开关柜母线螺丝力距

开关柜母线螺丝力距
开关柜母线螺丝力距

开关柜母线螺丝力距

式中:I--额定短时耐受电流;a—材质系数,铜为13,铝为8.5;t--额定短路持续时间;△θ—温升(K),对于裸导体一般取180K,对于4S持续时间取215K。则:

25KA/4S系统铜母线最小截面积S=(25000/13)*√4/215=260 mm2 用60*5就可以了.

31.5KA/4S系统铜母线最小截面积S=(31500/13)*√

4/215=330 mm2 40KA/4S系统铜母线最小截面积S=(40000/13)*√

4/215=420 mm2 63KA/4S系统铜母线最小截面积S=(63000/13)*√

4/215=660 mm2 80KA/4S系统铜母线最小截面积S=(80000/13)*√

4/215=840 mm2 接地母线按系统额定短时耐受电流的86.7%考虑:

25KA/4S系统接地铜母线最小截面积S=260*86.7% =225mm2 31.5KA/4S 系统接地铜母线最小截面积S=330*86.7% =287mm2 40KA/4S系统接地铜母线最小截面积S=420*86.7% =370mm2 63KA/4S系统接地铜母线最小截面积S=660*86.7% =580mm2 80KA/4S系统接地铜母线最小截面积

S=840*86.7% =730mm2

根据工厂配电设计原则,下列部位的母线不需进行母线热效应和动效应校验。

(1)采用熔断器保护,连接于熔断器下侧的母线(限流熔断器除外)。 (2)电压互感器回路内的母线。

]

受力分析专题练习含答案详解汇总

受力分析试题精炼 1、如图所示,物体A、B、C叠放在水平桌面上,水平力F作 用于C物体,使A、B、C以共同速度向右匀速运动,那么关于 物体受几个力的说法正确的是() A.A 受6个,B受2个,C受4个 B.A 受5个,B受3个,C受3个C.A 受5个,B受2个,C受4个 D.A 受6个,B受3个,C受4个 2.如图所示,两个等大、反向的水平力F分别作用在物体A和B上,A、B两物体均处于静止状态。若各接触面与水平地面平行,则A、B两物体各受几个力?()A.3个、4个B.4个、4个 C.4个、5个D.4个、6个 3.如图所示,倾角为 的斜面体C置于水平面上,B置于斜面上, 通过细绳跨过光滑的定滑轮与A相连接,连接B的一段细绳与 斜面平行,A、B、C都处于静止状态.则() A.B受到C的摩擦力一定不为零 B.C受到水平面的摩擦力一定为零 C.不论B、C间摩擦力大小、方向如何,水平面对C的摩擦力方向一定向左 D.水平面对C的支持力与B、C的总重力大小相等 4.如图3所示,一质量为M的斜面体放在水平面上,在其斜面上放一质 量为m的物体A,用一沿斜面向上的力F作用于A上,使其沿斜面匀速 下滑,在A下滑的过程中,斜面体静止不动,则地面对斜面体的摩擦力 f及支持力N是() A.f=0,N=Mg+mg B.f向左,N

导体、母线、电缆、架空线截面的选择计算

导体、母线、电缆、架空线截面的选择计算一、导体、电器、母线、电缆、短路热稳定的计算; 四、电压损失选截面; 五、电流互感器连接导线、控制电缆截面;

导体选择: 硬导体: 截面选择 1、回路持续工作电流选择; 2、经济电流密度选择,最大负荷利用小时数参见一次手册P337; 3、电动机回路进行电压损失校验: 校验: 1、按电晕条件校验,环境条件进行修正; 2、短路热稳定校验; 3、短路动稳定校验;短路点动力(公式)以及导体短路机械应力(公式); 4、按机械共振条件校验; 管形目前其他情况: 1、导体的荷载组合条件; 2、各种荷载下母线产生的弯矩和应力: 软导体: 截面选择 1、回路持续工作电流选择,环境条件进行修正,P376 中220KV及以下配电装置,根据负 荷电流选择,330KV及以上根据电晕和无线电干扰选取; 2、经济电流密度选择,最大负荷利用小时数参见; 校验: 1、按电晕条件校验;

