发电机中性点为什么经接地变压器接地

发电机中性点为什么经接地变压器接地

发电机中性点为什么经接地变压器接地

发电机中心点接地变压器就是一台单相变压器,一次侧的额定电压是发电机相电压乘以1.05(考虑电压上升幅度),二次侧电压一般取100V。如果在二次侧要接电阻(作为发电机中心点高电阻接地),应当根据电阻的额定电压来选择二次绕组电压。但是此时变压器应当有第三个额定电压为100V的绕组,用于测量和保护。

接地变压器一次绕组的一头接发电机中心点,另一头接地。根据设计或者二次绕组接电阻,或者二次绕组接保护和测量

接地变压器二次侧所接的负载电阻的阻值很小,但是换算至一次侧的阻值是很大的(几千欧)。所以发电机中性点实际为高电阻接地,可以有效的限制电容电流

变压器中性点接地方式分析与探讨

变压器中性点接地方式分析与探讨 [摘要] 概述目前电网中变压器中性点接地方式,进行分析与探讨,提出看法和发展方向 [关键词] 中性点方式优点缺点发展方向 1.概述 中压电网以35KV、10KV、6KV三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV电网如果单相接地电容电流大于10A,3KV —10KV电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式原因是美国在历史上过高的估计了弧光接地过电压的危害性而采用此种方式用以泄放线路上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度可以

中性点接地装置的选择

中性点接地装置的选择 第一节 发电机中性点接地方式及装置选择 DL5000-1994《火力发电厂设计技术规程》规定:发电机中性点的接地方式可采用不接地、经消弧线圈或高电阻接地方式。对于容量为300MW 及以上的发电机,应采用中性点经消弧线圈或高阻接地的方式。 国内个别进口机组,其发电机中性点经低阻抗接地。这种接地方式可以把单相接地电流限制在发电机出口三相短路电流值之内,使继电保护快速动作跳机,但铁芯烧损难于避免,所以规程不推广使用。 一、发电机中性点不接地 发电机内部发生单相接地故障不要求瞬时切机时,单相接地故障电容电流不得大于表5-1所示允许值。 表5-1 发电机接地故障电流允许值 发电机额定电压(KV) 发电机额定容量(MW) 电流允许值(A) 6.3 ≤50 4 10.5 50~100 3 13.8~15.75 125~200 2* 18~20 ≥300 1 *对额定电压为13.8~15.75KV 氢冷发电机为2.5A. 当发电机中性点不接地时,其中性电应装设电压为额定相电压的避雷器。当发电机为直配线时,其出线端应加装电容器和避雷器。 二、发电机中性点经消弧线圈接地 中性点经消弧线圈接地的发电机,在正常情况下,长时间中性点位移不应超过额定相电压的10%,考虑到限制传递过电压等因素,脱谐度不宜超过±30%,消弧线圈的分接头应满足脱谐度的要求。消弧线圈的分接头宜选用不少于5个。 中性点位移电压按式(5-1)计算 v d U U bd o 2 2 += (5-1) C L C I I I v -= (5-2) 式中U O --中性点位移电压,kV;

U bd---消弧线圈投入前发电机回路中性点不对称电压,可取0.8%相电压; d--阻尼率,可取3%~5%; V--脱谐度; I c---发电机回路的电容电流,A ; I L---消弧线圈电感电流。 消弧线圈的补赏容量,可按式(5-3)计算 3U KI Q NL c = (5-3) 式中Q--补偿容量,kVA; K--系数,过补偿取1.35,欠补偿按脱谐度确定; I c---发电机回路的电容电流,A ; U NL --发电机回路的额定线电压,kV. 发电机电压回路得电容电流,应包括发电机、变压器和连接导体的电容电流。当回路装有直配线(如线路电容)或电容器(有的发电机为限制过电压度,装有浪涌吸收器,国产机组不装浪涌吸收电容器)时,尚应计及这部分电容电流。 对于采用单元连接的发电机中性点的消弧线圈,为了限制电容耦合传递过电压以及频率变动等对发电机中性点位移电压的影响,宜采用欠补偿方式。 在发电机中,发电机电压消弧线圈可装在发电机中性点上,也可装在厂用变压器中性点上。当发电机与变压器为单元连接时,消弧线圈应装在发电机中性点上。 【例5-1】 300MW 发电机,额定电压U N =20KV,发电机主回路总电容值C= 0.218μF,试确定消弧线圈的容量及分接位置。 解:发电机每相容抗 ()Ω?=?==36 106.14218.03141021fc X c π 考虑10%的欲度 ()Ω?=??=3310161.1106.14cj X 单相电容电流 ()A == 722.03cj N c X U I 接地故障总电流 ()A ==17.23c cf I I 由式(5-2)得 ()()()A -=-=v v I I c L 117.21

