D类功放原理与应用

D类功放原理与应用
D类功放原理与应用

D类放大器术语以及差分方式与单端方式的比较

图3示出D类放大器中输出晶体管和LC滤波器的差分实现。这个H桥具有两个半桥开关电路,它们为滤波器提供相反极性的脉冲,其中滤波器包含两个电感器、两个电容器和扬声器。每个半桥包含两个输出晶体管,一个是连接到正电源的高端晶体管MH,另一个是连接到负电源的低端晶体管ML。图3中示出的是高端pMOS晶体管。经常采用高端nMOS晶体管以减小尺寸和电容,但需要特殊的栅极驱动方法控制它们(见深入阅读资料1)。

全H桥电路通常由单电源(VDD)供电,接地端用于接负电源端(VSS)。对于给定的VDD和VSS,H桥电路的差分方式提供的输出信号是单端方式的两倍,并且输出功率是其四倍。半桥电路可由双极性电源或单极性电源供电,但单电源供电会对DC偏置电压产生潜在的危害,因为只有VDD/2电压施加到过扬声器,除非加一个隔直电容器。

“激励”的半桥电路电源电压总线可以超过LC滤波器的大电感器电流产生的标称值。在V DD和VSS之间加大的去耦电容器可以限制激励dV/dt的瞬态变化。全桥电路不受总线激励的影响,因为电感器电流从一个半桥流入,从另一个半桥流出,从而使本地电流环路对电源干扰极小。

音频D类放大器设计因素

虽然利用D类放大器的低功耗优点有力推动其音频应用,但是有一些重要问题需要设计工程师考虑,包括:

*输出晶体管尺寸选择;

*输出级保护;

*音质;

*调制方法;

*抗电磁干扰( EMI);

*LC滤波器设计;

*系统成本。

输出晶体管尺寸选择

选择输出晶体管尺寸是为了在宽范围信号调理范围内降低功耗。当传导大的IDS时保证VD S很小,要求输出晶体管的导通电阻(RON)很小(典型值为0.1W~0.2W)。但这要求大晶体管具有很大的栅极电容(CG)。开关电容栅极驱动电路的功耗为CV2f,其中C是电容,V是充电期间的电压变化,f是开关频率。如果电容或频率太高,这个“开关损耗”就会过大,所以存在实际的上限。因此,晶体管尺寸的选择是传导期间将IDS×VDS损失降至最小与将开关损耗降至最小之间的一个折衷。在高输出功率情况下,功耗和效率主要由传导损耗决定,而在低输出功率情况下,功耗主要由开关损耗决定。功率晶体管制造商试图将其器件的RO N×CG减至最小以减少开关应用中的总功耗,从而提供开关频率选择上的灵活性。

输出级保护

输出级必须加以保护以免受许多潜在危险条件的危害:

过热: 尽管D类放大器输出级功耗低于线性放大器,但如果放大器长时间提供非常高的功率,仍会达到危害输出晶体管的水平。为了防止过热危险,需要温度监视控制电路。在简

单的保护方案中,当通过一个片内传感器测量的温度超过热关断安全阈值时,输出级关断,

并且一直保持到冷却下来。除了简单的有关温度是否已经超过关断阈值的二进制指示以外,

传感器还可提供其它的温度信息。通过测量温度,控制电路可逐渐减小音量水平,减少功耗

并且很好地将温度保持在限定值范围内,而不是在热关断期间强制不发出声音。

输出晶体管过流: 如果输出级和扬声器端正确连接,输出晶体管呈低导通电阻状态不会出现问题,但如果这些结点不注意与另一个结点或正、负电源短路,会产生巨大的电流。如

果不经核查,这个电流会破坏晶体管或外围电路。因此,需要电流检测输出晶体管保护电路。

在简单保护方案中,如果输出电流超过安全阈值,输出级关断。在比较复杂的方案中,电流

传感器输出反馈到放大器中,试图限制输出电流到一个最大安全水平,同时允许放大器连续

工作而无须关断。在这个方案中,如果限流保护无效,最后的手段是强制关断。有效的限流

器还可在由于扬声器共振出现暂时的大瞬态电流时保持放大器安全工作。

欠压: 大多数开关输出级电路只有当正电源电压足够高时才能正常工作。如果电源电压太低,出现欠压情况,就会出现问题。这个问题通常通过欠压封锁电路来处理,只有当电源

电压大于欠压封锁阈值时才允许输出级工作。

图4 输出级晶体管的先合后开开关

输出晶体管导通时序 : MH和ML输出级晶体管(见图4)具有非常低的导通电阻。因此,避

免MH和ML同时导通的情况很重要,因为它会产生一个从VDD到VSS的低电阻路径通

过晶体管,从而产生很大的冲击电流。最好的情况是晶体管发热并且消耗功率;最坏的情况

是晶体管可能被毁坏。晶体管的先开后合控制通过在一个晶体管导通之前强制两个晶体管都

断开以防止冲击电流情况发生。两个晶体管都断开的时间间隔称为非重叠时间或死区时间。

.............

利用新的调制技术和滤波器结构降低D类放大器的EMI(上)

D类放大器通常具有比AB类放大器更高的效率,适合低功耗应用。然而,尽管D类放大器具有这一先天优势,但仍然不能弥补传统D类放大器所存在的缺点,即增加了成本,降低了音频性能,并且需要输出滤波。然而,近年来D类放大器技术的进步,降低了D类放大器成本,同时可以提供与AB类放大器相类似的音频性能。此外,一些新型的D类输出调制方案同时也降低许多应用中的EMI。

近年来D类放大器的技术迅猛发展,最常见的莫过于应用于每个通道低于50W的低功耗产品中。在这些低功耗应用中,D类放大器相比传统AB类放大器而言有效率上的先天优势,因为D类放大器的输出级通常只处于导通或关断,没有中间偏压级。然而,长久以来,这一效率上的优势并未使其获得设计人员的广泛青睐,因为D类放大器也有明显的缺点:器件成本高、较差的音频性能(与AB类放大器相比),并且需要输出滤波。

近年来,受以下两个主要因素的影响,这样的局面正逐渐扭转,使D类放大器在很多应用领域引起了人们的广泛关注。

首先,是市场需要。D类放大器的某些优点推动了手机和LCD平板显示器这两个终端设备市场的迅速发展。对于手机来说,扬声器和PTT (Push-to-Talk,一键通)模式需要D类放大器的高效率,以延长电池寿命。LCD平板显示器的发展对电子器件提出了“低温运行(cool running)”的需求,这是由于工作温度的升高将影响显示颜色对比度。而D类放大器的高效率意味着驱动电子设备时功耗更低,使LCD平板显示器工作时发热更少,图像显示效果更好。

影响D类放大器应用的第二个因素便是自身技术的发展。根据市场需要,一些制造商改进了D类放大技术,使D类放大器具有更理想价格的同时,也具备了与AB类放大器相近的音频性能。此外,一些新型的D类放大器输出调制方案还可以降低实际应用的EMI。

某些新型D类放大设计方案虽然是基于老式的PWM型结构,但采用了更复杂的调制技术,实现低功耗系统中的无滤波工作。效率指标可以通过测试验证,但某些设计人员仍然怀疑基于这些新技术的产品将存在普遍的EMC/RFI兼容性问题。实际上,良好的PCB布局和较短的扬声器连线可以保证大大降低EMI幅射,使之满足FCC或CE标准。

应用难点

有些应用中的物理布局需要长的扬声器连线,这样的扬声器连线便具有天线效应,必须严格控制RF幅射。实际上,扬声器连线越长,它作为天线产生幅射的频率就越低。同时,某些应用要求EMI幅射低于CE/FCC标准,以符合汽车电子规范,或者避免干扰其他低频电路。面对如此纷繁各异的需求,这些应用往往成为一些难点无法克服。