分列导线的分裂间距和次导线的最小直径:一次P381 1、分裂间距:根据电晕校验结果确定; 2、次导线最小直径根据电晕、无线电干扰条件确定; 绝缘子选取: 1、爬电比距法选择,无需进行塔高修正以及绝缘子线性修正; 2、满足雷电过电压和操作过电压来计算绝缘子片,需要进行塔高修正以及线性修正; 3、两者可进行海拔修正(海拔修正两种方法,1)导体与电器选择修正,2)根据绝缘子特 征值修正); 4、架空线路雷电空气间隙也需修正; 避雷器选择: 1、Y10W-288/698 参数说明:Y-氧化锌避雷器,10-标称放电电流,W-无间隙,288-氧化锌 避雷器额定电压,698-雷电冲击残压。 2、系统工频过电压由《交流电气装置的过电压与绝缘配合》4.1.1 线路断路器的变电站侧: 1.3p.u 线路断路器线路侧1.4p.u 由5.3.4 表3选择额定电压 3、10.4.4 变电站电气设备与雷电过电压的绝缘配合,a)可求出残压 桥回路持续工作电流计算: 1、由表6-3,为最大负荷电流+系统穿越功率产生的电流(变压器不用按持续工作电流计算, 不用乘系数) 短路电流计算: 1、线路短路电流,对于有多台主变,要考虑远景规划,按多台运行,这点容易忽略。 针对三绕组变压器,各变压器侧的持续工作电流,由各自绕组容量计算,双绕组变压器只有一个容量; 制经常(正常、初期、持续)(0.6):电气和热控的控制、信号、测量、继电保护,自动装置,励磁控制,变压器冷却器控制电源,信号灯、位置指示器、继电器控制事故初期不持续(1min):热控控制事故初期冲击负荷 动力经常(正常、初期、持续):热控动力总电源(0.6)、直流长明灯(1.0)、DC/DC变换装置(0.8)、通信装置电源 动力事故初期持续:UPS(0.6)、交流不停电电源(0.6)、氢密封油泵(0.8)、直流润滑油泵(0.9)、事故照明(1.0) 动力随机(最后5S):电源恢复时高压厂用断路器合闸(1.0)远动(动力)、断路器自投(电磁操动机构)(控制)(0.5)、低电压跳闸(控制)(0.6) 统计分两类:

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

最全受力分析图组(含答案)新选.

受力分析一、下面各图的接触面均光滑,对小球受力分析: 二、下面各图的接触面均粗糙,对物体受力分析: 图 1 图2 图 3 图 5 图 6 图 7 图9 图 11 图10 图 12 图 8 图 4 图19 物体静止在斜面上图20 图21 图13 v 图15 v 图16 图14 物体处于静止 物体刚放在传送带上 图17 物体随传送带一起 做匀速直线运动 图18 图22 物体处于静止(请画出物体 受力可能存在的所有情况) 图23

三、分别对A 、B 两物体受力分析: 图28 杆处于静止状态,其中杆与半球面之间光滑 图29 杆处于静止状态,其中 杆与竖直墙壁之间光滑 图30 杆处于静止状态 图31 O A B C 图32 匀速上攀 图33 v v 图34 匀速下滑 A B F 图36 A 、 B 两物体一起做匀速直线运动 A 、 B 两物体均静止 A B 图37 F 图42 B v A A 、B 两物体一起匀速下滑 A 、B 、 C 两物体均静止 B C 图38 A 随电梯匀速上升 v (7) (9) (8)

(16) (17) (18) (19) (20) (21) (28) (29) (30) 三球静止 (25) (26) (27) 小球A静止 弹簧处于压缩状态 (22) (23) (24) O P Q B AO表面粗糙,OB表面光滑 分别画出两环的受力分析图

(31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) A、B匀速运动A、B匀速运动 (37)(38)(39)(40)A、B、C三者都静止,分别画出ABC三者的受力图 分别画出各物块的受力分析图 此环为轻环,重力忽略A沿墙壁向上匀速滑动

