mL。包装量小于20g的样品,采样量应适量增加,其总量应大于16g。 4.2 供检验样品,应严格保持原有的包装状态,进口产品应为市售包装。容器不应有破裂,在检验前不得打开,防止样品被污染。 4.3 接到样品后,应立即登记,编写检验序号,并按检验要求尽快检验。如不能及时检验,样品应放在室温阴凉干燥处,不要冷藏或冷冻。 4.4 若只有一份样品而同时需做多种分析,如微生物、毒理、化学等,应先做微生物检验,再将剩余样品做其它分析。 4.5 在检验过程中,从打开包装到全部检验操作结束,均须防止微生物的再污染和扩散,所用采样用具、器皿及材料均应事先灭菌,全部操作应在无菌室内进行,或在相应条件下,按无菌操作规定进行。 5 供检样品的制备 5.1 液体样品 5.1.1 水溶性的液体样品,量取10mL加到90mL灭菌生理盐水中,混匀后,制成1:10检液。 5.1.2 油性液体样品,取样品10mL,先加5mL灭菌液体石蜡混匀,再加10mL灭菌的吐温80,在40℃~44℃水浴中振荡混合10min,加入灭菌的生理盐水75mL(在40℃~44℃水浴中预温),在40℃~44℃水浴中乳化,制成1:10的悬液。 5.2 膏、霜、乳剂半固体状样品 5.2.1 亲水性的样品,称取10g,加到装有玻璃珠及90mL灭菌生理盐水的三角瓶中,充分振荡混匀,静置15min。取其上清液作为1:10的检液。 5.2.2 疏水性样品,称取10g,放到灭菌的研钵中,加10mL灭菌液体石蜡,研磨成粘稠状,再加入10mL灭菌吐温80,研磨待溶解后,加70mL灭菌生理盐水,在40℃~44℃水浴中充分混合,制成1:10检液。 5.3 固体样品,称取10g,加到90mL灭菌生理盐水中,充分振荡混匀,使其分散混悬,静置后,取上清液作为1:10的检液。 如有均质器,上述水溶性膏、霜、粉剂等,可称10g样品加入90mL灭菌生理盐水,均质1min~2min;疏水性膏、霜及眉笔、口红等,称10g样品,加10mL灭菌液体石蜡,10mL灭菌吐温80,70mL灭菌生理盐水,均质3min~5min。

MATLAB中如何直接曲线拟合

MATLAB中如何直接曲线拟合,而不使用cftool的GUI 界面 我们知道在MATLAB中有个很方便的曲线拟合工具:cftool 最基本的使用方法如下,假设我们需要拟合的点集存放在两个向量X和Y中,分别储存着各离散点的横坐标和纵坐标,则在MATLAB中直接键入命令 cftool(X,Y) 就会弹出Curve Fitting Tool的GUI界面,点击界面上的fitting即可开始曲线拟合。 MATLAB提供了各种曲线拟合方法,例如:Exponential, Fourier, Gaussing, Interpolant, Polynomial, Power, Rational, Smoothing Spline, Sum of Functions, Weibull等,当然,也可以使用 Custom Equations. cftool不仅可以绘制拟合后的曲线、给出拟合参数,还能给出拟合好坏的评价 参数(Goodness of fit)如SSE, R-square, RMSE等数据,非常好用。但是如果我们已经确定了拟合的方法,只需要对数据进行计算,那么这种GUI的操作方式就不太适合了,比如在m文件中就不方便直接调用cftool。 MATLAB已经给出了解决办法,可以在cftool中根据情况生成特定的m文件,让我们直接进行特定的曲线拟合并给出参数。具体方法在帮助文件的如下文档中" \ Curve Fitting Toolbox \ Generating M-files From Curve Fitting Tool " ,以下简单举例说明: 以双色球从第125期到第145期蓝球为Y值: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21; cftool(X,Y); 点击Fitting选择最常用的多项式拟合(Polynomial),选择3次多项式拟合(cubic),然后就会出现如下拟合图形: 然后在Curve Fitting Tool窗口中点击 " \ File \ Generate M-file " 即可生成能直接曲线拟合的m函数文件,其中使用的拟合方法就是刚才使用的三次多项式拟合,文件中这条语句证明了这一点: ft_ = fittype('poly3'); 保存该m文件(默认叫做createFit.m),调用方法和通常的m文件一样,使用不同的X和Y值就能拟合出不同的曲线。但是,这种调用方法只能看到一个拟合出的图形窗口,拟合参数以及Goodness of fit参数都看不到了,因此需要在刚才的m文件中稍作修改。 找到这句话: cf_ = fit(X(ok_),Y(ok_),ft_); 修改为: [cf_,gof] = fit(X(ok_),Y(ok_),ft_); 然后将函数声明 function createFit(X,Y) 修改为 function [cf_,gof] = createFit(X,Y) ,这样我们再调用试试看: Y=[12 15 4 1 7 11 5 7 1 6 16 1 1 14 2 12 9 13 10 12 11]; X=1:1:21;

