变压器温度传感器探头

变压器温度传感器探头
变压器温度传感器探头

变压器温度传感器探头

关于变压器温控探头的插入深度问题,对于移相变压器温度探头我们在现场的要求一般是插入25cm~30cm,公司所做的插入温控探头的套管一般是40cm,最下面5cm进行了深度热缩(如图1所示)。由于、、探头和套管是插入变压器里,其中套管是用于探头和变压器的绝缘,由于套管最底部进行深度热缩的长度只有5cm,如果探头插入过深或套管深度热缩的长度过短就会导致变压器对温度探头放电的问题发生,由于探头是和温控显示仪连接,而温控仪又和控制器连接,所以放电会带来一系列的问题。

图1

针对这样的问题,为了减小放电的可能性,现在要求我们现服务人员对温度探头的处理是将套管从变压器抽出先比划比划,然后再将探头插入套管,具体要求是最好能让探头距套管最下面至少有≥10cm距离。如图2所示

图2

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

集成温度传感器1

非接触式温度传感器 非接触式温度传感器即热探测器,热探测器(有时也放在红外光电式传感器中介绍)是在吸收红外辐射能后温度升高,引起某种物理性质的变化,这种变化与吸收的红外辐射能成一定关系。常用的物理现象有温差热电现象、金属或半导体电阻阻值变化现象、热释电现象、气体压强变化现象、金属热膨胀现象和液体薄膜蒸发现象等。 热释电型红外探测器是根据热释电效应制成的,即电石、水晶、酒石碳酸钠、钛酸钡等晶体受热产生温度变化时,其原子排列发生变化,晶体自然极化,在其两表面产生电荷的现象称为热释电效应。 热释电效应 当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,图1表

示了热释电效应形成的原理。 热释电材料是一种具有自发极化的电介质,它的自发极化强度随温度变化,可用热释电系数p来描述,p=dP/dT(P为极化强度,T为温度)。在恒定温度下,材料的自发极化被体内的电荷和表面吸附电荷所中和。如果把热释电材料做成表面垂直于极化方向的平行薄片,当红外辐射入射到薄片表面时,薄片因吸收辐射而发生温度变化,引起极化强度的变化。而中和电荷由于材料的电阻率高跟不上这一变化,其结果是薄片的两表面之间出现瞬态电压。若有外电阻跨接在两表面之间,电荷就通过外电路释放出来。电流的大小除与热释电系数成正比外,还与薄片的温度变化率成正比,可用来测量入射辐射的强弱。 1、热释电型红外传感器(PIR传感器)

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

冷却液温度传感器检修

任务工单 课程名称任务名称 学习日期年月日班级级班 组长组号第组 安全员监督员 小组成员 安全教育是□否□不知道□ 学习目标清楚□不清楚□不知道□ 资讯类型电脑□网络□教材□维修手册□杂志□实物□ 工单任务信息 一、水温传感器的作用 水温传感器的作用是把冷却水温度转换为电信号,输入ECU后有、 、、等作用。 二、水温传感器的工作原理 水温传感器由NTC(负温度系数)热敏电阻构成,冷却液温度的变化引起电阻值的变化,当水温越电阻,当水温越高电阻。 三、水温传感器检修 1、水温传感器的英文缩略语是、。 2、水温传感器1的2号线的线束颜色是。 3、写出下面缩略语的含义 K20: DTC: VT: BU: GN: BK: 4、电路检修(针对水温传感器1): (1)连接解码仪,选择插头类型是 (2)记录故障现象 (3)读取故障码并记录,故障码为,水温温度为摄氏度。 (4)关闭电源,拔下水温传感器插头,测量2号端子和搭铁之间的电阻为欧姆。(5)拔下传感器插头,打开电源,测量1号端子和搭铁之间的电压为伏。(6)关闭电源,取下蓄电池负极,拔开发动机控制模块X1和X2,测量1号线和搭铁之间

