电源的电磁干扰技术设计要点

电源的电磁干扰技术设计要点

电源的电磁干扰技术设计要点

开关电源工作在高频开关状态,内部会产生很高的电流、电压变化率,导致开关电源产生较强的电磁干扰。电磁干扰信号不仅对电网造成污染,还直接影响到其他用电设备甚至电源本身的正常工作,而且作为辐射干扰闯入空间,造成电磁污染,制约着人们的生产和生活。

国内在20世纪80一90年代,为了加强对当前国内电磁污染的治理,制定了一些与CISPR 标准、IEC801等国际标准相对应的标准。自从2003年8月1日中国强制实施3C认证(china compulsory cerTIficaTIon)工作以来,掀起了电磁兼容热,近距离的电磁干扰研究与控制愈来愈引起电子研究人员们的关注,当前已成为当前研究领域的一个新热点。本文将针对开关电源电磁干扰的产生机理系统地论述相关的抑制技术。

l 开关电源电磁干扰的抑制

形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰应从这三方面人手。抑制干扰源、消除干扰源和受扰设备之间的耦合和辐射、提高受扰设备的抗扰能力,从而改善开关电源的电磁兼容性能的目的。

1.1 采用滤波器抑制电磁干扰

滤波是抑制电磁干扰的重要方法,它能有效地抑制电网中的电磁干扰进入设备,还可以抑制设备内的电磁干扰进入电网。在开关电源输入和输出电路中安装开关电源滤波器,不但可以解决传导干扰问题,同时也是解决辐射干扰的重要武器。滤波抑制技术分为无源滤波和有源滤波2种方式。

1.1.1 无源滤波技术

无源滤波电路简单,成本低廉,工作性能可靠,是抑制电磁干扰的有效方式。无源滤波器由电感、电容、电阻元件组成,其直接作用是解决传导发射。开关电源中应用的无源滤波器的原理结构图如图1所示。

由于原电源电路中滤波电容容量大,整流电路中会产生脉冲尖峰电流,这个电流由非常多

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。 1 引言 随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰 ( ElectromagneticInterference , EMI )。 EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容 ( ElectromagneticCompatibility )性。随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。 本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。 2 电磁干扰的产生和传播方式 开关电源中的电磁干扰分为传导干扰和辐射干扰两种。通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。下面将对这两种干扰的机理作一简要的介绍。 2.1传导干扰的产生和传播 传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。 2.1.1 共模( CM )干扰 变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。如图 1 所示,共模干扰电流从具有高 dv/dt 的开关管出发流经接地散热片和地线,再由高频 LISN 网络(由两个 50Ω电阻等效)流回输入线路。

控制环路设计

开关电源控制环设计 资料来源:Switching power supply control loop design(ASTEC-Application Note 5) 译者:smartway 1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2描述一个由高通滤波器电路引起的零点。

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

开关电源高频电磁波干扰解析-EMI

转载+整理《开关电源高频电磁波干扰概论》解析(一) 第一节 这个是说EMI的传播过程,干扰源-干扰途径-接收器,就向传染病:传染源-传染途径-易感人群。 对于开关电源来说,最后一部分是不需要考虑的,干扰源也不能消灭,因为它也是开关电源之所以能工作的源头,但是可以通过软开关、加缓冲等方式来使干扰源的干扰小一些。控制干扰途径是降低开关电源EMI的重要一环,也是本讲义的重点讲解之处。 信号源波形产生的频谱

电压波形产生的频谱 周期信号的频谱是没有偶次谐波的,正负对称的波形产生的频率分量更少,像桥式电路。高数都忘光了,有兴趣的做一下FFT. 占空比和波形斜率的影响

占空比越大时,干扰的幅度也大一些,这个可由FFT的系数算出来。

波形的斜率对干扰的高频部分影响非常大。低频部分几乎没有影响。低频部分主要由波形的幅度和高电平部分的宽度决定的,但高频部分大幅度下降的转折点为1/(3.14*tr),所以tr越大时,转折点的频率越低,高频下降越大。 所以我们应该想到降低斜率的措施,缓冲电路。