母线与电缆的优势

母线槽的应用范围: 母线槽是适合于工业厂房、办公商住、机场码头、楼宇配电房,购物商场或者高科技环境使用。它是低成本、高效益的输配电产品。 母线槽运用的领域: 八十年代以前,高层建筑中的供电主干线主要采用可靠性较好的普通电缆, 电缆在电气竖井内沿墙壁用支架或电缆桥架敷设。电缆作为供电主干线比裸导线、裸排要安全可靠得多,裸排因表面裸露受配电室高温、湿度、安全距离限制安全可靠性比较差,载流量受到限制。电缆截面不可能造得很大(最大只能做到400mm2),而且电缆太粗,现场施工难度大。 八十年代中后期,城市发展迅速,高层、超高层建筑大批建造,建筑物的用电负荷急剧增加,电缆作为供电主干线的局限性越来越突出,特别是现场制作电缆分支接头技术难度很大,急需一种容量大、分支方便的供电主干线取而代之。 这时,容量大、分支方便的母线槽从国外引进来,并且在工程中迅速得到推广应用。

母线槽适用于各电力输送干线,有高压母线槽和低压母线槽两类。高层建筑、工业厂房、机场、码头、地铁、综合建筑工程等的变压器至配电柜,以及配电柜至车间及楼层的电力输送,其额定电流6000A以下,100A以上;额定电压400--680V,频率50HZ 或60HZ,可组成三相四线或三相五线的电力输送系统,属于大电流 电力供电的首选产品。 对于小型建筑,用电负荷不是很大,主干线往往采用绝缘导线;对于高层建筑,用电负荷较大,用绝缘导线作为主干线已不能满足供电需要,这时主干线需要用电缆或母线槽,我国大城市近年来电力局正有相关安全规定:配电房及高层建筑必用母线槽代替电缆电线使用。 母线槽在我国兴起近有20 年历史,至今我国大型城市高层建筑及高档工业企业已基本用母线槽代借电线电缆使用,因母线使用寿命长,拆移及分支线路方便,降低折旧费用及提高使用安全性能;中型城市及普通工业企业也开始普遍使用母线槽,则也可一次性投资,终身受益。 四、母线槽在供电系统中的优势 在供电系统中,特别是高层建筑的供电系统中,供电主干线起着非常重要的作用,它好似人体中的大动脉,一旦出现故障就会造成严重的后果。因此,生产、建设及科研单位一直在为供电主干线的可靠性作出努力,不断改进,以期创造出安装维护简便、质优价廉、性能稳定的新产品。

最新受力分析专题(动态三角形)(含答案)教程文件

二、受力分析专题(动态三角形) 单力变方法:1-受力分析-向量平移构成三角形-让其中一个力方向改变-看边长变化情况 双力变方法:1-受力分析-向量平移构成三角形-等边对等力-看边长变化情况 【注意:单力中跟重力两端连接的点不能动-看清两个力原来夹角-确定变化的力最终方向】 例1、如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板F 2和斜面对球的压力F 1大小如何变化? 【F 2先减小后增大,F 1随β增大而始终减小】 例2、所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况? 【绳上张力减小,斜面对小球的支持力增大】 例3.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长 l ,) l F L F H G N ==,式中G 、 H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。正 图 1-1 图2-1 图2-2 图1-4

螺栓扭矩及预紧力

螺栓预紧力对照表 (2011-09-16 11:44:07) 转载▼ 标签: 杂谈 8.8级螺栓 螺纹规格预紧力 (KN) 有润滑表面扭矩 (KNm)无润滑表面扭矩(KNm)精加工表 面 一般加工表 面 表面氧化表 面 镀锌表 面 干燥粗加工表 面 精加工表 面 一般加工表 面 表面氧化表 面 镀锌表 面 干燥粗加工表 面 M20 101.5 0.3 0.4 0.6 0.5 / 0.3 0.6 0.7 0.6 0.8 M22 126.0 0.4 0.5 0.8 0.7 / 0.5 0.8 0.9 0.9 1.1 M24 146.4 0.5 0.7 1.0 0.9 / 0.6 1.0 1.2 1.1 1.4

