概率论与数理统计习题三解析哈工大版

概率论与数理统计习题三解析哈工大版
概率论与数理统计习题三解析哈工大版

习 题 三

1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 1

1()(1)(1),2,3,

.k k P X k p p p p k --==-+-=

2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个

数X 的分布列。

解 从a b +个球中任取r 个球共有r

a b C +种取法,r 个球中有k 个黑球的取法有k

r k

b a

C C -,所以X 的分布列为

()k r k

b a

r

a b

C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1

(1,2,3)1

i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。则

1231111

(0)()23424

P X P A A A ===

??=

, 123123123(1)()P X P A A A A A A A A A ==++

123123123()()()P A A A P A A A P A A A =++

1111211136

23423423424

=

??+??+??=

, 123123123(2)()P X P A A A A A A A A A ==++

123123123()()()P A A A P A A A P A A A =++

12111312311

23423423424

=

??+???+??=

, 1231236

(3)()23424

P X P A A A ===??=.

即X 的分布列为

0123

1611624242424

X

P

. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为1

2

,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

解 (0)P X P ==(第一个路口即为红灯)12

=

, (1)P X P ==(第一个路口为绿灯,第二个路口为红灯)111224

=?=, 依此类推,得X 的分布列为

0123

11112488

X

P

. 5.将一枚硬币连掷n 次,以X 表示这n 次中出现正面的次数,求X 的分布列。

解 X 为n 重贝努里试验中成功出现的次数,故1

~(,)2

X B n ,X 的分布列为

1()2n

k n P X k C ??== ???

0,1,,k n =

6.一电话交换台每分钟接到的呼叫次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼叫的概率;(2)每分钟的呼叫次数大于10的概率。 解 设X 为每分钟接到的呼叫次数,则~(4)X P

(1)84448444(8)0.29778!!!

k k k k q P X e e e k k ∞∞---=====-=∑∑

(2)4

114(10)0.00284.!

k k P X e k ∞

-=>==∑ 7.某商店每月销售某种商品的数量服从参数为5的泊松分布,问在月初至少库存多少此种商品,才能保证当月不脱销的概率为0.99977以上。 解 设X 为该商品的销售量,N 为库存量,由题意

5

11

50.99977()1()1()1!k K N K N P X N P X N P X K e k ∞

-=+=+≤≤=->=-==-∑∑ 即

5

1

50.00023!K K N e k ∞

-=+≤∑ 查泊松分布表知115N +=,故月初要库存14件以上,才能保证当月不脱销的概率在0.99977以上。

8.已知离散型随机变量X 的分布列为:(1)0.2,(2)0.3P X P X ====,

(3)0.5P X ==,试写出X 的分布函数。

解 X 的分布列为

123

0.20.30.5

X P

所以X 的分布函数为

0,1,0.2,12,()0.5,23,1,

3.

x x F x x x

=?

9.设随机变量X 的概率密度为 sin ,0,

()0,c x x f x π<

?其他.

求:(1)常数C ;(2)使()()P X a P X a >=<成立的a . 解 (1)00

1()sin cos 2f x dx c xdx c x c π

π

+∞-∞

=

==-=?

?,1

2

c =

; (2)1111()sin cos cos 2222

a

a P X a xdx x a π

π>=

=-=+?, 001111()sin cos cos ,2222

a a

P X a xdx x a <==-=-?

可见 cos 0a =, 2

a π

∴=

10.设随机变量X 的分布函数为

()arctan F x A B x =+,x -∞<+∞,

求:(1)系数A 与B ;(2)(11)P X -<≤;(3)X 的概率密度。 解 (1)由分布函数的性质

0()2

1()2F A B F A B ππ?

=-∞=-?????=+∞=+?

??

于是 12A =,1

B π

=,所以X 的分布函数为

11

()arctan 2F x x π

=+ x -∞<<+∞,

(2)11111

(11)(1)(1)()24242

P X F F ππππ-<≤=--=+?--?=;

(3)X 的概率密度为

21

()()(1)

f x F x x π'==

+, x -∞<<+∞.

11.已知随机变量X 的概率密度为

||1

()2

x f x e -=,x -∞<<+∞.