的电压为伏,2号线和搭铁之间的电压为伏;测量1号线端对端的电阻为欧姆,2号线端对端的电阻为欧姆。 5、部件检查 测量水温传感器1号和2号端子之间的电阻为欧姆。 6、确定故障范围 7、复位。 四、想一想 1、水温传感器根据热敏电阻的阻值变化获取信号,负温度系数水温传感器插头被拔开时,相当于1号和2号端子之间的电阻为无穷大,那么此时显示的冷却液温度是 摄氏度;当1号和2号端子直接相连时,显示的冷却液温度是摄氏度。 2、你认为冷却液温度传感器2的作用是: 学习小结 画出今天学到的电路图: 小组分工方案 评价 自评优秀□良好□合格□不合格□ 问题反馈:

各种温度传感器分类及其原理.

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端 或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电 动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T

温度传感器

温度传感器温度特性测试与研究(FB810型恒温控制温度传感器实验仪) 实 验 讲 义 杭州精科仪器有限公司

一、集成电路温度传感器的特性测量及应用 随着科技的发展,各种新型的集成电路温度传感器器件不断涌现,并大批量生产和扩大应用。这类集成电路测温器件有以下几个优点:(1)温度变化引起输出量的变化呈现良好的线性关系;(2)不像热电偶那样需要参考点;(3)抗干扰能力强;(4)互换性好,使用简单方便。因此,这类传感器已在科学研究、工业和家用电器温度传感器等方面被广泛使用于温度的精确测量和控制。本实验要求测量电流型集成电路温度传感器的输出电流与温度的关系,熟悉该传感器的基本特性,并采用非平衡电桥法,组装成为一台C 50~0?数字式温度计。 【实验原理】 590AD 集成电路温度传感器是由多个参数相同的三极管和电阻组成。该器件的两端当加有某一定直流工作电压时(一般工作电压可在V 20~5.4范围内),它的输出电流与温度满足如下关系: A t B I +?= 式中,I 为其输出电流,单位:A μ,t 为摄氏温度,B 为斜率,一般590AD 的1)C (A 1B -?μ=,即如果该温度传感器的温度升高或降低C 1?,那传感器的输出电流增加或减少A 1μ,A 为摄氏零度时的电流值,其值恰好与冰点的热力学温度K 273相对应。(对市售一般590AD , A 278~273A μ=略有差异。)利用590AD 集成电路温度传感器的上述特性,可以制成各种用途的温度计。采用非平衡电桥线路,可以制作一台数字式摄氏温度计,即590AD 器件在C 0?时,数字电压显示值为“0”,而当590AD 器件处于C t ?时,数字电压表显示值为“t ”。 【实验仪器】 810FB 型恒温控制温度传感器 实验仪,如右图所示: 大烧杯、加热器、冰瓶、各种温 度传感器等。 【实验内容】 一.590AD 的测试方法: 1.590AD 为两端式集成电路温 度传感器,它的管脚引出端有两 个,如图1所示:序号1接电源 正端+U (红色引线)。序号2 接电源负端-U (黑色引线)。至 于序号3连接外壳,它可以接地,有时也可以不用。590AD 工作电压V 30~4,通常工作电压V 15~6,但不能小于V 4,小于V 4出现非线性。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

半导体温度传感器及其芯片集成技术_图文.

第12期?传感器技术? 半导体温度传感器及其芯片集成技术* 林凡,吴孙桃。郭东辉 (厦门大学,福建厦门 361005 摘要:半导体温度传感器是利用集成电路的工艺技术,将硅基半导体的温度敏感元件与外围电路集成在同一芯片上,与传统类型的温度传感器比较,具有灵敏度高、线性好、体积小、功耗低、易于集成等优点。分别介绍了双极型工艺和 CMOS工艺下的半导体温度传感器的基本设计原理,并具体提出一种CMOS型集成温度传感器设计电路。此外,还介绍了半导体温度传感器的芯片集成技术,并总结了Ic设计中出现的关键技术问题与解决方法。 关键词:半导体温度传感器;集成电路;单片系统 中图分类号:TN212.11文献标识码:A 文章编号:1002—1841(200312—0001—02 Semiconductor Temperature Sensor and its SoC Tedmology LIN Fan,、vU Sum-tao,GUO Dong-hui (Xiamen University,Xiamen 361005,China Abstract:Using IC technology,Semiconductor temperature鸵nsor caIl realize the in 嘧tion of sensing and di西tal processing func? tions on the班llne chip.G砌1删with otller traditional temperature se删娜,it has the advantages of 800d sensitivity,lineatrity,low power consumption,etc.Introducing the basic desi伊principles of semiconductor