发电机中性点接地装置设计及选型

发电机中性点接地装置设计及选型 1. 电容及电容电流计算: 1. 发电机定子绕组三相对地电容C of =0.7242uF ; 2. 10kV 母线长度为260m ,每100m 三相母线电容电流约为0.05A 0.05×2.6=0.13A 即三相对地电容 C ol =0.06829uF 3. 发电机出口至升压主变低压绕组间单相对地等值电容为C 02=0.2uF (经验值); 4. 主变低压侧三相对地电容20470PF 即0.02047 uF 5. 阻容参数:单相电容0.1 uF ,三相为0.3 uF 发电机的三相对地总电容:C =0.7242+0.06829+0.6+0.02047+0.3=1.71296uF 发电机系统电容电流为: I C =ωCU fx ×103=2πfCU fx ×103=314×1.71296×106-×10.53×103=3.26A 2. 接地电阻值的选择: 接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。按运行机组的耐压值为1.5倍发电机额定电压,则健全相暂时过电压不宜超过2.6倍相电压。此时中性点接地电阻值为: Ω==≤-????14.1859610 713.15014.32121 fC R π 原边电压:kV U 5.101= 副边电压:V 1.02k U = 变比:0095.0/5 .101.012===N N K 变压器容量:KVA kVA S K I U C 3045.244 .126.35.1011?===?? (K 1——过负荷系数,查曲线。按t=1h 选取,1.9≤K 1≤1.4) 变压器低压侧接入电阻值:222 22S PU RK R -=(P ——变压器总损耗,W ) 忽略变压器损耗,得接地变二次侧电阻Ω==168.022RK R

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

发电机中心点接地变压器的作用

为什么要装设发电机中性点接地变压器 1.高电阻接地,可以限制接地电流,还可以适当减少接地过电压,但是没有必要弄一个很大的高电阻直接接到发电机中性点与大地之间.而是弄一个小电阻,再弄一台接地变压器,接地变压器的原边接中性点与地之间,副边接上一个小电阻即可,根据公式,一次侧呈现的阻抗等于二次侧电阻乘以变压器变比的平方,所以有接地变压器,可以用一个小电阻来发挥一个高电阻的作用. 2.发电机接地的时候,中性点对地有电压,这个电压等于就加在了接地变压器的原边,那么副边自然能感应出一个电压,这个电压可以做为发电机接地保护的判据,即可以用接地变压器抽取零序电压. 我本来的意思时,高阻接地方式,比中性点不接地的过电压要小,但相比中性点直接接地的话,短路电流小了,所以是一个折中的方法.这里短路电流小是相对与直接接地方式来说的. 楼上师傅批评的是,如果相对与自然电容电流来讲,中性点经高电阻构成了回路,电阻再高也有了回路,所以肯定比中性点不接地时接地电流要大了,但是为了限制过电压,也只能这样. 总之,过电压和过电流总是相互矛盾的.但也许限制过电压和限制过电流都是相对与中性点不接地的时候来说的,也就是相对与自然电容电流,小弟受教了,谢谢师傅!~ 经sutsosth师傅的批评,反省一下自己不大严谨的毛病, 阅读了相关专著,作个总结: 对于各种接地方式的接地短路电流和弧光接地过电压的大小,一目了然,和大家分享.,.自己也学习了,.. 常用中性点接地方式: 不接地直接接地经高电阻接地经消弧线圈接地 接地时短路电流: 较小最大较大最小(同脱谐度 有关) 接地弧光过电压: 最大最小较小较大(但过电压概率不高) 关于PT开口三角电压 对于中性点接地的110kv和220kv的大电流接地系统,发生单相金属性接地时开口三角的电压是100v,虽然电压都仍为相电压但开口三角的pt变比是110kv/1.732(根3,根号不好打)/100/3;所以发生单相接地是100v;对于10kv和6kv中性点不接地系统他的开口三角pt变比是10kv/1.732/100/1.732,所以发生单相接地时的电压也是100v。