求X 的分布函数. 解

001,0,2()()11,0,2

2x u

x x x u e du x F x f u du e dx e du x -∞

-∞

--∞?≤??==??+>????

??

1,0,2

11,0.2

x

x e x e x -?≤??=??->??

12.设随机变量X 的概率密度为

,01,

()2,12,0,x x f x x x ≤

=-≤

其他.

求X 的分布函数.

解 ()f x 的图形为 X 的分布函数为 ()()x F x f u du -∞

=

?

101

0,

0,,01,(2),12,1,

2.x

x

x udu x xdx u du x x

22

0,

0,,01,2

21,12,21,

2.x x x x x x x

≥? 13

13.设电子管寿命X 的概率密度为

2100

,100,

()0,100.x x

f x x ?>?=??≤?

若一架收音机上装有三个这种管子,求(1)使用的最初150小时内,至少有两个电了管被烧坏的概率;(2)在使用的最初150小时内烧坏的电子管数Y 的分布列;(3)Y 的分布函数。

解 Y 为在使用的最初150小时内烧坏的电子管数,~(3,)Y B p ,其中 150

2

1001001

(150)3

p P X dx x =≤=

=?, (1)所求概率为23

23121(2)(2)(3)333P Y P Y P Y C ????≥==+==?+ ? ?????

0 1 2 x (1,1)

f (x )

727

=

; (2)Y 的分布列为33

12()33k

k

k P Y k C -????

== ? ?

????

,0,1,2,3,k =

01238126127272727

Y

P

. (3)Y 的分布函数为

0,0,8,012720

(),

12,2726,23,271, 3.

x x F x x x x

14.设随机变量X 的概率密度为 2,01,

()0,.

x x f x <

?其他

现对X 进行n 次独立重复观测,以n V 表示观测值不大于0.1的观测次数,试求随机变量n V 的概率分布。 解 ~(,)n V B n p ,其中 0.10

(0.1)20.01p P X xdx =≤==?

所以n V 的概率分布列为

()(0.01)(0.99),

0,1,

,k k n k

n n P V k C k n -===.

15.设随机变量~[1,6]X U ,求方程2

10x Xx ++=有实根的概率. 解 设A =‘方程有实根’,则

A 发生2

40X ?-≥ 即 ||2X ≥,因~[1,6]X U ,所以 A 发生2,X ?> 所以

624

()(2)0.8615

P A P X -=>=

==-.

16.设随机变量~[2,5]X U ,现对X 进行3次独立观测,试求至少有两次观测值大于3的概率.

解 设Y 为三次观测中,观测值大于3的观测次数,则~(3,)Y B p ,其中 532

(3)523

p P X -=>==-, 所求概率为

2

3

23

21220

(2)(2)(3)33327

P Y P Y P Y C ??????≥==+==+=

? ? ???????. 17.设顾客在某银行窗口等待服务的时间X (单位:分),服从参数为

1

5

的指数分布。若等待时间超过10分钟,则他就离开。设他一个月内要来银行5次,以Y 表示一个月内他没有等到服务而离开窗口的次数,求Y 的分布列及

(1)P Y ≥。

解 由题意~(5,)Y B p ,其中 25

5

10

10

1(10)5x x

p P X e dx e e +∞

--+∞-=>==-=?

, 于是Y 的分布为

2255()()(1)

0,1,2,3,4,5,k k k

P Y k C e e k ---==-=

25

(1)1(0)1(1)0.5167P Y P Y e -≥=-==--≈.

18.一大型设备在任何长为t 的时间内发生故障的次数()N t 服从参数为t λ的泊松分布。(1)求相继两次故障之间时间间隔T 的概率分布;(2)求在设备已经无故障工作了8小时的情况下,再无故障运行8小时的概率。 解 (1)设T 的分布函数为()T F t ,则 ()()1()T F t P T t P T t =≤=->

事件()T t >表示两次故障的间隔时间超过t ,也就是说在时间t 内没有发生故障,故()0N t =,于是

0()()1()1(()0)11,00!

t

t T t F t P T t P N t e e t λλλ--=->=-==-=->,

可见,T 的分布函数为

1,0,

()0,0.t T e t F t t λ-?->=?≤?