第一节小结: 电压和电流波形都有很丰富的频率成分 超过200M时由于幅值已经很低,所以影响很小 波形影响低频部分 上升沿和下降沿影响高频部分 占空比对个频谱幅值有一点影响 第2节: 下以部分13-42页,介绍的内容比较杂,有传导和辐射的场地、设备的放置,Log的概念等。

重点说一下这个图,这个介绍的是干扰的耦合途径,左边为传导干扰,右边为辐射干扰。辐射分为远场和近场。一般用蝶型天线辐射测量只测量电场,而不是磁场,磁场是用大圆环来测量的,灯具常用。 电场除了直接辐射到天线外,还可能辐射到地面再反射到天线,天线接受到的是直射波和反射波的矢量合成,所以需要上下移动寻找最大合成量。除此以外,由于电磁波有极化,所以天线需要改变方向以检测最大值(一般只测试水平和垂直)。 LISN网络。

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

刍议如何控制开关电源电磁干扰

刍议如何控制开关电源电磁干扰 摘要:通信开关电源是通信系统中的一种主要的干扰源之一,由于它本身工作特点使得电磁干扰问题相当突出,从通信电源电磁干扰的机理着手,分别论述了有源滤波技术、pcb设计技术、扩频调制技术等来抑制电磁干扰,改善了开关电源电磁兼容的性能,为工程设计人员提供了理论参考。 关键词:开关电源;电磁干扰;抑制措施 abstract: communication switching power supply is the major source of interference in a communication system, due to its own features make the issue of electromagnetic interference are quite prominent, and the mechanism of electromagnetic interference from the communication power to proceed, discusses active filtering technology, pcb design technology, spread spectrum modulation techniques such as electromagnetic interference suppression, improved the performance of the switching power supply electromagnetic compatibility, provide a theoretical reference for the engineering staff.keywords: switching power supply; electromagnetic interference; suppression measures 中图分类号:o552.4+24文献标识码:a 1 通信开关电源的干扰 通信开关电源要稳定工作就要有很强的抗电磁干扰能力,对于

形成开关电源电磁干扰的三要素及解决方案

形成开关电源电磁干扰的三要素及解决方案 深圳市森树强电子科技有限公司 形成开关电源电磁干扰的三要素是干扰源、传播途径和受扰设备 首先应该抑制开关电源干扰源,直接消除干扰原因; 其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径; 第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。 目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底 板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之 间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的 分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两 层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网 传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完 全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为 一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的 作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可 以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应, 所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点 与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏 蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导 电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近 接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。

电磁干扰及抑制技术

电磁干扰及常用的抑制技术 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类 (1) 自然干扰。 自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。

由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。 有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。 无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。 多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。 偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。 无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。 传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。 电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空

高频开关电源的干扰及抑制

网络教育学院《电源技术》课程设计 题目:高频开关电源的干扰及抑制 学习中心: 层次: 专业: 年级: 学号: 学生:程剑 指导教师: 完成日期:年月日

目录 设计简介及要求 (1) 1 高频开关电源的干扰原理分析 (1) 1.1 高频开关电源工作原理 (1) 1.2 高频开关电源干扰的来源 (2) 1.3 高频开关电源干扰的存在形式及危害 (2) 2 高频开关电源干扰的抑制技术 (2) 2.1 滤波技术 (2) 2.2 屏蔽技术 (3) 2.3 软开关技术 (3) 2.4 扩频调制技术 (3) 2.5 PCB 设计技术 (3) 2.6 接地技术 (3) 3 高频开关电源及滤波器设计 (3) 3.1 高频开关电源设计要求 (3) 3.2 高频开关电源设计方案 (3) 3.3 电源滤波器设计 (3) 3.3.1 EMI滤波器的基本形式 (4) 3.3.2 EMI滤波器的设计原则 (4) 3 总结 (4)

