水泥矿粉粉煤灰试题

水泥矿粉粉煤灰试题
水泥矿粉粉煤灰试题

试验人员培训考试题(二)

(混凝土用原材料(水泥、粉煤灰、矿渣粉、)

常规检验)

姓名:分数:

一、填空题:(每空2分)

1.水泥由、、、

四种主要矿物成份构成。

2.水泥细度试验中负压筛可调范围是。

3.水泥基本生产工序为。

4.?通用硅酸盐水泥》(GB175-2007)规定,检验结果符合、

、、指标为合格品,反之不符合上述任何一项技术指标的为不合格品。

5.现行规范规定,采用维卡仪测定水泥标准稠度用水量,以试杆距离底板的距离为作为水泥净浆达到标准稠度的判定标准。

6.矿粉密度平行试验两次的试验差值不得大于。

7.粉煤灰细度试验中筛网的校正规定:筛网校正系数的范围为,

筛析个样品后进行筛网的校正

8.水泥比表面积试验对相对湿度的要求是;水泥胶砂试件成型时对温度的要求

是,相对湿度的要求是;试件带模养护箱温度保持在,相对湿度要求。

9.水泥试验中,检测雷氏夹所用的砝码的质量是

二、判断题:(每题2分)

1.矿粉的烧失量试验结果不需要校正。()

2.粉煤灰的烧失量试验结果不需要校正。()

3.水泥的烧失量试验结果不需要校正。()

4.依据验标TB10424-2010粉煤灰不需要进行游离氧化钙的检测。()

5.采用负压筛析法测定粉煤灰的细度试验,筛子的修正系数精确至0.01。()6.水泥体积安定性不合格,应降低等级使用。()

7.验标TB10424-2010规定混凝土用粉煤灰的常规技术指标包括细度、需水比和游离氧化钙。()

8.矿粉经试验测定的烧失量大于于校正后的烧失量。()

9.水泥抗折强度以一组三个棱柱体抗折强度的平均值作为试验结果。当三个强度值中有超出平均值±10%时,应剔除后再取平均值作为抗折强度试验结果。()10.粉煤灰需水比试验用标准砂为符合GB/T17671-1999规定的0.5-1.0mm 的中级砂。()

三、简答题:(每题20分)

1.有一矿粉试样1.0025g,经灼烧后剩余0.9957g。已知灼烧前试样中SO3的质量分数为0.91%,灼烧后试样中SO3的质量分数为1.21%。请问该矿粉试样的最终烧矢量是多少?

2.某工地需使用42.5普通水泥,试验室取样对该水泥进行检测,试验结果为抗折强度3d:4.4、

3.8、3.6;28d:7.0、6.5、6.8,抗压强度3d:23.2、28.9、29.0、28.4、26.5、26.5;28d:71.2、75.5、70.3、67.6、69.4、68.8.已知普通水泥的强度标准为3d的抗折强度不小于3.5MPa,抗压强度不得小于17.0MPa,28d抗折强度不小于6.5MPa,抗压强度不小于42.5MPa.试分析该水泥强度是否合格。

粉煤灰配合比设计)

粉煤灰混凝土配合比设计 混凝土中掺人适量的粉煤灰,既可降低工程施工成本,改善混凝土的和易性、可泵性,增加混凝土的黏性,减少混凝土离析与泌水,又可使混凝土的凝结时间相对延长,坍落度损失减小,降低水化热,减少或消除混凝土中碱集料反应的危害。但也存在粉煤灰品质波动大,混凝土早期强度偏低的缺点。若在配合比设计时,对原材料、粉煤灰取代率及超掺量系数作正确选择,其混凝土能满足设计施工要求。本文论述桥梁结构中C25灌注桩、承台,C30墩帽及墩身,C40、C50后张法预应力混凝土箱梁的粉煤灰混凝土配合比设计,原材料选择及施工注意事项。 1 原材料 (1)粉煤灰:用于混凝土的粉煤灰按其品质分为I、Ⅱ、Ⅲ3个等级,主要技术指标见表1。 桥梁结构混凝土配合比设计时,选择I、Ⅱ级粉煤灰,其中I级灰用于强度大于40 MPa的混凝土,Ⅱ级灰用于混凝土强度等级小于C30的桩基、承台、立柱、墩台帽工程。 粉煤灰活性:粉煤灰越细,比表面积越大,粉煤灰的活性就越容易被激发,因此,所用粉煤灰越细,混凝土早期强度越高、耐久性越好。 粉煤灰烧失量对需水性影响显著,随粉煤灰烧失量增加,粉煤灰的需水量增加,当烧失量大于10%时,粉煤灰对流动扩展度无有利作用;粉煤灰含碳量增高,烧失量增大,在混凝土搅拌、运送、成型过程,粉煤灰更容易浮到表面,影响混凝土的外观与内在质量。另外,由于烧失量增大,还会降低减水剂的使用效果。 需水量与粉煤灰的细度、烧失量也有一定的关系,一般来说粉煤灰需水量越小,对混凝土性能越有利。粉煤灰越细,需水量越小;烧失量越大,需水量也越大。所以粉煤灰的需水量指标可以综合反映出粉煤灰的性能。 含水量过高,会降低粉煤灰的活性,直接影响使用效果。 SO3含量影响混凝土的强度增长极限和凝结时间,同时粉煤灰中SO3 含量过多还可能造成硫酸盐侵蚀。 (2)水泥:混凝土强度等级小于C30时,选用32.5或42.5的普通硅酸盐水泥;混凝土强度等级大于C30时,选用42.5或52.5的硅酸盐水泥或普通硅酸盐水泥。 (3)黄砂:满足Ⅱ类砂要求的条件下,优先选择级配良好的江砂或河砂。因为江砂或河砂含泥量少,砂中石英颗粒含量较多,级配一般都能满足要求。山砂中含泥量较大,且含有较多风化颗粒,一般不能使用。砂的细度模数控制在2.4