最有代表性的应用难点便是平板电视。由于扬声器通常排列在设备的外侧边缘,往往不可避免的要使用长的扬声器连线。如果还存在模拟视频信号,则仅仅满足FCC或CE的RF幅射要求还不够(这些标准只针对30MHz以上的频率);往往还需要抑制开关基频以避免干扰视频信号。如果采用早期PWM放大器所用的传统LC滤波器,则需要对其进行分析,以保证他们能有效抑制新型放大器所产生的高频开关瞬态。

PWM型D类放大器

传统D类放大器通常基于脉宽调制(PWM)原理设计。其输出可以配置为单端或全差分桥接负载(BTL)。图1为PWM型D类放大器的典型BTL 输出波形。快速的切换时间和接近轨至轨的摆幅使此类放大器具有非常高的效率。然而,这些特性使放大器具有宽的输出频谱,可能导致高频RF幅射和干扰。因此,采用此类方案通常需要使用输出滤波器来抑制有害的RF幅射。

如图1所示,如果器件的反相和同相输出回路具有较高的匹配度,则两个对称输出信号波形在扬声器或连线上将具有很小的共模(CM)信号(底部的迹线)。注意:50%占空比代表零输入信号(空闲状态)。因此,可以设计一个差分低通滤波器,用于衰减信号波形中高频分量(快速切换所产生的),同时保留有用的低频分量以输出到扬声器。

新一代调制技术

随着市场对D类放大器需求的不断增长,一些制造商最近推出了可独立控制H桥的两个半桥的新一代调制方案。这一调制方案具有两个主要优点:

音频信号较弱或空闲状态时,负载上几乎没有差分开关信号。较传统PWM设计改进了静态电流损耗。

最小脉冲,共模(CM)开关信号有助于降低导通和关断瞬态。BTL输出引脚的空闲状态直流电平(滤波后)接近于GND。因此,滤波元件的不匹配或杂散电容(可能导致放大器导通或关断时出现音频杂音)可减到最小。

显然,这一新技术虽具有一些优点,但放大器输出将不再对称。图2所示的信号波形(以MAX9704立体声D类放大器为例)具有较高的共模分量。

此类D类放大器对输出滤波器的要求,不同于具有传统差分输入和互补PWM输出的放大器。与PWM相比,MAX9704调制方案的输出往往含有较高的共模信号,设计输出滤波器时需要考虑这点。正如后面的实例所示,传统差分滤波器拓扑结构的效果往往不太理想。

图3a给出了传统的PWM型D类输出LC滤波器,及其理想值。为简单起见,可假设扬声器负载具有理想的8电阻,并且忽略电感的直流阻抗。通过一些简单的SPICE仿真便可得出问题所在。图3b给出了图3a中滤波器对差分输入信号的频率响应。给出了两个输出结点(FILT1,FILT2)相对于GND的响应曲线。图中给出的器件值在30kHz的频率以上具有理想的二阶滚降,以及理想的瞬态。音频带内群延迟特性在4?s 内保持平坦。

图3c给出了共模输入时同一滤波器的输出。同样,两个输出的响应曲线均相对于GND。输出结果(Y轴偏移)具有很大的尖峰,并具有明显的欠阻尼。结合共模信号下滤波器的等效电路(图4),就很容易理解为什么会出现这一结果。由于仿真时采用理想匹配的电感和电容器,因此阻性负载上差分信号为零,因此不会LC元件不会出现任何衰减。L1与C1谐振(L2与C3同理)产生峰值。在时域内(图中未显示),这种情况将会出现较大的过冲和振荡。注意,输入共模信号时,C2将引入一个零点。因此滤波器的截止频率(此时称作谐振频率可能更加准确)将高于差分输入时的截止频率。