M27 190.9 0.7 1.0 1.4 1.3 / 0.9 1.4 1.7 1.6 2.0 M30 233.0 1.0 1.4 2.0 1.8 / 1.2 1.9 2.3 2.2 2.7 M33 288.3 1.3 1.9 2.7 2.4 / 1.6 2.6 3.2 2.9 3.7 M36 339.5 1.7 2.4 3.4 3.1 / 2.1 3.3 4.1 3.8 4.8 M39 405.6 2.2 3.1 4.4 4.0 / 2.7 4.3 5.3 4.9 6.3 M42 465.9 2.7 3.8 5.5 4.9 / 3.3 5.3 6.6 6.0 7.7 M45 543.3 3.4 4.8 6.8 6.2 / 4.1 6.7 8.2 7.5 9.6 M48 612.8 4.1 5.8 8.2 7.4 / 4.9 8.0 9.9 9.1 11.5 M52 730.9 5.3 7.4 10.6 9.6 / 6.4 10.4 12.8 11.7 14.9 M56 844.5 6.6 9.3 13.2 11.9 / 7.9 12.9 15.9 14.6 18.5 M60 982.6 8.3 11.6 16.5 14.9 / 9.9 16.1 19.8 18.2 23.1 M64 1112.8 10.0 14.0 19.9 17.9 / 12.0 19.4 23.9 21.9 27.9 M68 1270.9 12.1 16.9 24.2 21.8 / 14.5 23.6 29.0 26.6 33.9 M72 1438.9 14.5 20.3 29.0 26.1 / 17.4 28.3 34.8 31.9 40.6 M76 1617.8 17.2 24.1 34.4 31.0 / 20.7 33.6 41.3 37.9 48.2 M80 1807.1 20.2 28.3 40.5 36.4 / 24.3 39.5 48.6 44.5 56.7 M85 2058.0 24.5 34.3 49.0 44.1 / 29.4 47.8 58.8 53.9 68.6 M90 2325.4 29.3 41.0 58.6 52.7 / 35.2 57.1 70.3 64.5 82.0 9.8级螺栓

螺栓组受力分析与计算

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 "1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接 合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的 最小距离,应根 据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距to 不得大于下表所推荐的数值 扳手空间尺寸 螺栓间距t o 注:表中d 为螺纹公称直径。 4) 分布在同一圆周上的螺栓数目,应取成 4, 6, 8等偶数,以便在圆周上钻孔时的分度和画 线。同一螺栓 组中螺栓的材料,直径和长度均应相同。 5) 避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保 证被联接件,螺 母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图2)等。 1 ? 6*-4 4* 10 10* 1? 14-20 3W

受力分析练习题(含答案及详解)

精选受力分析练习题35道(含答案及详解) 1.如右图1所示,物体M 在竖直向上的拉力F 作用下静止在斜面上,关于M 受力的个数,下列说法中正确的是(D ) A .M 一定是受两个力作用 B .M 一定是受四个力作用 C .M 可能受三个力作用 D .M 不是受两个力作用就是受四个力作用 2.(多选)如图6所示,两个相似的斜面体A 、B 在竖直向上的力F 的作用下静止靠在竖直粗糙墙壁上。关于斜面体A 和B 的受力情况,下列说法正确的是(AD ) 图6 A .A 一定受到四个力 B .B 可能受到四个力 C .B 与墙壁之间一定有弹力和摩擦力 D .A 与B 之间一定有摩擦力 3、如图3所示,物体A 、B 、C 叠放在水平桌面上,水平力F 作用于C 物体,使A 、B 、C 以共同速度向右匀速运动,那么关于物体受几个力的说法正确的是 ( A ) A .A 受6个, B 受2个, C 受4个 B .A 受5个,B 受3个,C 受3个 C .A 受5个,B 受2个,C 受4个 D .A 受6个,B 受3个,C 受4个 4.(多选)如图5所示,固定的斜面上叠放着A 、B 两木块,木块A 与B 的接触面是水平的,水平力F 作用于木块A ,使木块A 、B 保持静止,且F ≠0。则下列描述正确的是(ABD ) 图5 A . B 可能受到5个或4个力作用 B .斜面对木块B 的摩擦力方向可能沿斜面向下 C .A 对B 的摩擦力可能为0 D .A 、B 整体可能受三个力作用 5、如右图5所示,斜面小车M 静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m ,且M 、m 相对静止,小车后来受力个数为( B ) A .3 B .4 C .5 D . 6 图 1 图3