化妆品微生物标准检验方法定稿版

化妆品微生物标准检验 方法精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

化妆品微生物标准检验方法 总则(GB7918.1—87) 1?样品的采集及注意事项 1.1所采集的样品,应具有代表性,一般视每批化妆品数量大小,随机抽取相应数量的包装单位。检验时,应分别从两个包装单位以上的样品中共取10g或10ml。包装量小的样品,取样量可酌减。 1.2供检样品,应严格保持原有的包装状态。容器不应有破裂,在检验前不得启开,以防再污染。 1.3接到样品后,应立即登记,编写检验序号,并按检验要求尽快检验。如不能及时检验,样品应放在室温阴凉干燥处,不要冷藏或冷冻。 1.4若只有一个样品而同时需做多种分析,如细菌、毒理、化学等,则宜先取出部分样品作细菌检验,再将剩余样品作其他分析。 1.5在检验过程中,从开封到全部检验操作结束,均须防止微生物的再污染和扩散,所用器皿及材料均应事先灭菌,全部操作应在无菌室内进行。或在相应条件下,按无菌操作规定进行。 1.6如检出粪大肠菌群或其他致病菌,自报告发出起该菌种及被检样品应保存一个月奋查。 2?供检样品的制备 2.1培养基和试剂

:氯化钠?8.5g,蒸馏水?1000m溶解后,分装到加玻璃珠的锥形瓶内,每瓶90ml,121℃(151b)20min高压灭菌。 ,成分:酪蛋白胨17g,大豆蛋白胨?3g,氯化钠?5g,磷酸氢二钾?2.5g,葡萄糖?2.5g,卵磷脂?1g,吐温80?。7g,蒸馏水?1000ml,制法:将上述成分混合后,加热溶解,调pH 为7.2. 3分装,121℃(151b)20min高压灭菌。注意振荡,使沉淀于底层的法温80充分混合,冷却至25℃左右使用。 注:如无酪蛋白胨和大豆蛋白胨,也可用日本多胨代替。 2.2.仪器: 2.3不同类型样品的检样制备。 : 。 n。 本标准由中国预防医学科学院环境卫生监测所归口。 本标准由“化妆品微生物标准检验方法”起草小组起草。 本标准主要起草人周淑玉。 本标准由中国预防医学科学院环境卫生监测所负责解释。

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

Matlab数据拟合程序

课程设计名称:设计二:数据拟合指导教师:张莉 课程设计时数: 6 课程设计设备:安装了Matlab、C++软件的计算机 课程设计日期:实验地点:第五教学楼北902 课程设计目的: 1. 了解最小二乘拟合的原理,掌握用MA TLAB作最小二乘拟合的方法; 2. 学会利用曲线拟合的方法建立数学模型。 课程设计准备: 1.在开始本实验之前,请回顾相关内容; 2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 用切削机床进行金属品加工时,为了适当地调整机床,需要测定刀具的磨损速度,在一定的时间测量刀具的厚度,得数据如表所示,请选用合适的函数来描述切削时间与刀具厚度的关系。 首先对数据进行分析,画出离散的点,观察点近似的曲线: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; plot(t,y,'r*')