粉煤灰水泥

粉煤灰水泥 粉煤灰水泥,全称粉煤灰硅酸盐水泥。凡由硅酸盐水泥熟料、粉煤灰(粉煤灰的掺量为20~40%)、适量石膏共同磨细而制成的水硬性胶凝材料称为粉煤灰水泥。按现行国家标准,粉煤灰水泥的强度等级有:32.5、32.5R;42.5、42.5R;52.5、52.5R。 我国大多数粉煤灰的化学成分如下:40~60%SiO2;0.5~2.5%MgO;15~40%Al2O3;< 2%SO3;3~10%Fe2O3; >60%SiO2+Al2O3; 25%CaO;1~20%烧失量;1~6%未燃物(属于有害部分)。 粉煤灰中含玻璃相约50~80%,也有少量的晶体矿物及未燃尽的碳粒。玻璃体是粉煤灰具有活性的主要组成部分,可以认为,在其它条件相同时,玻璃体含量越多,活性越高。即,粉煤灰的活性决定于活性Al2O3 、SiO2的含量。但CaO对粉煤灰的活性极为有利。所以说粉煤灰是高度玻璃化并含少量晶质组分的硅铝质产品。生产原理 粉煤灰是发电厂燃烧煤粉时得到的一种灰渣,也称飞灰属于火山灰质混合材。由于目前世界上的粉煤灰产量很大,约达到数十亿吨,而利用率还不够高,所以它是一种令人日益关心的工业副产品。特别是当电厂可使用的油、气燃料日益减少时,粉煤灰的产量还会增加。 粉煤灰水泥的水化和硬化过程,与火山灰水泥的水化硬化过程极为相似,主要是熟料的水化反应,以及粉煤灰与Ca(OH)2之间相互交错的两级反应。即,硅酸盐水泥熟料水化生成的C-S-H和Ca(OH)2,被吸附在粉煤灰颗粒的表面,由于粉煤灰中高度分散的活性氧化物吸收Ca(OH)2,进而相互反应而形成以水化硅酸钙为主体的水化产物,水化硅酸钙凝胶和水化铝酸钙凝胶,这就是所谓的Ca(OH)2和粉煤灰进行的二次反应(也可称为火山灰反应)。 在粉煤灰颗粒表面上产生的大量的水化物结晶体,它们相互交叉连接,形成了很高的粘结强度,以致在劈裂时,即使粉煤灰颗粒被劈开,但粘结区还能保持完好,因而能达到相当高的力学强度。 此外,在粉煤灰水泥中除了火山灰反应以外,还有同其它矿物细粉一样的作用,那就是也可以进入水泥颗粒构成的絮凝结构中,使水化物析出的有效空间增大,从而加速了水泥的水化,这也叫做“微分效应”。 性能及用途 性能特点 粉煤灰水泥实质上也是一种火山灰水泥,虽然,它们之间有很多相似的性能,如比重小、水化热较低、抗腐蚀性较强等。但是由于粉煤灰的化学组成和物理结构特征与其它火山灰质混合材料有一定的差异,比如,从矿物内部结构上分析,粉煤灰是一种密实的玻璃质球,结构比较致密且稳定,内比表面积小,对水的吸附能力小,不易水化。所以,粉煤灰水泥就具有了一系列的性能特点。 由上可知,粉煤灰水泥具有一般火山灰水泥的共性,但与表面粗糙、多孔的火山灰质混合材的水泥相比,在性质上确有更为显著的特点。它不仅结构比较致密,内比表面积较小,而且对水的吸附能力小得多,同时水泥水化的需水量又小,所以粉煤灰水泥的干缩性就小,抗裂性也好。此外,与一般掺活性混合材的水泥相似,水化热低,抗腐蚀能力较强等,抗冻性也好于其它火山灰水泥。 材料应用 长期以来,粉煤灰水泥广泛用于工业与民用建筑,尤其适用于大体积水工混凝土、水工建筑、海港工程等。但应注意,粉煤灰水泥混凝土泌水较快,容易引起失水裂缝。施工过程中,要适当增加抹面次数,在硬化早期宜加强养护,以保证粉煤灰水泥混凝土强度的正常发展。

粉煤灰对混凝土性能影响

粉煤灰对混凝土性能影响 粉煤灰是在燃煤电厂烟囱中收集的灰尘,在从高温到温度急剧下降的过程中形成了大量表面光滑的球状玻璃体,其颗粒比水泥细,比表面积很大,因此具有很大的活性。主要化学成分是无定型的Al2O3、SiO2,在碱性环境下极易发生反应,生成凝胶,而水泥水化过程中产生的Ca(OH)2正提供了这样的碱性环境,使粉煤灰在混凝土中的应用成为可能,并且对混凝土的性能有很大的影响! 1.粉煤灰对水泥的水化和强度的影响 1.1提高混凝土的强度 虽然由于粉煤灰的水化速度慢而会导致混凝土的早期强度偏低,但粉煤灰混凝土的最终强度肯定不会低于普通混凝土。粉煤灰的活性是在碱性环境下才能激发出来的,因此它的水化速度比水泥慢,待水泥水化后,粉煤灰和水泥水化后产生的Ca(OH)2反应形成硅酸钙凝胶,既改善了水泥石和粗骨料间的界面结构,增强了界面薄弱层,又对水泥石孔结构起到填实的作用,而且消耗了强度和稳定性都较差的Ca(OH)2,从而提高了混凝土的强度。 混凝土的工作性能主要表现在混凝土的流动性、粘聚性和保水性等方面。论文发表。粉煤灰掺入混凝土后,降低了混凝土的砂率,从而可以减少细骨料对运输管壁的摩擦;粉煤灰对水泥颗粒起到物理分散作用,使它们分布得更均匀,阻止了水泥颗粒的粘聚。这些都有效提高了混凝土的流动性。由于粉煤灰的活性是在水泥水化后的碱性环境中被激发的,因此它并不参加初期的水化反应,在相同水胶比和胶凝材料用量的情况下,就相对提高了混凝土水化初期的水灰比,从而提高了混凝土的流动性和粘聚性。粉煤灰延缓了初期的水化反应,还可以明显减少坍落损失,满足混凝土运输、浇筑的要求。粉煤灰在混凝土中可以弥补水泥用量和细集料的细粉部分的不足,有利于提高混凝土的保水性,还可以堵截泌水的通道,从而减少泌水现象。粉煤灰有效地改善了混凝土的工作性能,提高了混凝土的施工质量,也使混凝土的自密实和高可泵性成为可能。 1.2对水泥水化的影响 水泥浆体各个龄期的化学结合水含量均随着粉煤灰的增加而降低,但是水泥浆体各个龄期的等效化学结合水量却随着粉煤灰掺入的增加而逐渐的增大。粉煤灰的掺入加速了硅酸盐水泥的水化速度,却减缓了水泥—粉煤灰体系的水化进程。 这主要是粉煤灰取代水泥导致水泥熟料减少,有效的水灰比增大而产生的稀释作用,稀释作用促进了水泥熟料的水化。此外粉煤灰的二次水化效应使得粉煤灰于Ca(OH)2发生化学反应形成低钙硅比的水化硅酸钙,水化铝酸钙和水化硫酸钙,在粉煤灰颗粒表面形成了薄层C-S-H凝胶,增大了化学结合水量。但是,粉煤灰取代了部分的水泥,减少了水泥—石灰石粉体系中水泥熟料的含量,导致了体系的水化速度减慢,化学结合含水量的降低。 因此,粉煤灰对结合含水量的影响可以归结为两个方面:意识粉煤灰消耗水泥的水化产物Ca(OH)2,形成C-S-H凝胶,并且粉煤灰对新拌浆体中的水泥颗粒的分散,解聚作用能够促进水泥的水化,增加结合水的含量,即正效应;二是,水泥含量随着粉煤灰的掺量的增加而降低,水泥水化结合水含量也相应的减少,即负效应! 2.粉煤灰对混凝土孔隙率的影响 粉煤灰的掺入能够有效的降低混凝土的总孔隙率,但是28d时,随粉煤灰掺入量的增加,混凝土中大孔(孔径在30nm以上)孔隙率占总孔隙率的比例有所增加。随龄期的增加,粉煤灰混凝土中总孔隙率和大孔于总孔德比例下降的较普通混凝土明显。论文发表。论文发表。28d时,粉煤灰掺量增加,混凝土强度有所下降,这主要是由于粉煤灰混凝土中大孔比例增加所致。随龄期的增加,粉煤灰混凝土的强度将会超过普通混凝土。粉煤灰掺入混凝土中,参与二次水化反应,填充与水化产物间,降低了混凝土孔隙率,提高了混凝土的密实性,强度也提高了 3.需注意的几个问题 3.1粉煤灰在混凝土中的适宜掺量