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

发动机冷却液温度传感器间歇性故障排除

广州东风汽车学院机电全能毕业论文 发动机冷却液温度传感器间歇性故障排除 一、前言 汽车是人类进步的主要标志,现代科技的结晶,为人类日常生活带来了更加便宜捷的交通服务。如今,社会的发展、科技的不断进步,对我们汽车维修人员也提出了更高的要求,进入电子产品时代,各汽车科技产品的不断问世,这对我们维修人员来说,不但给学习带来了机遇,同时出警告我们维修人员具有很大的挑战,我们只有不断加强学习先进科技文化水平,才能迎接在汽车维修过程中带来的不同挑战,因此,我们在以后的实践中需要不断努力才能稳步前进。 二、关键词:冷却液温度传感器、间歇故障、更换、故障排除 三、摘要: 本文主要介绍一辆装备东安4Q-ME 发动机,德而福电子燃油控制系统的柳州五菱小面包汽车,由于发动机水温传感器间歇故障导致在行驶中有突然加速不畅,急加速时发动机会抖动,转速会下降的故障诊断及排除过程。 四、正文:(故障诊断与排除) 该车是在2011年1月份来到我院的,具车主反映该车在特约服务站维修多次,也更换了发动机ECU和主机电器等。同时也调整过曲轴位置传感器与触发齿轮间的间隙,但是故障一直未能排除。得知我院维修技术力量雄厚,故慕名前来检修,盼望能解决问题。 老师安排到我为该车进行故障诊断。在该车没有熄火怠速的情况下,使用了X—431发动机故障检测电脑对发动机进行了检测。第一步首先读取故障码,检测仪无故障码显示。第二步接着进行数据分析,在所有发动机参数当中,发现与冷却液温度有关的传感器的数据存在异常,显示的信号电压为3.65V,冷却液温度显示为-6度。与实际冷却液温度明显不符。在熄火后检测冷却液温度传感器的电阻,发现其电阻值正常,检测冷却液温度传感器的电路也未发现有什么异常情况。冷却液温度传感器安装在发动机机体或汽缸上,与冷却液接触,用来检测发动机循环冷却液的温度,并将检测结果传输给电控单元以便修正喷油量和点火正时。水温传感器采用对对温度变化非常敏感的热敏电阻制成,其结构及与电控单元连接,《如图》。传感器两根导线都和电控单元连接,其中一根为搭铁线,热敏电阻经常采用温度系数电阻,水温越低,热敏电阻阻值越大,电控单元根据这一信号,增加喷油量,可以使混合气浓度增加。但是,在重新启动发动,这时发动机的工作有恢复正常。综合故障现象和发动机有关数据分析认为,在发动机达到正常工作温度后,发动机ECU接收到的是极低的冷却液温度信号,导致发动机ECU所修正的喷油量和点火正时均是满足发动机冷却液温度极低时的工况需要,因而导致了发动机加速不良,不易启动。同时空调系统也是由发动机ECU控制的,冷却液极低的情况下ECU自然就会切断空调系统的工作。 综合以上分析,该故障应为冷却液温度传感器间歇不良所致。为了进一步验证上述的分

常用温度传感器比较(2)

常用温度传感器比较 一.接触式温度传感器 1. 热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测 量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到- 269C(如金铁镍铬),最高可达+28000(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。 2. 热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化 而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: R=R o [1+ a(t-t 0)] 式中,R为温度t时的阻值;R o为温度t o (通常10=00 )时对应电阻值;a为温度系数。半导体热敏电阻的阻值和温度关系为: R =Ae B/t 式中R为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围:

金属热电阻一般适用于-200~5000范围内的温度测量,其特点是测量准确、 稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上) 。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。 中国最常用的有R°=10Q、R°=100Q和R°=1000Q等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R o=50Q和R o=100Q两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200 C ~850C,允许温度偏差值0.15+0.002|t| ,最小置入深度200mm最大允许电流5mA详细信息见Pt100 实例。 3. 集成温度传感器: <1>模拟式温度传感器: (1)原理: 将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具 有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等优点。 (2)常见模拟式温度传感器: 电压输出型: LM3911、LM335 LM45 AD22103 电流输出型: AD590。 (3)实例: LM135\235\335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。该系列器件灵敏度为10mV/K,具有小于1Q的动态阻抗,工作电流范围从400^A 到5mA,精度为1C,LM135的温度范围为-55 C?+150C,LM235的温度范围为-40 C ?+125C,LM335 为-40C ~+100°C。封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。详细信息见 LM135,235,335.pdf。 AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,可以承受44V正向电压和20V反向电压,测温范围为-55 C?+150C,输出电流为223卩 A~423卩A,输出电流变化1卩A相当于温度变化1 C,最大非线性误差为土03C,响应时间仅为20卩s,重复性误差低至土0.05C,功耗约为2mW, 输出电流信号的传输距离可达到1km以上,作为一种高阻电流源,最高可达 20血,所以它不必考虑选择开关或CMO多路转换器所引入的附加电阻造成的误差,适用于多点温度测量和远距离温度测量的控制。详细信息见AD590.pdf。 <2>数字式温度传感器: (1)原理: 将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的

常用温度传感器比较

一.主题:温度传感器 二.内容 接触式温度传感器 1.热电偶: (1)测温原理: 两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。 (2)测温范围: 常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 (3)常用热电偶型号: (4)实例: T型热电偶,测温范围-40~350℃。 2.热电阻: (1)测温原理: 热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。 目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即: Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为: Rt =AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 (2)测温范围: 金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。 半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。 (3)常用热电阻: 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。 中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 (4)实例: Pt100为正温度系数热敏电阻传感器,测量范围-200℃~850℃,允许温度偏差值

温度传感器实验

DH-SJ5温度传感器设计性实验装置 使 用 说 明 书 杭州大华科教仪器研究所 杭州大华仪器制造有限公司

一、温度传感器概述 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 一、测温传感器的分类 1.1电阻式传感器 热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 R t =R t0[1+α (t-t 0)] 式中,R t 为温度t 时的阻值;R t0为温度t 0(通常t 0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为 t B t Ae R = 式中R t 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。 常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R 100-R 0)/(R 0×100) ,R 0为0℃的阻值,R 100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。 热敏电阻(Thermally Sensitive Resistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC (Negative Temperature Coefficient )和正温度系数热敏电阻PTC (Positive Temperature Coefficient )。NTC 热敏电阻表现为随温度的上升,其电阻值下降;而PTC 热敏电阻正好相反。 NTC 热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。 NTC 热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B 值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B 值(K )被定义为:2 12 1212111lg lg 3026.211ln ln T T R R T T R R B --?=--= ; R T1:温度 T 1(K )时的零功率电阻值;R T2 :温度 T 2(K )时的零功率电阻值;T 1,T 2 :

冷却液温度传感器故障的诊断与排除

冷却液温度传感器故障的诊断与排除 申报工种:汽车维修电工 申报等级:技师

目录 内容摘要-------------------------------------- 第 4 页关键词----------------------------------------第 4 页前言------------------------------------------第 5 页正文内容---------------------------------------第 6 页结束语----------------------------------------第 10 页致谢------------------------------------------第 10 页参考文献------------------------------------- 第 10 页