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

母线电缆绝缘子的选择标准

第五节母线、电缆和绝缘子的选择 一.敞露母线及电缆的选择 敞露母线一般按下列各项进行选择和校验:①导体材料、类型和敷设方式;②导体截面; ③电晕;④热稳定;⑤动稳定:⑥共振频率。电缆则按额定电压和上述①、②、④项及允许电压降选择和校验 1.敞露母线及电缆的选型 常用导体材料有铜和铝。铜的电阻率低,抗腐蚀性强,机械强度大,是很好的导体材料。但是我国铜的储量不多,价格较贵,因此铜母线只用在持续工作电流大,且位置特别狭窄的发电机、变压器出线处或污秽对铝有严重腐蚀而对铜腐蚀较轻的场所。铝的电阻率虽为铜的1.7~2倍,但密度只有铜的30%,我国铝的储量丰富,价格较低,因此一般都采用铝质材料工业上常用的硬母线截面为矩形、槽形和管形 矩形母线散热条件较好,有一定的机械强度,便于固定和连接,但集肤效应较大。为避免集肤效应系数过大,单条矩形的截面最大不超过1250mm2。当工作电流超过最大截面单条母线允许电流时,可用2~4条矩形母线并列使用。但是由于邻近效应的影响,多条母线并列的允许载流量并不成比例增加,故一般避免采用4条矩形。矩形导体一般只用于35kV及以下,电流在4000A及以下的配电装置中 槽型母线机械强度较好,载流量较大,集肤效应系数也较小。槽型母线一般用于4000~8000A的配电装置中。 管形母线集肤效应系数小,机械强度高,管内可以通水和通风,因此,可用于8000A 以上的大电流母线。另外,由于圆管形表面光滑,电晕放电电压高,因此可用作110kV及以上配电装置母线 截面形状不对称母线的散热和机械强度与导体置放方式有关,下图为矩形母线的布置方式:

当三相母线水平布置时,(a)与(b)相比,前者散热较好,载流量大,但机械强度较低,而后者则相反。(c)的布置方式兼顾了(a)、(b)的优点,但配电装置高度有所增加,因此,母线的布置方式应根据载流量的大小、短路电流水平和配电装置的具体情况确定电缆类型的选择与其用途、敷设方式和使用条件有关。例如35kV及以下,一般采用三相铝芯电缆;110kV及以上采用单相充油电缆;直埋地下,一般选用钢带铠装电缆;敷设在高差较大地点,应采用不滴流或塑料电缆 2.母线及电缆截面选择 除配电装置的汇流母线及较短导体按导体长期发热允许电流选择外,其余导体的截面一般按经济电流密度选择。 (1)按导体长期发热允许电流选择。导体所在电路中最大持续工作电流I gmax应不大于导体长期发热的允许电流I y,即: I gmax≤ KI y 式中I y——相应于导体允许温度和基准环境条件下导体长期允许电流; K——综合修正系数,裸导体的K值与海拔和环境温度有关,电缆的K值与环境温度、敷设方式和土壤热阻有关, K值可查《电力工程设计手册》等有关手册 (2)按经济电流密度选择。按经济电流密度选择导体截面可使年计算费用最低。年计算费用包括电流通过导体所产生的年电能损耗费、导体投资包括损耗引起的补充装机费)和折旧费以及利息等,对应不同种类的导体和不同的最大负荷年利用小时数T max将有一个年计算