开题报告:年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计

科技学院 毕业设计(论文)开题报告 题目年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计学院冶金学院 专业班级无机非金属材料工程2011-01 学生姓名学号 20114 指导教师 2014 年 12 月 20 日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作开始后2周内完成,经指导教师签署意见及系主任审查后生效。 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.学生查阅资料的参考文献理工类不得少于10篇,其它不少于12篇(不包括辞典、手册)。 4.“本课题的目的及意义,国内外研究现状分析”至少2000字,其余内容至少1000字。

毕业设计(论文)开题报告 1.本课题的目的及意义,国内外研究现状分析 1.1本设计的目的和意义 据我国目前的电力系统来看,我国目前火力发电仍是占主要的地位,粉煤灰是其发展过程中不可避免的排放量大的工业废料。不仅是火力发电厂,各种依靠煤粉燃烧获得热源等的企业都是粉煤灰的主要产源。粉煤灰不仅需要占大量的土地来存放,而且对环境的污染也很大,因此对粉煤灰加以利用是解决当前问题的首选。 我国目前正处于高速发展阶段,各行各业的发展都离不开建筑,因此对水泥的需求仍处于上升阶段。虽然我国是水泥生产大国,但是由于水泥行业的高二氧化碳排放量以及粉尘、有害气体等的排放,致使水泥行业的发展受到了限制。要降低这些废气等的排放,就要减少水泥生产中熟料的使用。早在1990年,美国就提出了绿色混凝土的概念。绿色高性能混凝土的特征有:更多地节约熟料水泥,降低能耗与环境污染;更多地掺加工业废料为主的细掺料;更大的发挥混凝土的高性能优势,减少水泥与混凝土的用量[1]。粉煤灰在水泥熟料矿物水化产物氢氧化钙的激发下具有水化活性而形成一定的强度组分,能与水泥浆硬化体晶格坚固地结合起来,进而提高了混凝土的长龄期强度和混凝土的耐久性[2]。因此,用粉煤灰部分替代水泥熟料具有重要的意义。 但是,根据前人的研究,粉煤灰能与水泥水化产生的Ca(OH) 发生二次水 2 化反应在常温下反应过程非常缓慢,使水泥早期强度过低,造成其利用率一直很低[3]。按照GB1344-92规定,粉煤灰硅酸盐水泥中粉煤灰掺入量按重量百分比计为20%~40%,而目前我国大多水泥窑生产的粉煤灰水泥掺入量只有不到30%,且达不到应有的强度等级[4-5]。 究其根本原因,是因为粉煤灰的活性在前期并不理想,致使粉煤灰水泥没有具有应有的早期强度。因此想要提高粉煤灰的掺入量,提高粉煤灰水泥的性能,就应该从改善粉煤灰的活性着手。粉煤灰活性影响因素可分为:化学成分、晶体组成和玻璃相含量与结构[6]。万雪峰[7]等人对激发粉煤灰活性的措施物理法、物理化学法以及化学法做出了对比研究,认为化学法的活化程度高,且不限粉煤灰的掺入量,是一种可行的简单的方法。化学法主要是通过添加各种早强剂、诱导剂、激发剂等,使粉煤灰水泥的水化反应速度缩短,从而改善粉煤灰水泥的早期强度不足和初凝时间过长的缺陷,提高粉煤灰的掺入量[8-10]。物理法可以通过在研磨粉煤灰时填入助磨剂,改善粉煤灰的粒度,从而提高粉煤灰水泥的水化速度。焦晓飞[11]通过对粉煤灰掺入粒径的研究得到粉煤灰颗粒,粒度集中在10μm~20μm的粉煤灰活性最佳,水化速度最快,

粉煤灰、矿渣粉的双掺在高性能混凝土中的作用

粉煤灰、矿渣粉的双掺在高性能混凝土中的作用 1 高性能混凝土基本概念 1.1 什么是高性能混凝土高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。耐久性混凝土属于高性能混凝土的范畴,国家对高性能混凝土没有定义。一般认为,高性能混凝土是高工作性、高耐久性。 1.2 什么结构物是高性能混凝土根据《铁路混凝土结构耐久性设计暂行规定》,混凝土结构设计使用年限级别 2 为什么现代混凝土结构不耐久 ①水泥质量—过细、水化过快(C3A);②水泥用量—过多;③水灰比—过大;④混凝土早期强度—过高;⑤外加剂—过乱;⑥施工质量—较差。 3 如何实现混凝土的高性能化 ①增加混凝土的密实性;②增加钢筋的保护层厚度;③防止混凝土开裂;④改善粗骨料与水泥浆体间的薄弱界面和微结构;⑤阻挡和延缓各种有害物质侵入混凝土内部。 4 与普通混凝土相比,高性能混凝土具有如下独特的性能