即T 服从参数为λ的指数分布。 (2)所求概率为

1688{16,8}(16)(16|8)(8)(8)P T T P T e P T T e P T P e

λ

λλ--->>>>>====>>.

19.设随机变量2

~(108,3)X N 。求

(1)(101.1117.6)P X <<;(2)常数a ,使()0.90P X a <=; (3)常数a ,使(||)0.01P X a a ->=。

解 (1)117.6108101.1108

(101.1117.6)(

)()33

P X --<<=Φ-Φ (32)(23)(32)(23)1=Φ?-Φ-?=Φ?+Φ?-

0.99930.989310.9886=+-=; (2)108

0.90()()3

a P X a -=<=Φ,查表知

108

1.283

a -=,所以111.84a =; (3)0.01(||)1(||)1(02)P X a a P X a a P X a =->=--≤=-<≤

2108

1(),3

a -=-Φ

所以 2108

(

)0.993

a -Φ=, 查正态分布表知

2108

2.333

a -=, 故 57.495a =。

20.设随机变量2

~(2,)X N σ,且(24)0.3P X <<=,求(0)P X <。

解 42

0.3(24)()(0)P X σ

-=<<=Φ-Φ,

所以 2

()0.8σ

Φ=,

02

22

(0)(

)()1()0.2P X σ

σσ

-<=Φ=Φ-=-Φ=。

21.某地抽样结果表明,考生的外语成绩X (百分制)近似服从正态分布,平均成绩(即参数μ之值)为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84分之间的概率。 解 9672

24

0.023(96)1(

)1(

)P X σ

σ

-=>=-Φ=-Φ

24

24

12

()0.977,

2,

1.σ

σ

σ

∴Φ===

所求概率为

8472

6072

1212(6084)(

)(

)()()P X σ

σσσ

--<<=Φ-Φ=Φ-Φ-

12

2(

)120.841310.6826.σ

=Φ-=?-=

22.假设测量的随机误差2

~(0,10)X N ,试求在100次重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松分布求出α的近似值。 解 设Y 为误差的绝对值大于19.6的测量次数,则~(100,)Y B p ,其中 (||19.6)1(19.619.6)1(1.96)( 1.96)p P X P X =≥=--<≤=-Φ+Φ- 22(1.96)220.9750.05=-Φ=-?=, 所求概率为

100

1001003(3)(0.05)(0.95),k

k k k P Y C α-==≥=∑

利用泊松定理

100

5

350.875!

k k e k α-=≈=∑.

23.在电源电压不超过200V ,在200240V -和超过240V 三种情况下,某种电子元件,损坏的概率分别为0.1,0.001和0.2,假设电源电压X 服从正态分布2

(220,25)N ,试求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200-240V 的概率β。

解 设A =‘电子元件损坏’,i B =‘电源电压在第i 档’,1,2,3i =,则 (1)112233()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B α==++ (200)0.1(200240)0.001(240)0.2P X P X P X =≤?+<≤?+>?

200220240220200220

()0.1[()()]0.001252525---=Φ?+Φ-Φ? 240220

[1()]0.225

-+-Φ?

20202020

()0.1[()()]0.001[(1()]0.225252525

=Φ-?+Φ-Φ-?+-Φ?

(10.7881)0.1(20.78811)0.001(10.7881)0.2=-?+?-?+-?

0.0641=

(2)222()(|)0.005756

(|)0.08980.06410.0641

P B P A B P B A β==

==.

24.假设随机变量X 的绝对值不大于1;11

(1),(1)84

P X P X =-===,

在事件{11}X -<<出现的条件下,X 在(1,1)-内任意子区间上取值的概率与

该子区间的长度成正比。试求:(1)X 的分布函数;(2)X 取负值的概率P . 解1 设X 的分布函数为()F x ,则 当 1x <-时,()0F x =,且1(1)8

F -=, 当 1x ≥时,()1F x =, 115(11)1848

P X -<<=-

-=, 当 11x -<<时,由题意

{1|11}(1)P X x X k x -<≤-<<=+, 而

1{11|11}2P X X k =-<<-<<=, 所以 1

2

k =

。于是 1

{1|11},2

x P X x X +-<≤-<<= 此时

(){1}(1)F x P X x F =-<≤+- 1{1,11}8

P X x X =-<≤-<<+

1{11}(1|11}8

P X P X x X =-<

82816

x x ++=

?+=

, 故X 的分布函数为

0,1,

57(),11,161, 1.

x x F x x x <-??+?