设计简介及要求 现代社会中,人类生活的各个方面都离不开电子设备的发展。电子设备大多数都依赖于开关电源来提供稳定的电力供应。开关电源以其高效率、低损耗、小体积等特点,近年来快速发展,在通信设备、医疗设备以及信息处理设备等不同领域中广泛应用,取得了巨大成就。由于开关电源工作在高频开关状态,内部会产生很高的电流、电压变化率(即高dv/dt和di/dt),导致开关电源产生较强的电磁干扰(EMI)。在有限的空间及频谱资源条件下,随着电子设备密集程度不断增加,空间的电磁环境越来越复杂。为了适应对电子产品电磁兼容性能指标的高要求,需要对电磁兼容采取重视;同时,要研究开发电磁兼容新技术,采取有效的防护措施。所以,对于开关电源来说,电磁兼容问题的研究是十分必要的。EMI信号既具有很宽的频率范围,又有一定的幅度,它不仅对电网造成污染,直接影响到其他用电设备的正常工作,而且作为辐射干扰闯人空间,对空间也造成电磁污染。目前,抑制开关电源的EMI提高开关电源的质量使之符合EMC标准已成为开关电源设计者越来越关注的问题。 本次设计就此问题展开分析,主要要求有以下几点: (1)围绕开关电源的工作原理,分析开关电源工作过程中产生电磁干扰的原因及抑制措施。 (2)介绍开关电源的基本原理、干扰来源及抑制措施。 (3)分析开关电源产生电磁辐射干扰的原因及造成的危害。 (4)论述开关电源电磁干扰的抑制方法。 1 高频开关电源的干扰原理分析 由于开关电源具有效率高、容易实现小型化的优点,所以目前被广泛应用在电子设备中。但是开关电源本身就是噪声源,在工作时会产生干扰,这就需要采取措施对其产生的噪声进行抑制。目前开关电源的体积不断追求小型化,开关频率也随之提高,导致噪声不断增加。要保证开关电源设备的正常工作,就需要对噪声的抑制加以重视。 1.1 高频开关电源工作原理 开关电源将市电直接整流滤波成为直流高压,然后通过逆变器转换成低压的高频交流电压,再经过二次整流和滤波变成所需要的直流低电压。考虑到目前大量应用的开关电源都是采取AC/DC-DC/DC级联的形式,因此,图1所示的开关电源结构具有较强的代表性。

开关电源EMI形成原因及常用抑制方法

开关电源EMI形成原因及常用抑制方法 近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。 1开关电源的干扰源分析 开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高 dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都是这类干扰源。开关电源中的电压电流波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源波形等。对于矩形波,周期的倒数决定了波形的基波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。这些高频信号都对开关电源基本信号,尤其是控制电路的信号造成干扰。 开关电源的电磁噪声从噪声源来说可以分为两大类。一类是外部噪声,例如,通过电网传输过来的共模和差模噪声、外部电磁辐射对开关电源控制电路的干扰等。另一类是开关电源自身产生的电磁噪声,如开关管和整流管的电流尖峰产生的谐波及电磁辐射干扰。 如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰(如图中的返回噪声、输出噪声和辐射干扰)。进行开关电源EMI/EMC设计时一方面要防止开关电源对电网和附近的电子设备产生干扰,另一方面要加强开关电源本身对电磁骚扰环境的适应能力。下面具体分析开关电源噪声产生的原因和途径。 图1开关电源噪声类型图 1.1电源线引入的电磁噪声 电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的。电源线噪声分为两大类:共模干扰、差模干扰。共模干扰(Common-modeInterference)定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰(Differential-