4.1 高性能混凝土具有一定的强度和高抗渗能力,但不一定具有高强度,中、低强度亦可。 4.2 高性能混凝土具有良好的工作性,混凝土拌和物应具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。 4.3 高性能混凝土的使用寿命长,对于一些特护工程的特殊部位,控制结构设计的不是混凝土的强度,而是耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 4.4 高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。 5 粉煤灰、矿渣粉的双掺在高性能混凝土中的作用 5.1 混凝土工作性能提高混凝土拌合物的和易性,流动性提高,塌落度保持性较好。混凝土粗、细骨料形成混凝土的骨架,其间有大量的空隙,这部分空隙在不使用掺和料时由水泥颗粒来填充,尽管水泥颗粒很小,但仍有空隙。在掺入矿渣粉和粉煤灰后,由于它们的粒径与水泥颗粒粒径形成粒径梯度,颗粒之间相互填充,因此可以进一步减少细集料颗粒间的空隙,使其更加密实,并且可以使得水泥颗粒间的水分得以释放,形成自由水,提高混凝土的流动性,这是矿渣粉和粉煤灰的微集料效应。 另外粉煤灰的形态效应也使得混凝土的流动性很好,粉煤灰的矿物组成是海绵玻璃体和铝硅玻璃体微珠,这些球形玻璃体表面光滑,颗粒

矿粉和粉煤灰的掺量

1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。 (2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。游离碱数量的减少可以抑制或减少碱集料反应。通常3既的粉煤灰掺量即可避免碱集料反应。(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。(5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。但混凝土养护不良会导致耐磨性降低。(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。

两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。一些欧洲国家甚至允许掺到85%。 两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。 1、“单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量: (a)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%; (b)对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%; (c)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%; (d)对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 2、采用“双掺”粉煤灰和矿粉时,由于受粉煤灰掺量和质量波动的影响很大,只能根据上述基本原则,通过具体试验确定各组份正确的掺加量。

GBT1596-2005用于水泥和混凝土中的粉煤灰

GB/T1596-2005 用于水泥和混凝土中的粉煤灰 1 范围 本标准规定了用于水泥和混凝土中的粉煤灰的定义和术语、分类、技术要求试验方检验规包装标志与批号、运输与储存。 本标准适用于拌制混凝土和砂浆时作为掺合料的粉煤灰及水泥生产中作为活性混合材料的粉煤灰。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T176水泥化学分析方法(GB/T176-1996,eqvISO680:1990) GB/T1346水泥标准稠度用水量、凝结时间、安定性检验方法(GB/T1346-2001,eqvISO9597:1989) GB/T2419水泥胶砂流动度试验方法 GB6566建筑材料放射性核素限量 GB12573水泥取样方法 GB/T17671-1999水泥胶砂强度检验方法(ISO法)(idt ISO679:1989) GSB08-1337中国ISO标准砂 GSB14-1510强度检验用水泥标准样品 3 定义和术语 本标准采用下列定义和术语。 3.1粉煤灰电厂煤粉炉烟道气体中收集的粉末称为粉煤灰。 3.2对比样品对比样品和被检验粉煤灰按7:3质量比混合而成。 3.3实验样品 GSB14-1510《强度检验用水泥标准样品》。 3.4对比胶砂对比样品GSB08-1337中国ISO标准砂按1:3质量比混合而成。 3.5试验胶砂实验样品与GSB08-1337中国ISO标准砂按1:3质量比混合而成。 3.6强度活性指数试验胶沙抗压强度与对比胶砂抗压强度之比,以百分数表示。 4 分类 按煤种F类C类。 4.1 F类粉煤灰----由无烟煤或烟煤煅烧收集的粉煤灰。 4.2 C类粉煤灰----由褐煤或次烟煤煅烧收集的粉煤灰,其氧化钙含量一般大于10%。 5 等级 拌制混凝土和砂浆用粉煤灰分为三个等级:I级、II级、III级。 6 技术要求 6.1 拌制混凝土和砂浆用粉煤灰应符合表1中技术要求 表1拌制混凝土和砂浆用粉煤灰技术要求 项目技术要求

水泥粉煤灰碎石桩完整版

水泥粉煤灰碎石桩 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水泥粉煤灰碎石桩(CFG 桩)施工工艺 工艺概述 水泥粉煤灰碎石桩(CFG 桩)桩体原材料采用碎石、石屑、粉煤灰、水泥、外加剂混合而 成,按设计文件提供的混合料强度进行配比设计。常用长螺旋钻机取土、管内泵压混合料灌注成桩或振动沉管灌注成桩两种施工工法。 水泥粉煤灰碎石桩(CFG 桩)适用黏性土、粉土、砂性土、杂填土及湿性黄土等地基地基加固。 作业内容 1.原地面处理; 2.测量放样; 3.钻机就位; 4.钻孔或沉管; 5.泵压灌注混合料或投料拔管; 6.成桩检测及验收。 质量标准及验收方法 桩质量标准、检验数量及检验方法见表。

CFG 桩施工工艺流程见图。

(a) 振动沉管法(b) 长螺旋钻管内泵 压法 图CFG 桩施工工艺流程图 工艺步骤及质量控制说明 一、原地面处理 1.对原地面进行清理和整平,将路基范围内原地面上淤泥、树根、草皮、腐植土等全部挖除,为旋喷桩施工做好场地平整。 2.做好临时排水设施,疏干场内积水,使周边水不再进人场内,雨水、渗水 随时排出。 3.做好临时储备材料及设备场地。 4.完成现场便道及临时用水、用电工程。二、测量放样根据设计提供的控 制点,采用全站仪放出高压旋喷桩区域的控制桩,然后使用钢卷尺根 据桩距传递放出桩位位置,用小竹签做好标记,并撒白灰标识,确保桩机准确就位。