这时你或许会问,这样会有问题么?如果该频率下输出频谱共模能量为零,那么便没什么问题。然而,如果峰值频率与D类放大器开关频率正好相等,则扬声器和连线上将出现较大的输出电压幅度。同时,MAX9704的扩展频谱调制(SSM)模式将使欠阻尼滤波器在音频频带以上引入相当的噪声。扩展频谱模式是引脚可选的,此时高频开关能量为“白噪声”,可以通过逐周期随机调整开关时间降低噪声幅度。这种扩展频谱方案简化了无滤波应用中的EMI兼容性设计。

无滤波器双路D类功放MAX9713/9714原理与应用

[日期:2004-12-11] 来源:国外电子元器件作者:吴祖国[字体:大中小]

摘要:MAX9713/MAX9714是Maxim公司最新推出的无滤波器双路D类音频功率放大器。文中介绍了MAX9713/MAX9714的基本性能和主要特点,给出了MAX9713/M AX9714的引脚功能和主要性能参数,同时给出了该器件在音响设备上的应用电路。

关键词:MAX9713;MAX9714;D类;音频;功率放大器

1概述

MAX9713/MAX9714无滤波器D类音频功率放大器是MAXIM公司生产的开关型功率放大器的改进产品,其中MAX9713是单声道功率放大器,MAX9714是立体声功率放大器,它们均具有AB类功率放大器的性能和D类功率放大器的效率,且不需要传统D类功率放大器的输出滤波器,也不需要散热器,因而节省了电路板面积,降低了设计成本。MAX9713/MAX9714器件采用10V~25V单电源电压供电,静态电流仅为18mA。在单路工作模式下,该器件可向8Ω负载输出高达6W的功率,且效率高达85%,THD+N低于0.07%,SNR超过100dB,同时还具有短路和过热保护功能。因而可以广泛应用在台式计算机、笔记本电脑、汽车音响、LCD监视器、投影仪和家用电视接收机等设备中。

2引脚功能和主要参数

2.1引脚功能

MAX9713/MAX9714均采用32脚TQFN封装,MAX9713的封装尺寸为5mm×5mm,MAX9714的封装尺寸为7mm×7mm,其引脚排列如图1所示,各引脚的功能如下:

PGND:电源地;

VDD:电源端,电压范围为10~25V;

C1N:充放电电容负极;

C1P:充放电电容正极;

图1

CHOLD:充放电容控制电容接入端,设计时可用1μF电容连接到VDD端;

N.C.:空脚;

REG:内部调节器输出端,应使用0.47μF电容对地旁路;

AGND:模拟信号地;

IN+:同相输入端;

IN-:反相输入端;

SS:软启动端,使用时应在SS端到地GND端接0.47μF的电容;

SHDN:关机控制端,低电平有效;

G1,G2:分别为增益选择1和2端;

FS1,FS2:分别为频率选择1和2端;OUT-:音频信号反相输出端;

OUT+:音频信号同相输出端;

INL-:左通道反相输入端;

INL+:左通道同相输入端;

INR-:右通道反相输入端;

INR+:右通道同相输入端;

OUTR-:右通道音频信号反相输出端;OUTR+:右通道音频信号同相输出端;OUTL-:左通道音频信号反相输出端;OUTL+:左通道音频信号同相输出端。2.2主要性能参数

MAX9713/MAX9714的主要性能参数。

3电路原理与外围电路设计

MAX9714的内部原理框图如图2所示,与MAX9713相比,MAX9714仅多了一个放大通道,其余部分完全相同。下面以MAX9714为例,简要分析其主要单元电路的工作原理。

3.1信号输入电路

MAX9713/MAX9714内部采用全差动输入结构,与多媒体数字解码器输出兼容,可直接相连。由于MAX9713/MAX9714采用的是差动输入结构,因而可有效放大两个输入端的差模信号,同时也可抑制输入信号中的共模噪声。在有些应用场合,还可设置为单端输入方式,但此时输入信号、公共地到两个输入端之间的耦合电容不能省去。