=-≤

?≥?? (2)7

(0)(0)(0)16

P X F P X <=-==

.

解2 设X 的分布函数为()F x ,则 当 1x <-时,()0F x = 且 1(1)8

F -= 当 1x ≥时,()1F x =,

当11x -<<时,设,(1,1)x x x +?∈-,且0x ?>,由题意 (|11)P x X x x X k x <≤+?-<<=?, 即 (,11)

,(11)

P x X x x X k x P X <≤+?-<<=?-<<

由此得

5

()8

P x X x x k x <≤+?=?, 两边同除以x ?得

()()5

,8

F x x F x k x +?-=?

令0x ?→取极限得 5(),8

F x k '= 两边积分得

5

()8F x kx C =+, 由1(1)8F -=及103

lim ()4

x F x →-=得

1588

3548

k C k C ?=-+????=+??

解之得 71

,162

C k == 故

5757

()161616

x x F x +=

+=,11x -<< 综上所述,X 的分布函数为

0,1,57(),11,161, 1.

x x F x x x <-??+?

=-≤

(2)7

(0)(0)(0).16

P X F P X <=-==

25.已知离散型随机变量X 的分布列为

210131111115651530

X

P

-- 求2

Y X =的分布列. 解 Y 的分布列为

014917111530530

Y

P

. 26.设随机变量X 的概率密度为

,0,

()0,0.x X e x f x x -?≥=?

求X

Y e =的概率密度()Y f y

解1 当0x >时函数x y e =单调增,反函数为()ln x h y y ==,于是X

Y e

=的概率密度为

ln 211

,

1,,1,()(())|()|0, 1.0, 1.

y Y X y e y y y f y f h y h y y y -??≥?≥??'===????≤

解2 设Y 的分布函数为()Y F y ,则

,1,()()()(ln ),

1

X

Y y F y P Y y P e y P X y y

≤≥?

ln 0

,1,,1,y x y e dx y -

x y e y -

=?-≥??

ln 0,1,0,

1,

1

1, 1.

1,

1.y

y y y e y y

-

==??-≥-≥??? 21

,1,()()0, 1.Y Y y y f y F y y ?≥?'==??

27.设随机变量X 的概率密度为 2

1

(),(1)

X f x x x π=

-∞<<∞+

求随机变量1Y =的概率密度()Y f y 解1

函数1y =3()(1)x h y y ==-,则

2

6

3(1)()(())|()|,.(1(1))

Y X y f y f h y h y y y π-'==-∞<<+∞+-

解2 设Y 的分布函数为()Y F y ,则

3

()()(1)1)1((1))Y F y P Y y P y P y P X y =≤==-=-≤-

3

1{(1)}X F y =--, 所以

2

3

2

63(1)()((1))3(1),(1(1))

Y X y f y f y y y y π-=-?-=-∞<<+∞+-。

28.设~(0,1)X U ,求(1)X

Y e =的概率密度;(2)2ln Y X =-的概率密度。

解 X 的密度为 1,01,

()0,X x f x <

?其它.

(1)x

y e =在(0,1)上单调增,反函数为()ln h y y =,所以Y 的密度为

1

,1,

()0,.Y y e y f y ?<

其他

(2)2ln y x =-在(0,1)上单调减,反函数为2

()y h y e

-=,所以Y 的密度为

2

1,0,

()20,0.y

Y e y f y y -?>?=??≤?

29.设~(0,1)X N ,求||Y X =的概率密度。

解1 函数||y x =在(,0)-∞上单调减,反函数为1()h y y =-, 在[0,)+∞上单调增,反函数为2()h y y =, 所以Y 的密度为 1122

(())|()|(())|()|,0,()0,

0.