三、钻机就位钻机就位必须平整、稳固,确保在施工中不会发生倾斜、移 动。钻杆应垂直对准桩位中 心,桩位偏差应控制在 5cm 以内;钻杆垂直度控制采用在钻架上两个相互垂直方向上挂垂球的方法测量。每根桩施工前均要由旁站人员进行桩位对中及垂直度检查,确保 CFG 桩垂直度偏差不大于 1%,检查合格后方可开钻,并记录好桩位偏差和垂直度。 四、钻孔 1.沉管法钻孔:根据设计桩长、沉管入土深度确定机架高度和沉管长度,并进行设备组装。桩机就位,保持桩管垂直,垂直度偏差不大于 l%;若采用预制钢筋混合料桩尖,需埋入地表以下 300mm 左右。开始沉管,为避免对邻桩的影响,沉管时间应尽量短;记录激振电流变化情况,应 1m 记录一次,对土层变化处应予以说明。 2.长螺旋钻机钻孔:桩机就位,保持桩管垂直,垂直度偏差不大于 l%;钻孔开始时,关闭钻头阀门,向下移动钻杆至钻头触地时启动马达钻进。先慢后快,同时检查钻孔的偏差并及时纠正。在成孔过程中发现钻杆摇晃或难钻时,应放慢进尺,防止桩孔偏斜、位移和钻具损坏。记录好开钻时间、钻进速度、不同地质条件下的电流值、成桩瞬间电流,以进行地质复核。 3.验孔 钻至设计标高后,对于使用沉管法施工时,要清底、夯实孔底,沉渣不得大于 100mm,并用不小于 35kg 的重锤将孔底夯实。若孔底出现少量地下水,可投入拌合料,并将其夯实。 成孔经自检合格后,必需报监理工程师确认后才能终孔。若地质与设计不符,应及时做好变更设计。 五、混合料拌制混合料搅拌采用搅拌站集中拌和,按照配合比进行配料, 每盘料搅拌时间控制在 60 秒 以上,混合料坍落度控制在 160mm~200mm。运输采用砼罐车运输到施工现场。在运输过程中及现场等待过程中,混合料运输车必须慢速旋转,严禁停转。在每次卸料前必须采用运输车强制搅拌 30s,防止混合料发生离析。 六、灌注混合料及拔管 1.采用沉管法成桩,待沉管至设计标高且停机后须尽快用料斗完成空中投料(可边沉管边投料),直至管内混合料顶面与钢管料口平齐,首次投料留振5~10s 再开始拔管,拔管速率按工艺性试验参数进行控制,一般宜为~/min。如果灌注拌合料不足,可以在拔管过程中,空中向管内投料补给。成桩后桩顶标高应高出设计桩长,且浮浆厚度不超过 20cm。 2.采用长螺旋钻机管内泵压混合料灌注成桩,钻孔至设计标高后,停止钻进,钻杆芯管充满混合料后开始拔管,并保证连续匀速拔管,混合料的泵送量与拔管速度相匹配,混合料灌注过程中应保持混合料面始终高于钻头面 15~25cm,拔管速率按工艺性试验参数进行控制,一般宜控制在 2~3m/min。每根桩的投料量不小于设计灌注量。施工桩顶高程一般应高出设计高程 50cm,灌注成桩后桩顶盖土封顶进行养护。在灌注过程中记录好灌注时间、拔管提升速度、砼坍落度、砼实际灌注量等相应的记录。 七、质量控制 桩施工有间隔跳打法连打法,具体的施工方法由现场试验来确定。在软土中,桩距较大可采用隔桩跳打,但施工新桩与已打桩时间间隔不小于 7d;在饱和的松散粉土中,如桩距较小,不宜采用隔桩跳打;全长布桩时,应遵循由“由一边向另一边”的原则。

浅谈粉煤灰对混凝土强度的影响.

广东建材2008年第4期 1前言 粉煤灰又称飞灰,是指燃煤电厂中磨细煤粉在锅炉 中燃烧后从烟道排出,被收尘器收集的物质,粉煤灰呈灰褐色,通常呈酸性,比表面积在2500~7000cm2/g,尺寸从几百微米到几微米,通常为球状颗粒,我国大多数粉煤灰的主要化学成分为:SiO240%~60%;Al2O315%~40%;Fe2O34%~20%;CaO2%~7%;烧失量3%~10%。此外,还有少量的Mg、Ti、S、K、Na等氧化物。我国是产煤和烧煤大国,火电厂每年排放的粉煤灰总量逐年增长,预计2005年排粉煤灰量约2亿吨左右,如果这些粉煤灰得不到利用,将污染环境,影响气候,破坏生态。从目前有关资料来看,粉煤灰在建筑工程和基础工程的应用,是最主要的利用方式,也是提高其利用率的根本途径。至今比较成熟的技术和已建成生产线的有:粉煤灰加气混凝土、粉煤灰混凝土、粉煤灰砌筑水泥、粉煤灰硅酸盐水泥、粉煤灰粘土砖、粉煤灰硅酸盐砌块、粉煤灰地面砖、粉煤灰免烧砖、粉煤灰筑路和粉煤灰充填等,由此可见,开发研究以粉煤灰为掺合料的混凝土具有重要意义,配 制粉煤灰混凝土是粉煤灰综合利用的主要途径之一[1] 。 2粉煤灰的主要性质 2.1火山灰效应 粉煤灰的矿物相主要是铝硅玻璃体,含量一般为50%~80%,是粉煤灰具有火山灰活性的主要组成部分,其含量越多,活性越高,其矿物结构为硅氧四面体、铝氧四面体和铝氧三面体,该结构的聚合度很大,键能很高,因而在通常状态下,粉煤灰所表现出的活性很低。粉煤灰的化学活性在于铝硅玻璃体在碱性介质中,OH-