判断出曲线是近似直线函数,所以对数据进行测试可以做三次函数拟合: t=0:1:15; y=[30.0 29.1 29.8 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8]; %plot(t,y,'r*') A=polyfit(t,y,3) z=polyval(A,t); plot(t,y,'r*',t,z,'b') 051015 拟合结果: A = -0.3099 29.5676 拟合函数为:y=-0.3099t+29.5676

卡方检验应用

卡方检验应用

第八章记数数据统计法—卡方检验法 知识引入 在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据 统计方法。 卡方检验是专用于解决计数数据统计分析 的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否 有关联或是否独立的问题。

在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。 第一节卡方拟合性检验 一、卡方检验的一般问题

卡方检验法

第八章记数数据统计法—卡方检验法 知识引入 在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。 卡方检验是专用于解决计数数据统计分析的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。 在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。 第一节卡方拟合性检验 一、卡方检验的一般问题 卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数 (f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布, 可表示为: 这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。它主要应用于两种情况:

检验方法的标准确认办法

检验方法的标准确认办法 检验方法是指实验室用于实施检验检测工作所依据的标准检验方法和技术规范。检验方法是实验室实施检验工作的主要依据,是开展检验检测工作所必须的资源,如果方法及程序不同就会造成结果不同。<<实验室资质认定评审准则>> 5.3.2条款中规定:“实验室应确认能否正确使用所选用的新方法。如果方法发生了变化,应重新进行确认。实验室应确保使用标准的最新有效版本。”在<>条款中也有相应的规定。实验室采用的检测方法包括样品的抽取、处理、运输、存储和制备等各个环节,确认时应当记录确认所获得的结果、使用确认的程序、确认对方法是否适合于预期的用途等,必要时还应包括不确定度和分析数据的统计学处理技术。下面谈谈就方法发生了变更时或颁布新标准时,对方法如何进行确认: 1.在首次对外出具数据之前应确认(证实)标准方法已被正确的运用。 2.标准方法发生了变化应重新确认。 3.对标准方法定期清理或者查新,以确保最新有效版本。 一、检测方法的选择及使用要求 实验室资质认定(或认可)现场考核时确定的检测项目的依据是国家标准、行业标准和地方标准。所以说,当没有国际、国家、行业、地方规定的检验方法时,实验室应尽可能选择已经公布或由知名的技术组织或有关科技文献或杂志上公布的方法,但应经实验室技术主管确认。如是在实验室计量认证或认可批准业务范围内,因客户的特殊

要求而发生的情况,其检验结果和报告上应有明确的说明。 另外需要使用非标准方法时,这些方法应征得委托方同意,并形成有效文件,使出具的报告为委托方和用户所接受。这是指必须在实验室计量认证或认可批准业务范围内使用,所谓有效文件是指甲乙双方对使用非标准方法检测达成协议,一般来说应有双方签字盖章,也可以在检测委托(协议)书上注明,实验室在检测报告中也必需加以说明。因此,在检测方法的选择上,优先使用国家标准,然后是行业标准、地方标准,非标准方法仅限于委托方同意才使用。 对于实验室完成的每一项或每一系列检验的结果,均应按照检验方法中的规定,准确、清晰、明确、客观地在检验证书或报告中表述,应采用法定计量单位。证书或报告中还应包括为说明检验结果所必需的各种信息采用方法所要求的全部信息。除上述明确的要求外,检测报告中必需有检测数据和结论。 所以说,检测方法选择的核心就是方法有效性,要特别注意的是:要使用最新有效版本的方法。 二、检测方法的验证及确认 当自己的实验室将标准方法引入到自身的检测工作时,则应对引入的标准方法进行验证,并正确有效地运用。 方法的确认应广泛全面,以满足预定用途或应用领域的需要。标准方法确认准则是:所用的设备、环境条件、人员技术等。以证明实验室能够正确使用该新标准实施检测过程。 标准方法的确认或是通过核查方式,并提供客观证据,以证实某一特

第7章卡方检验

卡方检验(Chi-square test) stat9@https://www.360docs.net/doc/9010827634.html,

检验(Chi-square test)是现代统计学的创始人 K. Pearson 提出的一种具有广泛用途的统计方法。 该检验可用于两个及多个率(或者构成比)之间的比较,分类资料的关联度分析,拟合优度检验等。 2