环路相位-开关电源稳定性设计

环路相位-开关电源稳定性设计 专业技术 环路相位-开关电源稳定性设计 摘要:环路,相位,增益,负载,开关电源,稳定性,电压,相移,电源,频率, 信号接收机-基于单芯片的GPS接收机硬件设计白光调光-白光和彩色光智能照明系统解决方案设备方案-台达UPS在中小企业中的创新应用方案触摸屏电容-电容式触摸屏系统解决方案测量肺活量-利用高性能模拟器件简化便携式医疗设备设计测量温度-热敏电阻(NTC)的基本参数及其应用动能产品-动能电子企业文化活动丰富员工生活电路板镀锡-无锡华文默克发布PCB/SMT工艺方案引擎电压-采用接近传感器的火花探测器太阳能控制器-太阳能LED街灯的挑战及安森美半导体高能效解决方案众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式 有意地引入了180°相移,如果反馈 众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。 1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。相位裕度是指:增益降到0dB 时所对应的相位。增益裕度是指:相位为-180度时所对应的增益大小(实际是衰减)。在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。相位裕度只能用来保证“小信号稳定”。在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是 EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI 成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计 万山明,吴芳 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:建立了Buck电路在连续电流模式下的小信号数学模型,并根据稳定性原则分析了电压模式和电流模式控制下的环路设计问题。 关键词:开关电源;小信号模型;电压模式控制;电流模式控制 0 引言 设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。而环路的设计与主电路的拓扑和参数有极大关系。为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。采用其他拓扑的开关电源分析方法类似。 1 Buck电路电感电流连续时的小信号模型 图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1为理想开关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。R e为滤波电容C的等效串联电阻,R o为负载电阻。各状态变量的正方向定义如图1中所示。 图1 典型Buck电路

S 导通时,对电感列状态方程有 O U Uin dt dil L -= ⑴ S 断开,D 1续流导通时,状态方程变为 O U dt dil L -= (2) 占空比为D 时,一个开关周期过程中,式(1)及式(2)分别持续了DT s 和(1-D )T s 的时间(T s 为开关周期),因此,一个周期内电感的平均状态方程为 ())()(O in O O in U DU U D U U D dt dil L -=--+-=1 稳态时,dt dil =0,则DU in =U o 。这说明稳态时输出电压是一个常数,其大小与占空比D 和输入电压U in 成 正比。 由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得 L =(D +d )(U in +)-(U o +) (4) 式(4)由式(3)的稳态值加小信号波动值形成。上标为波浪符的量为波动量,d 为D 的波动量。式(4)减式(3)并略去了两个波动量的乘积项得 L =D +dU in - (5) 由图1,又有 i L =C + (6) U o =U c +R e C (7)

开关电源EMC经验谈

隔离式DC/DC 变换器的电磁兼容设计 李建泉 (株洲时代集团公司,株洲, 412007) 摘 要: 文章详细分析了隔离式DC/DC 变换器产生电磁噪声干扰的机理,提出了在DC/DC 变换器主电路及控制电路设计时所采取的电磁兼容措施。 关键词:隔离式DC/DC 变换器、电磁兼容性、电磁干扰、电磁敏感度 随着电力电子技术的发展,开关电源模块因其相对体积小、效率高、工作可靠等优点开始取代传统整流电源而被广泛应用到社会的各个领域。但由于开关电源工作频率高,内部产生很快的电流、电压变化,即dv/dt 和di/dt ,导致开关电源模块将产生较强的谐波干扰和尖峰干扰,并通过传导、辐射和串扰等耦合途径影响自身电路及其它电子系统的正常工作,当然其本身也会受到其它电子设备电磁干扰的影响。这就是所讨论的电磁兼容性问题,也是关于开关电源电磁兼容的电磁骚扰EMD 与电磁敏感度EMS 设计问题。由于国家开始对部分电子产品强制实行3C 认证,因此一个电子设备能否满足电磁兼容标准,将关系到这一产品能否在市场上销售,所以进行开关电源的电磁兼容性研究显得非常重要。 电磁兼容学是一门综合性学科,它涉及的理论包括数学、电磁场理论、天线与电波传播、电路理论、信号分析、通讯理论、材料科学、生物医学等。 进行开关电源的电磁兼容性设计时,首先进行一个系统设计,明确以下几点: 1. 明确系统要满足的电磁兼容标准; 2. 确定系统内的关键电路部分,包括强干扰源电路、高度敏感电路; 3. 明确电源设备工作环境中的电磁干扰源及敏感设备; 4. 确定对电源设备所要采取的电磁兼容性措施。 一:DC/DC 变换器内部噪声干扰源分析 1.二极管的反向恢复引起噪声干扰 在开关电源中常使用工频整流二极管、高频整流二极管、续流二极管等,由于这些二极管都工作在开关状态,如图所示,在二极管由阻断状态到导通工作过程中,将产生一个很高的电压尖峰V FP ;在二极管由导通状态到阻断工作过程 中,存在一个反向恢复时间t rr ,在反向恢复过程中,由于二极管封装电感及引 线电感的存在,将产生一个反向电压尖峰V RP ,由于少子的存储与复合效应,会 U a) I RP 二极管反向恢复时电流电压波形 二极管正向导通电流电压波形