输入电路中的电容CIN既是信号耦合电容,又可与MAX9713/MAX9714的输入阻抗构成高通滤波器,其电容值的大小直接影响高通滤波器下限截止频率的高低,为了使放大器具有较好的低频特性,CIN的电容值不能太小,一般取0.47μF较为合适。电容CIN宜选用钽电容或铝电解电容,耐压值较高的陶瓷电容虽然也可以使用,但是容易引起低频失真,所以一般不宜使用。

3.2调制模式

MAX9713/MAX9714的调制方案有固定频率模式 FFM 和扩散频谱

模式 SSM 两种。在固定频率模式 FFM 下,可由FS1和FS2设定开关频率,其输出信号频谱由开关频率及其谐波成分组成,因此,即使开关频率在标称值的±35%范围内变化,也不会影响电路对音频信号的再现。

扩散频谱模式 SSM 是Maxim公司独有的、具有专利技术的调制方案,可使输出信号频谱变得较为平坦,并能有效降低扬声器和连接电缆的EMI辐射 满足FCC辐射标准。在SSM模式(通过置FS1=FS2=H来完成设置),开关频率将围绕中心频率(335kHz)在±1.7%kHz内变化。虽然调制方式还是一样,但是三角波的周期在循环变化。输出信号频谱则随开关频率变化而变化,而对于能量谱,它们通常随着频率的变化分布在整个频带内,这样的频谱看起来就像白噪声,EMI辐射也相应降低。

3.3输出电路

传统的D类音频功率放大器为了从放大后的PWM输出信号中还原音频信号,往往需要一个输出滤波器,这样既增加了成本和放大器的尺寸,又降低了效率。MAX9713/MAX9714不需要输出滤波器,而是利用扬声器内固有的线圈电感和扬声器来对发声频率范围内人耳所能听到的声音成份实现自然滤波,以达到体积更小、成本更低、效率更高的目的。这是因为,MAX9713/MAX9714的工作频率远远超过大多数扬声器的发声频率范围。由于扬声器音频线圈的振动受低频信号的影响较大,受高频信号的影响非常小,因此,只要采用线圈电感大于30μH的扬声器就能有效还原PWM输出中的音频信号。典型的8Ω扬声器的线圈电感一般在30μH到100μH之间,所以无需输出滤波器,选用线圈电感值大于60μH的扬声器可达到最佳的输出效果。

虽然MAX9713/MAX9714不需要输出滤波器,但是在使用时必须注意:输出端与扬声器之间的连接电缆长度不得超过36cm。如果遇到输出线路的长度超过36cm、电路板设计不够合理而影响输出效果、电路附近有电磁辐射敏感设备等情况,就必须设计输出滤波器。

3.4开关机噪声抑制电路

MAX9713/MAX9714内部具有开关机噪声抑制电路。在关机过程中,放大器输出端的H型桥路通过300kΩ电阻连接到GND端,输出端没有能听到的噪声信号输出。在开机过程中,输入放大器内部偏置电压被设置为较低的值,输入放大器不工作,从而可以达到静音、防止噪声输出的目的。开机后,随着软启动电容器两端电压的逐渐增加,输入放大器内部偏置电压会逐步达到正常值,电路开始进入正常工作状态。由于电容CSS值会影响开机静噪时间的长短,为了达到最佳的静噪性能,电容CSS的取值最小应该达到180nF。

4应用电路

图3是采用MAX9714与MAX9722B设计的多功能高效率立体声音箱放大器。该电路既可以用扬声器进行大功率立体声信号输出,也可以连接耳机以满足个人欣赏音乐之需,而且两种输出方式不同时工作,互不影响。图中,CODEC为音频信号输入端,当耳机插孔没有插入耳机时,场效应管栅极和MAX9722B的SHDN端均为低电平,MAX9714正常工作而MAX9722B处于停机状态。当耳机插入耳机插孔后,场效应管栅极和MAX9722B的SHDN端均为高电平,场效应管处于导通状态,SS端为低电平,MAX9714处于非启动状态而无功率输出,而此时MAX9722B则处于正常工作状态,电路将从耳机插孔输出经放大的音频信号。

相关主题
相关文档
最新文档