一、卡方检验的基本思想 首先介绍一个抽样分布:卡方分布 ?属连续型分布 ?可加性是其基本性质 ?唯一参数,即自由度

(1) 自由度为1的χ2 分布 若Z N ~(,),01则Z 2 的分布称为自由度为1的χ2分布. (Chi-square distribution),记为χ()12或χ2 1(). 图形: 0246810 0.0 0.1 0.2 0.3 2 2 2 0.05(1)0.05/2 2 2 2 0.01(1) 0.01/2 3.84(1.96)6.63(2.5758)Z Z χχ ======

(2) νZ Z Z ,...,,21互相独立,均服从N (,)01, 则22221...νZ Z Z +++的分布称自由度为 ν的χ2 分布, 记为χν()2或)(2νχ,或简记为χ2 . ● 图形: ● 自由度ν很大时,2 () νχ近似地服从正态分布.有 2()2 (),22Z ννχνχννν -=服从均数为,方差为的正态分布

0.0 0.10.20.3 0.40.50 3 6 912 1518 ?¨·??μ ×Y ·?×?óé?è£?1 ×?óé?è£?2×?óé?è£?3×?óé?è£?6 2 /) 12/(2 2 22 )2/(21 )(χνχνχ--??? ? ??Γ= e f 3.84 7.81 12.59 P =0.05的临界值 χ2分布(Chi-square distribution )

中华人民共和国国家标准 生活饮用水标准检验方法微生物指标汇编

中华人民共和国国家标准生活饮用水标准检验方法微生物指标Standard examination methods for drinking water一Microbioloical parameters 1、菌落总数 1.1平皿计数法1.1.1范围本标准规定了用平皿计数法测定生活饮用水及其水源水中的菌落总数本法适用于生活饮用水及其水源水中菌落总数的测定。1.1.2术语和定义下列术语和定义适用于本标准。1.1. 2.1菌落总数standard plate - count 加cteria水样在营养琼脂上有氧条件下37℃培养48h后,所得1ml水样所含菌落的总数 1.1.3培养基与试剂1.1.3.1营养琼脂1.1.3.1.1成分:A 蛋白陈10gB 牛肉膏3g C 氯化钠5g D 琼脂10g——20g E 蒸馏水1000ml1.3.1.2制法:将上述成分混合后,加热溶解,调整pH为7.4一7.6,分装于玻璃容器中(如用含杂质较多的琼脂时,应先过滤),经103.43 kPa (121℃,15lb)灭菌20 min,储存于冷暗处备用。 1.1.4仪器 1.1.4.1高压蒸汽灭菌器。 1.1.4.2干热灭菌箱。 1.1.4.3培养箱36℃士2℃。 1.1.4.4电炉。 1.1.4.5天平。 1.1.4.6冰箱。1.1.4.7放大镜或菌落计数器。1.1.4.8 pH计或精密pH试纸。1.1.4.9灭菌试管、平皿(直径9cm)、刻度吸管、采样瓶等1.1.5检验步骤1.1.5.1生活饮用水1.1.5.1.1门以无菌操作方法用灭菌吸管吸取1mL充分混匀的水样,注人灭菌平皿中,倾注约15mL已融化并冷却到45℃左右的营养琼脂培养基,并立即旋摇平皿,使水样与培养基充分混匀每次检验时应做一平行接种,同时另用一个平皿只倾注营养琼脂培养基作为空白对照1.1.5.1.2待冷却凝固后,翻转平皿,使底面向上,置于36℃士1℃培养箱内培养48h,进行菌落计数,即为水样1 ml 中的菌落总数1.1.5.2水源水1.1.5. 2.1以无菌操作方法吸取lml充分混匀的水样,注入盛有9ml、灭菌生理盐水的试管中,混匀成1 : 10稀释液。1.1.5.2.2吸取I : 10的稀释液工ml注入盛有9mL灭菌生理盐水的试管中,混匀成l :10稀释液。按同法依次稀释成l : 1000 , l : 10000稀释液等备用。如此递增稀释一次,必须更换一支1mL灭菌吸管。1.1.5.2.3用灭菌吸管取未稀释的水样和2个——3个适宜稀释度的水样1ml,分别注入灭菌平皿内以下操作同生活饮用水的检验步骤。1.1.6菌落计数及报告方法作平皿菌落计数时,可用眼睛直接观察,必要时用放大镜检查,以防遗漏。在记下各平皿的菌落数后,应求出同稀释度的平均菌落数,供下一步计算时应用在求同稀释度的平均数时,若其中一个平皿有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的平皿作为该稀释度的平均菌落数。若片状菌落不到平皿的一半,而其余一半中菌落数分布又很均匀,则可将此半皿计数后乘2以代表全皿菌落数。然后再求该稀释度的平均菌落数。1.1.7不同稀释度的选择及报告方法1.1.7.1首先选择平均菌落数在30一300之间者进行计算,若只有一个稀释度的平均菌落数符合此范围时,则将该菌落数乘以稀释倍数报告之(见表1中实例1)1.1.7.2若有两个稀释度,其生长的菌落数均在30一300之间,则视二者之比值来决定,若其比值小于2应报告两者的平均数(如表1中实例2)若大于2则报告其中稀释度较小的菌落总数(如表l中实例3)若等于2亦报告其中稀释度较小的菌落数(见表l中实例4)。1.1.7.3若所有稀释度的