离子打破了Si-O,Al-O键网络,降低了硅氧、铝氧聚合度,并与水泥水化产生的Ca(OH)2发生反应,生成水化硅酸钙 和水化铝酸钙,其化学方程式: XCa(OH)2+SiO2+nH2O→XCaO?SiO2?nH2O YCa(OH)2+Al2O3+mH2O→YCaO?Al2O3?mH2O 粉煤灰的火山灰活性表现出来的技术性质为:①反 应是缓慢的,所以放热速率和强度发展也相应较慢。②反应消耗了层状结构的Ca(OH)2生成了致密结构的水化硅酸钙和水化铝酸钙,粒径细化有利于提高混凝土的强度。③反应产物极为有效地填充了大的毛细空间,孔 径细化使混凝土的强度和抗渗性能得到改善[2]。 2.2微集料效应 细度是衡量粉煤灰品质的主要指标,通常用0.08mm或0.045mm方孔筛余量表示。粉煤灰的细度对混凝土的性能影响很大。粉煤灰的颗粒越细,微小玻璃球形颗粒越多,比表面积也越大,粉煤灰中的活性成分也就越容易和水泥中的Ca(OH)2化合,其活性就越高。另外,随着细度的增加,粉煤灰的比重增大,标准稠度需水量减小,浆体的密实度及强度增大,同时,由于粉煤灰的密度小于水泥30%以上,从而增加了灰浆体积,足量的灰浆填充在混凝土孔隙空间,覆盖和润滑骨料颗粒,增加了拌合物的粘聚力和可塑性,改善了混凝土的和易性,加上细小的粉煤灰颗粒可以填充未水化水泥颗粒空隙,形成更加密实的结构,这些都有利于提高混凝土的强度。 2.3形态效应 优质的粉煤灰中的玻璃珠粒形完整,表面光滑,粒

粉煤灰矿粉双掺

大掺量粉煤灰混凝土的作用及其机理分析 1.粉煤灰的主要作用 粉煤灰在混凝土中的主要作用表现在以下几个方面: (1)填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实, 在水泥用量较少的混凝土里尤其显著。 (2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混凝土水胶比较低时,水化 缓慢的粉煤灰可以提供水分,是水泥水化更充分。 (3)粉煤灰和富集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝 土的各项性能有显著作用。 (4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温 度裂缝十分有利。 (5)粉煤灰高性能混凝土的性能粉煤灰是一种呈玻璃态实心或空心的球状微颗粒,比水泥粒子小得多,比表面积极大,表面光滑致密,其成分主要是活性氧化硅或氧化铝。掺入 混凝土中的粉煤灰主要产生以下几方面影响: 1.活性效应:在常温下,由于粉煤灰的水化反应比水泥慢,被粉煤灰取代的那部分水泥的早期强度得不到补偿,所以混凝土早期强度随粉煤灰掺量的增加而降低。随着时间的推移,粉煤灰中活性部分SiO2和AI2O3与水泥水化生成的Ca(OH)2发生反应,生成大量水化硅酸凝胶。粉煤灰外部的一些水化产物在成长过程中也会象树根一样伸入颗粒空隙中,填充空隙,破坏界面区Ca(OH)2的择优取向排列,大大改善了界面区,促进了混凝土后期强度的增长。 2.微集料密实填充及颗粒形态效应:均匀分散在混凝土中的粉煤灰颗粒不会大量吸水,不但起着滚珠作用,而且与水泥粒子组成了合理的微级配,减少填充水数量,影响系统的堆积状态,提高堆积密度,具有减水作用,使新拌混凝土工作性优良,硬化混凝土微结构更加均匀密实。而且,不会发生泌水离析现象,可施工性和抹面性好,抗渗性、抗冻性好。 3.交互作用:水泥、粉煤灰、外加剂等不同粉料间会产生物理、化学的交互作用。例如,水泥水化生成的Ca(OH)2是粉煤灰的活性激发剂,而被激发了的粉煤灰一旦水解,降低液相碱度,又会进一步促进未水化水泥水化。又如混凝土坍落度经时损失的原因之一是随着水化反应的进行,高效减水剂的浓度降低,通过SEM观察,发现超细粉末的粉煤灰颗粒存在大量比表面积相当大的微珠以及一定量的多孔海绵状的不规则小块,可吸附外加剂,是外加剂的理想载体由于粉煤灰水化反应缓慢,吸附在其上的高效减水剂在短时间内不会起作用,之后才随粉煤灰的水化得以逐渐释放,因此新拌粉煤灰混凝土的坍落度经时损失小。另外,目前生产的水泥含碱量不断提高,粉煤灰的使用大大节约水泥熟料,抑制碱——骨料反应;水泥中C3A含量少,水化产生的热量少,减少了混凝土构件由于内外温差过大而引起其表面开裂的危险;粉煤灰水化消耗大量Ca(OH)2,混凝土不耐蚀成分减少,因而耐化学侵蚀性比普通混凝土强得多。同时徐变、干缩等变形性能也优于普通混凝土综上所述,大掺量粉煤灰高性能混凝土具有令人满意的工作性、耐久性,力学性能也能达到设计要求,尽管早期强度低,但后期强度高,强度储备大。用高质量的粉煤灰取代部分水泥可大大改善新 拌混凝土的工作性,因为: (1)粉煤灰是由大小不等的球状颗粒的玻璃体组成,表面光滑致密,在混凝土拌合物 中能起滚珠作用;