受力分析经典题及标准答案

一、选择题 1、粗糙的水平面上叠放着A和B两个物体,A和B间的接触面也是粗糙的,如果用水平力F拉B,而B仍保持静止,则此时( ) A.B和地面间的静摩擦力等于F,B和A间的静摩擦力也等于F. B.B和地面间的静摩擦力等于F,B和A间的静摩擦力等于零. C.B和地面间的静摩擦力等于零,B和A间的静摩擦力也等于零. D.B和地面间的静摩擦力等于零,B和A间的静摩擦力等于F. 2、如图所示,重力G=20N的物体,在动摩擦因数为0.1的水平面上向左运动, 同时受到大小为10N的,方向向右的水平力F的作用,则物体所受摩擦力大 小和方向是( ) A.2N,水平向左B.2N,水平向右C.10N,水平向左D.12N,水平向右 3、水平地面上的物体在水平方向受到一个拉力F和地面对它的摩擦力f的作用。在 物体处于静止状态的条件下,下面说法中正确的是:( ) A.当F增大时,f也随之增大B.当F增大时,f保持不变 C.F与f是一对作用力与反作用力D.F与f合力为零 4、木块A、B分别重50 N和60 N,它们与水平地面之间的动摩擦因数均为0.25;夹在A、B之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m.系统置于水平地面上静止不动。现用F=1 N的水平拉力作用在木块B上.如图所示.力F作用后( ) A.木块A所受摩擦力大小是12.5 N B.木块A所受摩擦力大小是11.5 N C.木块B所受摩擦力大小是9 N D.木块B所受摩擦力大小是7 N 5、如图所示,质量为m的木箱在与水平面成θ的推力F作用下,在水平地面上滑行,已知木 箱与地面间的动摩擦因数为μ,那物体受到的滑动摩擦力大小为( ) A.μmg B.μ(mg+F sinθ) C.F cosθD.μ(mg+F cosθ) 6、如图所示,质量为m的物体置于水平地面上,受到一个与水平面方向成α角的拉力F 作用,恰好做匀速直线运动,则物体与水平面间的动摩擦因数为( ) A.F cosα/(mg-F sinα)B.F sinα/(mg-F sinα) C.(mg-F sinα)/F cosαD.F cosα/mg 7、如图所示,物体A、B的质量均为m,A、B之间以及B与水平地面之间的动摩擦系数均为μ水平拉力F 拉着B物体水平向左匀速运动(A未脱离物体B的上表面)F的大小应为( ) A.2μmg B.3μmg C.4μmg D.5μmg 8、如图所示物体在水平力F作用下静止在斜面上,若稍许增大水平力F, 而物体仍能保持静止时( ) A..斜面对物体的静摩擦力及支持力一定增大 B.斜面对物体的静摩擦力及支持力都不一定增大 C.斜面对物体的静摩擦力一定增大,支持力不一定增大 D.斜面对物体的静摩擦力不一定增大,支持力一定增大 9、重为10N的木块放在倾角为θ=300的斜面上受到一个F=2N的水平恒力的作用做匀速直线运动,(F 的方向与斜面平行)则木块与斜面的滑动摩擦系数为()

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强度螺栓预紧力和拧紧力矩比较分析

高强度螺栓预紧力和拧紧力矩比较分析 在钢结构连接中经常使用高强度螺栓。高强度螺栓连接对于防止松动有良好的可靠性,尤其用于连接动载荷的构件。在高强度螺栓连接中,预紧力和拧紧力矩是一个很重要的参数。下面就高强度螺栓的预紧力及拧紧力矩进行探讨,以期得到合理的结果,在今后的设计中应用。 1 预紧力大小的确定 高强度螺栓预紧力的大小跟螺栓的材料及其横截面面积有关。所用材料需要经过调质处理以提高其机械性能,满足使用要求。国内高强度螺栓的材料一般为45钢、40B钢及40Cr钢。45钢用作级的螺栓,40B钢及40Cr 钢用作级的螺栓。 预紧力大小由下式计算: P=σ b F i (1-1) 式中σ b —高强度螺栓材料经热处理后的抗拉强度限, F i —螺栓的计算面积(按内螺纹直径计算),按下表取。 高强度螺栓的螺纹内径d 1和计算面积F i 螺栓公称直径M16 M18 M20 M22 M24 螺纹的内径(mm) 计算面积(mm2)149 182 235 292 2 拧紧力矩的计算 拧紧力矩是为了使螺栓产生预紧力,其大小由预紧力确定。 拧紧力矩由下式计算: M =(kg·m)(2-1)