卡方检验原理与应用实例

卡方检验原理与应用实例: 本文简单介绍卡方检验的原理和两个类型的卡方检验实例。 一、卡方检验的作用和原理 1)卡方检验的作用:简单来说就是检验实际的数据分布情况与理论的分布情况是否相同的假设检验方法。怎么理解这句话呢,拿一个群体的身高来说,理论上身高低于1米5的占10%,高于2.0的占10%,中间的占80%,现在我们抽取了这个群体中的一群人,那么对应这三个身高段的人数的比例关系是不是 1:8:1呢?卡方分析就是解决这类问题。 2)卡方检验的原理:上面已经提到卡方检验是检验实际的分布于理论的分布时候一致的检验,那么用什么统计量来衡量呢!统计学家引入了如下的公式: Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。i水平的期望频数Ti等于总频数n×i水平的期望概率pi,k为单元格数。当n比较大时,χ2统计量近似服从k-1(计算Ei时用到的参数个数)个自由度的卡方分布。和参数检验的判断标准一样,这个统计量有一个相伴概率p。零假设是理论分布与实际分布是一致的,所以如果P小于0.05,那么就拒绝原假设,认为理论和实际分布不一致。 二、适合性卡方测验 所谓适合性检验就是检验一个样本的分布是否符合某个分布的一种假设检验方法。比如说检验数据是否正态分布,是否成二项分布或者平均分布等等。拿正态分布来说吧!请看下图

在这个近似标准正态分布的玉米株高的分布中,横轴代表的是株高的数据,而纵轴代表的是对应株高的频数,简单来说,正态曲线上的某点的纵坐标代表的就是这个点对应的横轴坐标显示株高的玉米有多少株。只不过正态分布曲线上显示的是频率值,而频率=该组株数/总的株数,所以分布曲线不会变,只不过纵坐标由频数变为频率。这也解释了昨天推送的《如何判断数据是否符合正态分布》中用带正态曲线的直方图判断数据是否符合正态分布的原理。 回到本节,当我们要检验玉米株高是否符合正态分布时,我们能够通过计算,计算出当样本量为600(注意本例株高数据的个案数为600,下载数据资料进行练习过的学员应该知道)时,每个株高下的玉米株数设为E,然后我们已经有实际值设为A,然后我们带入上面的公式计算得到卡方统计量,由SPSS输出相伴概率,我们就能判断数据是否符合正态分布了。 再说一个例子。

最小二乘法曲线拟合-原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据 },...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲 线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: k k x a x a a x +++=...)(10?