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

发电机中性点接地方式的选择

一、前言 1.1 发电机中性点接地方式的选择 发电机是电力系统的原动力,在运行中必须具备对突发性故障的应变能力,发电机中性点的接地方式与此有密切的关系。 发电机中性点的接地方式有:①中性点直接接地②中性点经低阻抗接地③中性点不接地④中性点经消弧线圈接地⑤中性点经高阻抗接地。 1.2 发电机经高阻抗接地方式 发电机中性点经高阻接地能有效抑制发电机接地故障电流,从而有效防止发电机定子绕组烧毁,并降低电弧接地暂态过电压。 中性点经高电阻接地有多种方案,其中以单相接地变压器与电阻器结合的方案最优。我公司生产的CXRD-FZ型接地电阻柜,体积小,重量轻。接地变压器抗冲击,阻燃,局放小。电阻采用特种材料制作,性能稳定,通流能力强。 第 1 页共5 页

二、系统概述 2.1 使用范围 CXRD-FZ型发电机中性点电阻器柜为专用于发电厂发电机中性点采用高电阻接地的成套装置。发电机电压等级主要为6kv至20kv。当定子发生一点接地时,可限制接地电流在很小的数值,并有效抑制电弧接地暂态过电压 2.2 使用环境 1、适用于户内。 2、环境温度:不低于-40℃,不高于+40℃。 3、海拔高度不超过3000m。 4、相对湿度:不大于95%(25℃)。 5、电网频率:58~62Hz(60Hz系统)、48~52Hz(50Hz系统)。 6、安装场所的空气中不应含化学腐蚀气体和蒸气,无爆炸性尘埃。 2.3 产品型号及组成说明 本公司免费根据用户要求计算电阻值,确定型号 2.3.1接地变压器参数 绝缘等级:H 级 温升:≤100K 冷却方式:AN 防护等级:纸绝缘干式接变压器产品防护等级分为IP00(无外壳)、和IP20,IP23(有外壳)。 绝缘水平、阻抗电压、空载损耗、负载损耗按相应的国家标准 绝缘电阻测试:高压—低压及地≥300MΩ、低压—地≥100 MΩ

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理 (2007-01-07 22:41:40) 转载▼ 分类:工作 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。这两种保护的原理接线如图23所示 中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。 中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。 零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。一次启动电流通常取100A 左右,时间取0.5s。110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。 零序电压保护由过电压继电器16、时间继电器17、信号继电器18及压板19组成,电压定植按躲过接地故障母线上出现的最高零序电压整定,110kV系统一般取150V;当接地点的选择有困难、接地故障母线3Uo电压较高时,也可整定为180V,动作时间取0.5s。

变压器中性点接地方式分析与探讨(7)