粉煤灰在混凝土中的应用

覃维祖清华大学土木工程系 一、概述 早在多年前地古罗马时期,人类就用火山灰与石灰混合作为胶凝材料,建造了许多雄伟地建筑物,例如万神殿,其直径为地半球形穹顶就使用了吨这种胶凝材料和凝灰岩轻骨料拌合而成地混凝土;还有闻名于世地圆形剧场等,这些建筑现在仍然安然无恙,年还有报道意大利人正在翻修圆形剧场,准备在那里面举行盛大地演出.今天在混凝土中掺用地粉煤灰,也是一种火山灰材料,大量地实践证明:掺用粉煤灰地混凝土,其长期性能得到大幅度地改善,对延长结构物地使用寿命有重要意义. 个人收集整理勿做商业用途 现在作为混凝土主要胶凝材料地硅酸盐水泥,同样是以石灰石和粘土为主要原料经过煅烧生成地.它问世于世纪地年代,至今尚不到年历史,因此用硅酸盐水泥配制成混凝土建造地各种建筑物最长只有多年,而国内近些年修建地一些土木工程结构物运行不多年,就出现各种病害,甚至很快就遭到严重地破坏.例如北京地西直门立交桥,运行仅年就不得不拆除重建;更有甚者,据某省交通科研所一位所长坦言,那里地混凝土路面运行三年不坏地很少!个人收集整理勿做商业用途 年代初,美国佛罗里达州建造了一座非常宏伟地跨海大桥,在该桥地建设过程中,考虑到周围地侵蚀性环境,在混凝土里掺用了大量粉煤灰,工程质量有很大改善.因而在年修订规范时,对原来随意使用粉煤灰地规定进行了修订[].新规范()规定:在中度以上侵蚀环境中地桥梁上部结构,包括预应力构件地混凝土中,必须掺用粉煤灰.其中大体积混凝土中粉煤灰地掺量为. 个人收集整理勿做商业用途 什么是大体积混凝土?许多人至今仍认为那就是指大坝,也有些人把高层楼房地大型基础包括在内.可是美国混凝土学会规定:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起地体积变形问题,以最大限度减少开裂影响地,即称为大体积混凝土.这个问题下面还要谈到. 个人收集整理勿做商业用途 掺粉煤灰混凝土地另一典型实例,是年英国地机场地停机坪扩建工程,该工程在两条相邻地道面上对掺与不掺粉煤灰混凝土进行了对比[].所用粉煤灰混凝土中粉煤灰用量达到.该工程经运行年后所拍地照片清楚地显示出:与纯硅酸盐水泥混凝土相对照,掺粉煤灰混凝土道面地表面层抗滑构造仍基本完好,而前者则已坑坑点点,受到一定程度地破坏了.这个实际工程事例一方面说明:在低水胶比条件下,即使掺有大量粉煤灰,也可以获得强度和耐久性都十分优异地混凝土;另一方面,对长期以来沿用地,以龄期地快速实验结果评价不同类型混凝土地耐久性提出了质疑. 个人收集整理勿做商业用途 粉煤灰在混凝土公路路面中地应用举一个例子.教授曾提到[]:在美国大约地低交通量公路与地方公路需要升级,考虑用大掺量粉煤灰代替水泥以降低造价,电力研究院()出资搞了几个示范工程:在北达科他州,和年夏天,用粉煤灰混凝土铺筑厚为地路面,其水胶比为,水泥用量、粉煤灰. 个人收集整理勿做商业用途 加拿大矿产与能源技术中心()自年以来,对大掺量粉煤灰混凝土进行了深入而广泛地研究[],由于该国处寒带地区,因此通常在混凝土里掺有引气剂,并保持含气量在,在这种前提下,以水泥,粉煤灰,通过高效减水剂将水胶比降到左右,所配制地混凝土抗压强度天为;天;年.大掺量粉煤灰混凝土地成功试验,使其在哈利法克斯地帕克林购物中心施工中用于浇注巨大地柱子,拌合物含%低钙粉煤灰、%硅酸盐水泥,以及就地取材地砂、石和高效减水剂.这些柱子一共用去大掺量粉煤灰混凝土;在哈利法克斯海边处于海洋环境地建筑物群施工中也得到应用.该建筑物位于海边,包括两幢商业大厦地公共建筑,其根直径和根直径地框架柱沉箱,平均长度在.采用大掺量粉煤灰混凝土地首要原因,是其抗渗性能优异.在渥太华附近地大卫伏劳瑞达实验室,工程师们用开发地大掺量粉煤灰混凝土设计了一个重吨地混凝土平台.为了降低水化热,以粉煤灰、Ⅱ型(低热)水泥、水、粗细骨料、引气剂和高

水泥粉煤灰碎石桩

水泥粉煤灰碎石桩(CFG桩)施工工艺 2.1 3.1工艺概述 水泥粉煤灰碎石桩(CFG桩)桩体原材料采用碎石、石屑、粉煤灰、水泥、外加剂混合而 成,按设计文件提供的混合料强度进行配比设计。常用长螺旋钻机取土、管内泵压混合料灌注成桩或振动沉管灌注成桩两种施工工法。 水泥粉煤灰碎石桩(CFG桩)适用黏性土、粉土、砂性土、杂填土及湿性黄土等地基地基加固。 2.1 3.2作业内容 1.原地面处理; 2.测量放样; 3.钻机就位; 4.钻孔或沉管; 5.泵压灌注混合料或投料拔管; 6.成桩检测及验收。 2.1 3.3质量标准及验收方法 1.CFG桩质量标准、检验数量及检验方法见表 2.1 3.3-1。

除,为旋喷桩施工做好场地平整。 2.做好临时排水设施,疏干场内积水,使周边水不再进人场内,雨水、渗水随时排出。 3.做好临时储备材料及设备场地。 4.完成现场便道及临时用水、用电工程。二、测量放样根据设计提供的控制点,采用全站仪放出高压旋喷桩区域的控制桩,然后使用钢卷尺根 据桩距传递放出桩位位置,用小竹签做好标记,并撒白灰标识,确保桩机准确就位。

三、钻机就位钻机就位必须平整、稳固,确保在施工中不会发生倾斜、移动。钻杆应垂直 对准桩位中 心,桩位偏差应控制在5cm以内;钻杆垂直度控制采用在钻架上两个相互垂直方向上挂垂球的方法测量。每根桩施工前均要由旁站人员进行桩位对中及垂直度检查,确保CFG桩垂直度偏差不大于1%,检查合格后方可开钻,并记录好桩位偏差和垂直度。 四、钻孔 1.沉管法钻孔:根据设计桩长、沉管入土深度确定机架高度和沉管长度,并进行设备组装。桩机就位,保持桩管垂直,垂直度偏差不大于l%;若采用预制钢筋混合料桩尖,需埋入地表以下300mm左右。开始沉管,为避免对邻桩的影响,沉管时间应尽量短;记录激振电流变化情况,应1m记录一次,对土层变化处应予以说明。 2.长螺旋钻机钻孔:桩机就位,保持桩管垂直,垂直度偏差不大于l%;钻孔开始时,关 。 1.CFG桩施工有间隔跳打法连打法,具体的施工方法由现场试验来确定。在软土中,桩距较大可采用隔桩跳打,但施工新桩与已打桩时间间隔不小于7d;在饱和的松散粉土中,如桩距较小,不宜采用隔桩跳打;全长布桩时,应遵循由“由一边向另一边”的原则。 2.在砼灌注前检查混合料运输车中的数量,不能满足要求的不能进行混合料灌注作业,避免出现灌注过程中停工待料的现象。 3.提钻前需开动混合料输送泵,将管道内的混合料填充满,特别是地下水比较丰富的地段;提钻的过程中严禁旋转钻头,避免泥土掉入桩中形成断桩。