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

高频高压电源的电磁兼容设计方法综述

收稿日期: 2011-03-02基金项目:电力系统及发电设备控制和仿真国家重点实验室开放课题资助项目(SKLD09KM15) 作者简介:刘坤(1983—),男,山东省人,工学硕士,主要研究方向为电力电子及其应用、高频高压电源等。 高频高压电源的电磁兼容设计方法综述 刘 坤,高迎慧,严 萍 (中国科学院电工研究所,北京100190) 摘要:高频高压电源的广泛应用使其稳定性和可靠性的要求不断提高,解决高频高压电源的电磁兼容问题成为新的研究热点。根据高频高压充电电源的特点, 结合电磁兼容设计的基本理论,归纳了近年来对于高频高压电源电磁兼容问题的研究情况,从抑制干扰源、切断传播途径、保护敏感设备三个方面总结了一系列有效的抑制电磁干扰的方法,并为今后高频高压电源的电磁兼容设计提供了研究方向。关键词:高频高压电源;电磁兼容;电磁干扰抑制中图分类号: TM 51文献标识码: A 文章编号: 1002-087X(2011)10-1325-04Electromagnetic compatibility design methods of high-frequency and high-voltage power supply LIU Kun,GAO Ying-hui,YAN Ping (Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China) Abstract:As the extensive use of high-frequency and high-voltage power supply (HHPS),it is required to be more stable and reliable. Solving the electromagnetic compatibility (EMC) of HHPS becomes the new study focus. Combining with the feature of HHPS and the base theory of EMC,the recent studying conditions on the EMC of HHPS was concluded, and the series effective methods were summarized to reduce the electromagnetic interference (EMI)on three aspects,which restrained the interference sources,cut off the route transmissions and protected the sensitive equipments.The studying direction of the EMC design of HHPS was also provided. Key words:high-frequency and high-voltage power supply;electromagnetic compatibility;reduce the electro-magnetic interference 20世纪90年代后,随着高频开关器件的陆续出现,高频高压充电电源也逐渐成为高压领域的研究热点。高频高压充电电源在体积、 质量、造价、效率和控制灵活性等方面具有明显优势,因此也得到广泛应用。但是,由于工作频率的提高,以及高频开关器件的使用,这种充电电源的电磁干扰带来的问题也随之突显,如何对高频高压充电电源进行可靠的电磁兼容设计成为一项新的研究课题。 1高频高压电源与电磁兼容 电磁兼容设计的目的是使所设计的电子设备或系统在预期的电磁环境中实现电磁兼容,即要求设备或系统在其电磁环境下能正常工作,并且不对该环境中任何事物构成不能承受的电磁干扰的能力。其中电磁干扰指任何可能引起装置、设备或系统性能降低,或对有生命及无生命物质产生损害作用的电磁现象。由电磁干扰源发射的电磁能量,经过耦合途径传输到敏感设备的过程称为电磁干扰效应,形成电磁干扰 后果必须具备电磁干扰源、耦合途径和敏感设备三个基本要素[1]。 图1是一个典型的高频高压充电电源系统结构图。图中表明,该系统已经具备了形成电磁干扰的三个基本要素,使高频高压充电系统所处的电磁环境极易受到系统本身及外界的电磁干扰。 首先,该系统中充电电源本身就是一个电磁干扰源,其中的开关器件及高频变压器在工作过程中都会发射巨大的电磁能量,产生电磁干扰。对于开关器件的电磁干扰研究早在上世纪90年代就已有纪录,文献[2-5]分别分析了晶闸管、IGBT 、MOSFET 等开关器件所产生的电磁干扰现象。另外,文献[6-7]对高频变压器以及谐振电路所产生的电磁干扰及抑制方 图1高频高压充电电源系统结构图

相关文档
最新文档