筑龙网W W W .Z H U L O N G .C O M 变压器中性点接地方式分析与探讨 周志敏 1.概 述 中压电网以35KV、10KV、6KV 三个电压电压应用较为普遍,其均为中性点非接地系统,但是随着供电网络的发展,特别是采用电缆线路的用户日益增加,使得系统单相接地电容电流不断增加,导致电网内单相接地故障扩展为事故。我国电气设备设计规范中规定35KV 电网如果单相接地电容电流大于10A,3KV—10KV 电网如果接地电容电流大于30A,都需要采用中性点经消弧线圈接地方式,而《城市电网规划设计导则》(施行)第59条中规定“35KV、10KV 城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。因对中压电网中性点接地方式,世界各国也有不同的观点及运行经验,就我国而言,对此在理论界、工程界 也是讨论的热点问题,在中压电网改造中,其中性点的接地方式问题,现已引起多方面的关注,面临着发展方向的决策问题。 2.中性点不同的接地方式与供电的可靠性 在我国中压电网的供电系统中,大部分为小电流接地系统(即中性点不接地或经消弧线圈或电阻接地系统)。我国采用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式。 2.1中性点经小电阻接地方式 世界上以美国为主的部分国家采用中性点经小电阻接地方式 原因是美国在历史上过高的估计了弧光接地过电压的危害性 而采用此种方式用以泄放线路 上的过剩电荷来限制此种过电压。中性点经小电阻接地方式中,一般选择电阻的值较小。在系统单相接地时,控制流过接地点的电流在500A 左右,也有的控制在100A 左右,通过流过接地点的电流来启动零序保护动作,切除故障线路。其优缺点是: 2.1.1.系统单相接地时,健全相电压不升高或生幅较小,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择。 2.1.2.接地时由于流过故障线路的电流较大零序过流保护有较好的灵敏度

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用 发电机中性点接地一般有以下几类: 1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。发电机中性点不接地方式,一般适用于小容量的发电机。 (中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。这种接地方式能实现无死区的定子接地保护) 2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。 3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。 发电机中性点经单相变压器高阻接地接地装置设计及选型 1.发电机中性点接地电阻的计算原则 1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线 电压1.5U N=2.6U X) 2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求; 3)10kv 10MW发电机最大容性电流<4A C<2.1 uF 2.电容及电容电流计算: =0.7242uF(发电机厂家提供); 1)发电机定子绕组三相对地电容C of 2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排) =0.06829uF 0.05×2.6=0.13A即三相对地电容 C ol =0.2uF(经验值); 3)发电机出口至升压主变低压绕组间单相对地等值电容为C 02 4)主变低压侧三相对地电容20470PF即0.02047 uF 5)阻容参数:单相电容0.1 uF,三相为0.3 uF 发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF 发电机系统电容电流为: I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A

发电机中性点避雷器教学总结

发电机中性点避雷器 各地所加避雷器的作用是不一样的;线路上的避雷器主要是为了防止雷电侵入波;而主变压器中性点的避雷器是为防止内部过电压而伤及变压器的绝缘;发电机的绝缘在这里面是最薄弱的,其中性点加装避雷器也是为了防止出现的内部过电压的。 我们的发电机机端电压10.5KV,12.5MW,星形接线,中性点不接地,机端装有三相氧化锌避雷器,2台同类型发电机并联单母线接线运行。定子单相接地保护为基波零序电压型,保护范围约90%。 现考虑在发电机中性点加装一只磁吹阀式避雷器。对此举的作用和实现作用的方式不明白,盼高手指点! 错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。 发电机上没有可能装避雷器.避雷器是高压线路和变压器的保护!你可能是把接地看成避雷器或是图上画错了!把接地画成避雷器了!除非是高压发电站的高压发电设备可能会有避雷器! 楼上的朋友说的好像不太对,发电机当然会在中性点加装避雷器了,因为发电机电压系统为小接地电流系统,由于发电机定子绕组发生单相接地时,接地点流过的电流是发电机本身及其引出线回路所连接元件(主母线、厂用分支、主变压器低压绕组等)的对地电容电流之和。当接地电容电流超过允许值时,将烧伤定子铁芯,进而损坏定子绝缘,引起匝间或相间短路,故需在发电机中性点采取限制接地电容电流的措施,即考虑发电机中性点采取什么样的接地方式,以保护发电机免遭损坏。 发电机中性点的接地方式有: A、中性点不接地:单相接地电流不超过允许值,且中性点装设避雷器,适用于125MW 及以下机组; B、中性点经消弧线圈接地:补偿后的接地电流小于1A,定子接地作用于信号,适用于200MW及以上能带单相接地运行的机组; C、中性点经高电阻接地:中性点直接接入或经接地变压器接入高电阻,中性点接入高电阻后可限制过电压和限制接地电流不超过10~15A,但不小于3A,定子接地保护,作用于跳闸,适用于200MW及以上大机组。 补充回答: 由于发电机定子绕组发生单相接地时,接地点流过的电流是发电机本身及其引出线回路所连接元件(主母线、厂用分支、主变压器低压绕组等)的对地电容电流之和。当接地电容电流超过允许值时,将烧伤定子铁芯,进而损坏定子绝缘,引起匝间或相间短路,故需在发电机中性点采取限制接地电容电流的措施,即考虑发电机中性点采取什么样的接地方式,以保护发电机免遭损坏。你处的发电机就属于上述中的小接地电流系统,中性点为不接地形式,额定功率12.5MW,要想在定子单相接地时限制住接地电容电流值,保护发电机不受到电容电流的损坏,因此要在中性点处加装避雷器。 回答者:lft021107|四级| 2008-7-8 22:16 错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。