最新对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文翻译

对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文 翻译

2015届外文翻译 Study on the physical and mechanical property of ordinary Portland cement and fly ash paste 对普通硅酸盐水泥和粉煤灰的物理性能和 力学性能的研究 院、部:材料与化学工程学院 完成时间: 2015年5月 对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究 摘要 对高掺量粉煤灰硅酸盐水泥做了一个实验,来对它的物理和力学性能进行研究。普通硅酸盐水泥分以0,20、30、40、50、60、70%几个等级分别被粉煤灰取代(按重量计算)。在所有的混合物中,水胶比恒定为0.3。试块在振动台上被振实。预期的体积密度会随着粉煤灰掺量的增加而减少。气孔率和吸水率会随着水泥被粉煤灰取代而增大。添加了粉煤灰试块的3d、7d,28d的抗压

强度降低了,这一点在假设粉煤灰掺量在30%以上的实验中更加明显。超声波脉冲速度测试结果表明,浆体的性能会随着混合物中粉煤灰掺量的增加而降低。 关键词:粉煤灰,抗压强度,超声波脉冲检测技术,水泥 1介绍 每年印度的火力发电产能生产超过1.6亿吨的粉煤灰。对于火力发电厂来说,处理粉煤灰是一个很重要的问题。通常的,现在大量的飞灰和底灰在土地里会被用来阻塞和填充,以最小化的成本处理。在1985年,加拿大的自然资源部首先调查发现:大量的粉煤灰具有许多优异的性能,各种标准规范规定在水泥行业粉煤灰的掺量不能超多35%。在印度,水泥和混凝土行业每年消耗4000

万吨粉煤灰。另一个方面,水泥需求的不断上升可以进一步解决高掺量粉煤灰(超过50%)在混凝土上面的应用。这个过程显然可以经济化,以及减少温室气体(GHG)的排放,减少废物处置和减少健康的危害。因此在混凝土中使用高掺量粉煤灰开始兴起,对普通硅酸盐水泥(OPC)混凝土应用程序,是一个资源节约型、耐用、成本效益的、可持续的选择 (克劳奇,l·K理论研究。2007)。这项工作的目的是研究一些物理和机械属性,如容重、孔隙率、吸水率和超声波脉冲速度和抗压强度的粉煤灰硅酸盐水泥。 2 材料和方法 2.1 材料 普通硅酸盐水泥(OPC)28天抗压强度使用54 MPa。普通硅酸盐水泥的主要性质见表1。粉煤灰来自西孟加拉、印度的火力发电厂。水泥和粉煤灰的化学成分见表2. 粉煤灰包含非常少碳含量,正如所指出的那样,低价值的损失在点

水泥粉煤灰碎石桩的设计

引言 CFG桩是水泥粉煤灰碎石桩的简称,它是由水泥、粉煤灰、碎石石屑或砂加适量的水拌合形成具有一点粘结强度和一定压缩性的半刚性桩体。CFG桩、桩间土和褥垫层一起组成CFG桩复合地基,CFG桩复合地基处理技术应用广泛,实用性强,涉及的工程类型有普通工业与民用建筑、高耸构筑物、多高层建筑等。就基础形式而言,CFG桩适用于条形基础、独立基础、筏基和箱型基础。就土性而言,CFG桩适用于处理粘性土、软土、粉土、砂土、淤泥质土等地基。由于CFG桩复合地基优于其他复合地基的特点,所以CFG桩复合地基广泛应用。 1工程概况 拟建工程位于邯郸市新兴大街与北仓库路交叉口东南角。拟建建筑基本概况如表1.1。 表出自《远洋·香格里拉丨新兴公馆岩土工程详细勘察报告》 2 场地工程地质条件 根据《远洋·香格里拉丨新兴公馆岩土工程详细勘察报告》(中佳勘察设计有限公司),各土层工程地质特征分述如下: (1)杂填土(Q42ml):杂色,稍湿,松散~稍密,主要由碎砖块、混凝土块及粉土组成,场地局部含黑色污染土。本层分布整个场地,层厚0.70~5.90m,层低高程49.06~54.11m。 (2)粉土(Q42(al+pl)):黄褐色,湿~很湿,稍密~中密,局部密实,含云母,无光泽,干强度及韧性低,摇振反应中等,夹多层粉质粘土薄层。本层分布整个场地,层厚0.90~6.40m,层低高程46.82~49.02m。 (3)粉土(Q42(al+pl)):灰褐色,湿~很湿,稍密-中密,局部密实,含少量青瓦片,无光泽,干强度及韧性低,摇振反应迅速,场地局部含量约20%卵石,夹薄层粉质粘土。本层场地东北部缺失,层厚0.90~4.00m,43.99~47.90m。 (4)粉土(Q42(al+pl)):褐黄色,湿~很湿,稍密~中密,局部密实,无光泽,干强度及韧性低,摇振反应迅速,夹粉质粘土薄层。本层场地中西部缺失,层厚0.60~4.70m,层低高程层低高程41.66~46.44m。 (5) 粉质粘土(Q42(al+pl)):灰褐色~灰黑色,可塑~硬塑,稍有光泽,干强度及韧性中等,局部粘性较强,夹粘土及粉土薄层。本层分布整个场地,层厚0.80~3.60m,层低高程38.06~43.61m。

粉煤灰对混凝土的作用

粉煤灰对混凝土的作用文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其面张力的作用,形成大量细小的球形颗粒。在尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。 粉煤灰是我国当前较大的工业废渣之一。现阶段我国年排渣量已达3000万t。随着工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入系会造成河流淤塞,而其中的有毒物质还会对人体和造成危害。因此粉煤灰的处理和利用问题引起人们广泛的注意。 粉煤灰的三大效应 我国着名学者沈旦申、张荫济先生早在上世纪80年代总结国内外大量研究成果,提出粉煤灰《三大效应》理论,科学全面的阐述了粉煤灰在混凝土及粉煤灰制品中的作用和机理。对指导我国粉煤灰综合利用起到了积极的作用。 一、粉煤灰的“形态效应” 在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。 二、粉煤灰的“活性效应” 粉煤灰的“活性效应”因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。因粉煤灰中的化学成份含有大量活性SiO2及Al2O3,在潮湿的环境中与Ca(OH)2

相关文档
最新文档