式中 P —高强度螺栓需要的预紧力(t ); d —高强度螺栓的公称直径(mm )。 3 下面就国内外高强度螺栓,根据它们的材料的机械性能计算其预紧力和拧紧力矩,并进行比较和分析,从中找到适合我们应用的预紧力和拧紧力矩。 (1) 根据《机械设计手册》(机械工业出版社) 材料: 45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下表所示。 预紧力F v (kN)及扭紧力矩M A (N·m) (2) 根据《起重机设计手册》(辽宁人民出版社) 材料:45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下: 预紧力F v (kN)及扭紧力矩M A (N·m)

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接得设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面得工作能力 5.校核螺栓所需得预紧力就是否合适 确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。 1、螺栓组联接得结构设计 螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。为此,设计时应综合考虑以下几方面得问题: 1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。 2)螺栓得布置应使各螺栓得受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓得布置

3)螺栓排列应有合理得间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。扳手空间得尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。同一螺栓组中螺栓得材料,直径与长度均应相同。 5)避免螺栓承受附加得弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等得粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

螺纹连接受力分析

螺纹连接受力分析 一、 螺纹强度校核 把螺母的一圈螺纹沿大径展开,螺杆的一圈螺纹沿小径展开,视为悬臂梁,如图。 相关参数: 轴向力F ,旋合螺纹圈数z (因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10); 螺纹牙底宽度b ,螺纹工作高度h ,每圈螺纹牙的平均受力为F z ,作用在中径上。 螺母——内螺纹,大径、中径、小径分别为D 、2D 、1D 。 螺杆——外螺纹,大径、中径、小径分别为d 、2d 、1d 。 1. 挤压强度 螺母一圈挤压面面积为2D h π,螺杆一圈挤压面积为2d h π。 螺母挤压强度2[]p p F F z A D h πσ= =≤σ 螺杆挤压强度2[]p p F F z A d h σσπ= =≤ p σ为挤压应力, []p σ 为许用挤压应力。 2. 剪切强度 螺母剪切面面积为Db π,螺杆剪切面面积1d b π。 螺母,剪切强度[]F F z A Db ττπ= =≤ 螺母的一圈沿大径展开 螺杆的一圈沿小径展开

螺杆,剪切强度1[]F F z A d b ττπ= =≤ []0.6[]τσ=,[]s n σσ= 为材料许用拉应力,s σ为材料屈服应力。 安全系数,一般取3~5。 3. 弯曲强度 危险截面螺纹牙根部,A -A 。 螺母,弯曲强度23[]b b M Fh W Db z σσπ= =≤ 螺杆,弯曲强度213[]b b M Fh W d b z σσπ= =≤ 其中,L :弯曲力臂,螺母22D D L -= ,螺杆2 2 d d L -= M :弯矩,螺母22D D F M F L z -=?= ?,螺杆2 2 d d F M F L z -=?=? W :抗弯模量,螺母2 6 Db W π= ,螺杆2 16 d b W π= []b σ:螺纹牙的许用弯曲应力,对钢材,[]1~1.2[]b σσ= 4. 自锁性能 自锁条件v ψψ≤, 其中,螺旋升角22 arctan arctan S np d d ψππ==,螺距、导程、线数之间关系:S =np ; 当量摩擦角arctan arctan cos v v f f ψβ ==, 当量摩擦系数cos v f f β= f 为螺旋副的滑动摩擦系数,无量纲,定期润滑条件下,可取0.13~0.17; β为牙侧角,为牙型角α的一半,2βα= 5. 螺杆强度 1、 实心