发电机中性点配电变高阻接地

定子绕组的单相接地(定子绕组与铁心间的绝缘破坏)是发电机最常见的一种故障。发电机单机容量增大,一般使三相定子绕组对地电容增加,相应的单相接地电流也增大,如不采取措施(如增设消弧线圈或经高阻接地),电机定子绕组发生单相接地故障时,接地点流过的电流是发电机本身及其引出回路所连接元件(主母线、厂用分支线、主变压器低压绕组等)的三相对地电容电流。当单相接地电流超过规定值时(尽量限制接地电流不超过10-15A),将烧伤定子铁芯,进而损坏定子绕组绝缘,引起匝间或相间短路,且定子绕组结构复杂,检修比较困难,停机时间较长,会造成相当大的直接和间接经济损失。因此,发电机要求瞬时切机,以保护发电机。 发电机的中性点接地方式与定子接地保护的够成密切相关,同时中性点接地方式还与单行接地故障电流、定子绕组过电压等问题有关,综合考虑单相接地电流、过电压和接地保护的构成等因素,选择最佳中性点接地方式。 发电机中性点接地方式: 中性点不接地或经单相电压互感器接地 中性点经配电变压器高阻接地 中性点经消弧线圈接地 目前,在大机组上,中性点有采用经消弧线圈接地,也有采用经配电变压器高阻接地。其目的是降低动态过电压倍数,是单相接地故障电流小些,提高定子接地保护的灵敏度。 消弧线圈接地方式需考虑因素较多,选择合适的补偿度和消弧线圈参数较困难。如果片面追求减少接地电流,而选用较小的脱谐度和较大的消弧线圈品质因素势必造成因发电机三相对地电容不平衡而导致中性点电压长期有较大偏移。 相对于消弧线圈接地方式,配电变压器接地在机组正常运行的大多数时间内,都不会引起中性点电压的偏移增大,起限制过电压的作用。可见,经高电阻接地对机组的绝缘和正常运行都有利,有预防机组绝缘损坏或绝缘薄弱处被击穿而导致定子接地的效果。另外,经高阻消能元件,增大零序回路组尼,无传递过电压和暂态过电压的危险。因此,配电变压器接地方式得到广泛应用。 中性点经高电阻接地方式。即是中性点与大地之间接入一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,采用这种方法同时又对可能出现的过电压幅值和陡度进行阻尼和扼制。在发生机组单相故障时,采用此种方式可达到: 1)限制健全相的瞬时过电压不超过2.6倍额定相电压; 2)限制接地故障电流不超过10A~15A; 3)为定子接地保护提供电源,便于检测。 为减小电阻值,一般经配电变压器接入中性点,电阻接在配电变压器的二次侧。故选择“经接地变压器(二次侧接电阻)的接地方式”。 因此采用中性点经高电阻接地方式,有一定优越性。 下图为中性点系统结构图:

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发

发电机中性点接地变压器容量计算

接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 接地变压器的作用是为中性点不接地的系统提供一个人为的中性点,便于采用新思达电气消弧线圈或新思达电气小电阻的接地方式,以减小配电网发生接地短路故障时的对地电容电流大小,提高配电系统的供电可靠性。 三相接地变压器 此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替站用变,从而节省投资费用。 单相接地变压器 单相接地变主要用于有新思达电气中性点的发电机、新思达电气变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 例:某300MW发电机出口额定电压为20kV,发电机中性点经接地变压器二次侧电阻接地运行,二次侧电压为220V,接地电阻为0.65Ω,接地变压器的过负荷系数为1.3,则接地变压器容量应不小于下列哪项数值?() A.74.5kVA B.33.1kVA C.65.3kVA D.57.3kVA 解答:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。可以判断,该接地变压器是单相接地变压器,根据《导体和电器选择设计技术规定》DL/T5222-2005,18.3.4-3条文和公式(18.3.4-2):18.3.4-2公式 注:UN是线电压,计算变比UN2是相电压,所以要乘以根号3。 根据计算:正确选项是D

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

发电机中性点接地方式的选择

CXRD-FZ系列发电机中性点电阻器柜设计手册 一、前言 1.1 发电机中性点接地方式的选择 发电机是电力系统的原动力,在运行中必须具备对突发性故障的应变能力,发电机中性点的接地方式与此有密切的关系。 发电机中性点的接地方式有:①中性点直接接地②中性点经低阻抗接地③中性点不接地④中性点经消弧线圈接地⑤中性点经高阻抗接地。 1.2 发电机经高阻抗接地方式 发电机中性点经高阻接地能有效抑制发电机接地故障电流,从而有效防止发电机定子绕组烧毁,并降低电弧接地暂态过电压。 中性点经高电阻接地有多种方案,其中以单相接地变压器与电阻器结合的方案最优。我公司生产的CXRD-FZ型接地电阻柜,体积小,重量轻。接地变压器抗冲击,阻燃,局放小。电阻采用特种材料制作,

性能稳定,通流能力强。 页5 共页1 第 CXRD-FZ系列发电机中性点电阻器柜技术手册 二、系统概述 2.1 使用范围 CXRD-FZ型发电机中性点电阻器柜为专用于发电厂发电机中性点采用高电阻接地的成套装置。发电机电压等级主要为6kv至20kv。当定子发生一点接地时,可限制接地电流在很小的数值,并有效抑制电弧接地暂态过电压 2.2 使用环境 1、适用于户内。 环境温度:不低于-40℃,不高于+402、℃。 海拔高度不超过3000m。 3、 相对湿度:不大于95%(254、℃)。 电网频率:58~5、62Hz(60Hz系统)、48~52Hz(50Hz系统)。 安装场所的空气中不应含化学腐蚀气体和蒸气,无爆炸性尘埃。 6、产品型号及组成说明 2.3 本公司免费根据用户要求计算电阻值,确定型号 2.3.1接地变压器参数 绝缘等级:H 级 温升:≤100K 冷却方式:AN 防护等级:纸绝缘干式接变压器产品防护等级分为IP00(无外壳)、和IP20,IP23(有外壳)。 绝缘水平、阻抗电压、空载损耗、负载损耗按相应的国家标准 绝缘电阻测试:高压—低压及地≥300MΩ、低压—地≥100 MΩ

变压器中性点接地系统的简答分析

变压器中性点接地系统的简答分析 上海益护电气设备有限公司刘文中https://www.360docs.net/doc/9013647670.html, 1.1 变压器中性点接地系统的优缺点: (1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。 (2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2 变压器中性点不接地系统的优、缺点: (1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可靠性。 (2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2 各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可靠性,对通讯干扰小等优点。在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3 电气设备的保护接地 3.1 保护接地

变压器中性点接地与不接地系统

变压器中性点接地与不接地系统 1.1变压器中性点接地系统的优缺点: (1)优点: 对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。 (2)缺点: 对电源中性点接地系统,由于单相短路电流Is很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2变压器中性点不接地系统的优、缺点: (1)优点: 对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。 (2)缺点: 对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3电气设备的保护接地 3.1保护接地 将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。保护接地,适应于变压器中性点不接地的供电系统中。但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。 电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。 3.2保护接地时应注意问题 由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。 这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。 4电气设备保护接零 4.1保护接零

相关文档
最新文档