X X Y f h y h y f h y h y y f y y ''?+>=?

≤?

2

2,0,()0,0.y

Y y f y y ->=≤?

30.设随机变量X 服从参数为2的指数分布,试证21X

Y e

-=-在区间(0,1)

上服从均匀分布。

[证] 只须证明Y 的分布函数为

0,0

(),01,1, 1.Y y F y y y y ≤??

=<

220,

0()(){1}{1},01,1,1X

x Y y F y P Y y P e

y P e y y y --≤??

=≤=-≤=≥-<

0,0,(2ln(1)),01,1, 1.y P X y y y ≤??=-≥-<

20,0,(ln(1)).01,0, 1.y P X y y y -

?≤???

≤-<<=???

≥?? 120,0,(ln(1)),01,1,

1.X y F y y y -?≤???-<<=???≥??12

2ln(1)0,

01,011,1y y e y y ---≤???=-<

?

0,0,,01,1, 1.y y y y ≤??

=<

31.设随机变量X 的概率密度为

22,0,

()0,.x

x f x ππ?<

其它

求sin Y X =的概率密度. 解1 函数sin y x =在(0,]2

π

上单调增,反函数为1()arcsin h y y =

在(

,)2

π

π上单调减,反函数为2()arcsin h y y π=-.

Y 的概率密度为:

()(arcsin )(arcsin Y f y f y f y π=-

222arcsin 22arcsin 01,0,y y y πππ-?<

?其他.

01,0,

.y <<=?其他

解2 设Y 的分布函数为()Y F y ,则

()()(sin )(arcsin arcsin )Y F y P Y y P X y P X y

X y π=≤=≤=≤>-

(arcsin )1(arcsin )P X y P X y π=≤+-≤-

(arcsin )1(arcsin )X X F y F y π=+-- 所以

()(arcsin )(arcsin Y f y f y f y π=+-

01,0

,y <<=?其他.

32.设随机变量X 的分布函数()F x 连续,且严格单调增加,求()Y F X =的概率密度.

解 设Y 的分布函数为()Y F y ,则

1

()(){()}{()}Y F y P Y y P F X y P X F y y -=≤=≤=≤=, 当0y ≤时()0Y F y =,当1y ≥时()1Y F y =,故

0,0,(),01,1, 1.Y y F y y y y ≤??

=<

于是Y 的概率密度为 1,01,

()0,.

Y y f y <

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计试题及答案

考试时间120分钟班级姓名学号 .则 . 2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密码能被译出的概率是 = . 3. 设随机变量2 (,) Xμσ N,X Y e =,则Y的分布密度函数为. 4. 设随机变量2 (,) Xμσ N,且二次方程240 y y X ++=无实根的概率等于0.5,则 μ=. 5. 设()16,()25 D X D Y ==,0.3 X Y ρ=,则() D X Y +=. 6. 掷硬币n次,正面出现次数的数学期望为. 7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为(答案用标准正态分布函数表示). 8. 设 125 ,, X X X是来自总体(0,1) X N的简单随机样本,统计量 12 ()~() C X X t n +,则常数C= ,自由度n=. 二(共50分) 1.(10分)设袋中有m只正品硬币,n只次品硬币(次品硬币的两面均有国徽),从袋中 任取一只硬币,将它投掷r次,已知每次都得到国徽.问这只硬币是正品的概率是多少? 2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X服从指数分布,其概率密 度函数为 某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求{1} P Y≥. 3.(10分)设二维随机变量(,) X Y在边长为a的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X,Y的边缘概率密度; (2) 求条件概率密度 | (|) X Y f x y. 4.(10分)某型号电子管寿命(以小时计)近似地服从2 (160,20) N分布,随机的选取四只,求其中没有一只寿命小于180小时的概率(答案用标准正态分布函数表示). 5.(10分)某车间生产的圆盘其直径在区间(,) a b服从均匀分布, 试求圆盘面积的数学 期望. 三. (10分)设 12 ,, n X X X是取自双参数指数分布总体的一组样本,密度函数为其中,0 μθ>是未知参数, 12 ,,, n x x x是一组样本值,求:

相关文档
最新文档