2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到: 6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x 必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。polyval( )为多项式曲线求值函数,调用格式:y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA 将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

卡方检验法

记数数据统计法—卡方检验法 在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。 卡方检验是专用于解决计数数据统计分析的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。 在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。 第一节卡方拟合性检验 一、卡方检验的一般问题 卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为: 这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来表示f o与f e相差的程度。根据这个公式,可认为卡方检验的一般问题是要检验名义型变量的实际观测次数和理论次数分布之间是否存在显著差异。它主要应用于两种情况: 卡方检验能检验单个多项分类名义型变量各分类间的实际观测次数与理论次数之间是否一致的问题,这里的观测次数是根据样本数据得多的实计数,理论次数则是根据理论或经验得到的期望次数。这一类检验称为拟合性检验。

matlab拟合工具箱的使用

matlab拟合工具箱使用 2011-06-17 12:53 1.打开CFTOOL工具箱。在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。也可以在命令窗口中直接输入”cftool”,打开工具箱。 2.输入两组向量x,y。 首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y=[0.012605,0.013115,0.016866,0.014741,0.022353,0.019278,0.041803,0.0 38026,0.038128,0.088196]; 3.数据的选取。打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data 选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。

水质 溶解性总固体的测定 生活饮用水标准检验方法 (GBT 5750.4-2006 8.1) 称量法 方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认 1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。 3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) 4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g ) 4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。 4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) 4.2.1按( 5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。 4.2.2吸取100mL 水样于蒸发皿中,精确加入2 5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。 5. 计算 5.1 溶解性总固体的计算公式 V m m TDS 10001000)()(01??-=ρ 公式中: )(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L ) ; 0m —蒸发皿的质量,单位为克(g ); 1m —蒸发皿和溶解性总固体的质量,单位为克(g ); V —水样体积,单位为毫升(ml ) 。

卡方检验应用

卡方检验应用 Prepared on 24 November 2020

第八章记数数据统计法—卡方检验法 知识引入 在各个研究领域中,有些研究问题只能划分为不同性质的类别,各类别没有量的联系。例如,性别分男女,职业分为公务员、教师、工人、……,教师职称又分为教授、副教授、……。有时虽有量的关系,因研究需要将其按一定的标准分为不同的类别,例如,学习成绩、能力水平、态度等都是连续数据,只是研究者依一定标准将其划分为优良中差,喜欢与不喜欢等少数几个等级。对这些非连续等距性数据,要判别这些分类间的差异或者多个变量间的相关性方法称为计数数据统计方法。 卡方检验是专用于解决计数数据统计分析的假设检验法。本章主要介绍卡方检验的两个应用:拟合性检验和独立性检验。拟合性检验是用于分析实际次数与理论次数是否相同,适用于单个因素分类的计数数据。独立性检验用于分析各有多项分类的两个或两个以上的因素之间是否有关联或是否独立的问题。 在计数数据进行统计分析时要特别注意取样的代表性。我们知道,统计分析就是依据样本所提供的信息,正确推论总体的情况。在这一过程中,最根本的一环是确保样本的代表性及对实验的良好控制。在心理与教育研究中,所搜集到的有些数据属于定性资料,它们常常是通过调查、访问或问卷获得,除了少数实验可以事先计划外,大部分收集数据的过程是难于控制的。例如,某研究者关于某项教育措施的问卷调查,由于有一部分教师和学生对该项措施存有意见,或对问卷本身有偏见,根本就不填写问卷。这样该研究所能收回的问卷只能代表一部分观点,所以它是一个有偏样本,若据此对总体进行推论,就会产生一定的偏差,势必不能真实地反映出教师与学生对这项教育措施的意见。因此应用计数资料进行统计推断时,要特别小心谨慎,防止样本的偏倚性,只有具有代表性的样本才能作出正确的推论。 第一节卡方拟合性检验 一、卡方检验的一般问题 卡方检验应用于计数数据的分析,对于总体的分布不作任何假设,因此它又是非参数检验法中的一种。它由统计学家皮尔逊推导。理论证明,实际观察次数(f o)与理论次数(f e),又称期望次数)之差的平方再除以理论次数所得的统计量,近似服从卡方分布,可表示为: 这是卡方检验的原始公式,其中当f e越大(f e≥5),近似得越好。显然f o与f e相差越大,卡方值就越大;f o与f e相差越小,卡方值就越小;因此它能够用来

相关文档
最新文档