螺栓预紧力的计算

1螺栓的预紧力可按下式计算: P0—预紧力 P0=σ0×As As=π×ds^2/4 ds—螺纹部分危险剖面的计算直径 2ds=(d2+d3)/2 d3= d1-H/6 H—螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs—螺栓材料的屈服极限kgf/mm^2 (与强度等级相关,材质决定) 2 也可查表: 螺栓性能等级的含义 2007年11月23日星期五 14:29 钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 强度等级所谓8.8级和10.9级

是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

母线槽与电缆技术性能比较

母线槽与电缆的技术性能比较 摘要:选用母线槽有许多优越性,在低压配电系统输电干线工程项目中得到广泛地应用,越来越多地代替了电缆。母线槽与电缆或预分支电缆的技术性能相比较有散热好,阻抗低及载流量大的特点。载流量630A以上的母线槽与630A以上电缆或预分支电缆的技术性能相比较,在载流量相同的情况下,能节省铜材10—35%,能减少电能损耗15%以上。 把带电母线固定及封闭在接地的金属外壳里,相间及对地采用了阻燃的绝缘材料。从而保证了电气和机械性能稳定。同时母线槽加设了智能化监控装置,所以运行非常安全可靠。利用了插接箱分路,即使在母线带电的情况下也能安全地进行插拨分合支路。母线槽具有施工方便、维护容易、XX了水平、垂直、纵横交错布置、布线整齐美观、安全规范化的特点。同时,能减少电能损失及节省用铜量。 为此,母线槽在低压配电系统输电干线工程中得到了广泛地应用,已越来越多地代替了电线电缆。在国外的发达国家及我国香港、澳门等已广泛地应用母线槽。在我国的广东省广州市,凡12层以上楼宇配电房出线,即引至楼层的主干线90%以上采用母线槽;630KVA 变压器至进线柜均采用母线槽。多层工业厂房、大型会展中心、酒店、商厦、超市的供配电系统,尤其是高档次的宾馆、大商业、高层及超高层综合楼等,为了确保供电的安全性和可靠性,减少故障的发生,封闭式母线槽已成为上述楼宇低压配电系统的首选产品。 一母线槽与电缆比较具有如下优越性:

1.1 母线槽是扁导体,与圆导体电缆或预分支电缆相比较,具有散热好、阻抗低及载流量大的特点。载流量630A以上的母线槽与630A 以上电缆或预分支电缆相比较,在载流量相同的情况下,能节省铜材10—35%,能减少电能损耗15%以上。母线槽平日之中的传送电流很大,便利衔接馈线,同时缩减能耗。它很适宜交流电源,在给定的电压数值下能维持住长时段的运转。一分钟以内的交流电状态下,母线槽不会被击穿且不会带有闪络的状态。它能承载着的耐受电流、最短时段的峰值电流,都会符合规格。 1.2 母线槽的使用寿命大约是电缆和分支电缆的2~3倍左右。 我国香港、澳门及欧洲有些国家明确规定电缆使用寿命为12~15年。实际上母线槽的使用寿命则长达30~50年。母线槽可分成空气绝缘类别、密集绝缘类别。通常状态下,空气绝缘这样的母线槽固有的构架很简易,密集绝缘母线槽带有最优的散热特性,电流等级很高。高层建筑布设的电气竖井,母线槽都配有某一插接口径,布设这类接头应考量多重的人为干扰。然而,母线槽初始的容量很大,同时构架紧凑,在偏大负荷的态势下也带有优势。 1.3 采用母线槽载流能力稳定,避免了不必要的电能损耗。 母线槽标准满足规范规定的极限温升值的电流(即是母线槽的额定电流)是很重要的。该电流能控制母线槽的载流能力。电缆的额定电流是以截面积来确定的。计算负荷不同,桥架内电缆根数不同,使用不同的电缆桥架,桥架内的温度随着上述这些因数的不同而变化,电缆的载流能力亦随之变化。所以降容系数乘以电缆的额定电流而计

相关文档
最新文档