内容摘要 本文主要介绍一台别克君威2.0轿车,由于冷却液温度传感器接头生锈,使得连接电阻值增大,导致输出信号电压偏高。电脑误检测到发动机水温偏低,修正了喷油时间,增加了喷油量,使得车辆油耗增加,排气管冒轻微的黑烟。 关键词:冷却液温传感器油耗增加传感器检测

前言 电控燃油喷射系统根据转速传感器提供的发动机转速信号,和进气压力传感器(或空气流量计)所测量的进气量,计算出每一个工作循环所需的基本喷油量,并根据节气门位置传感器、冷却液温度传感器、空气温度传感器、点火开关等信号进行喷油时间综合修正,对喷油量做出精确的控制,从而提高了发动机的动力性,减少燃油消耗,环境污染小等一系列优点。但若冷却液温度传感器或其线路有故障则会造成发动机的控制失调,影响发动机的使用性能,造成车辆动力性和经济性的变差,污染大气环境。

温度传感器工作原理与类型

温度传感器工作原理与类型 前言:温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 一、温度传感器热电偶的应用原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所谓标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶

几类常用的温度传感器

几类常用的温度传感器 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数NTC,也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下:

实验十二-集成电路温度传感器特性测量

实验十二集成电路温度传感器特性测量一.概述 温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。 二.用途 1.电流型集成温度传感器AD590的特性测量和应用: (1)测量AD590输出电流和温度的关系,计算传感器灵敏度及C 0时传感器输出电流 值。 (2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。 (3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性 使用范围的最小电压 U。 r 三.仪器组成与技术指标 1.仪器组成 如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。

图1 2.技术指标: A.温控仪 (1)温度计显示工作温度:0℃-100℃ (2)恒温控制温度:室温-80o C (3)控制恒温显示分辨精度:≤±0.1℃ B.直流数字电压表 (1)量程:0-19.999V (2)读数准确度:量程0.03%±5个字 (3)输出电阻:20Ω(为了防止长时间短路内接电阻) C.温度传感器DS18B20的结构与技术特性(控温及测温用): (1)温度测量范围:-55℃-125℃ (2)测温分辨率:0.0625℃ (3)引脚排列(如图2所示):

常用空调品牌温度传感器阻值.

常见空调品牌温度传感器阻值[复制链接] 徐优我徐优我当前离线UID329478阅读权限25推广幽默在线时间小时日志注册时间2012-11-1最后登录1970-1-1. 窥视卡雷达卡 电梯直达楼主 发表于2013-3-19 09:59:17 | 只看该作者|倒序浏览|阅读模式注册家电维修技术论坛,与同行畅聊维修技术,享更多技术论坛功能。 您需要登录才可以下载或查看,没有帐号?快速注册 x 本帖最后由zdy997 于2013-3-19 10:40 编辑 一般厂家根据空调室内机微型电脑控制主板的参数来确定温度传感器的阻值是多大的,如海尔的,室温23K,管温10K,排气管温在80度时50K,常温是400~600K ,当阻值随温度升高而降低,随温度降低而增大,工作原理是压力式温度传感器:利用感温物质的压力随温度的变化而变化的性质来测量温度,是压力式温度传感器的基本测温原理。 常见的各种品牌的温度传感器的阻值如下: 海尔空调温度传感器阻值:海尔的,室温23K,管温10K,排气管温在80度时50K,常温是400~600K 海尔KFRD-48LW/Z2的环温15K管温5。7K均来自实测 TCL空调温度传感器阻值:TCL的RT和PT都是5K的.OT是10K的. 美的空调温度传感器阻值:美的室温7K,管温8K 新科空调温度传感器阻值:新科管温常温下8k.志高常温(25度下5.5k 三菱空调温度传感器阻值:三菱空调在35度左右时,环、管都是5K左右,

格力空调温度传感器阻值:格力空调管温有3种规格,5K、10K、15K。 科龙空调温度传感器阻值:25度时LG3681HT感温10K,管温5K。科龙 35GW/N2F都为20K 科龙华宝的吧它一直用的20K的室温和管温化霜也是,奥克斯环温管温外机感温都是5K 空调温度传感器工作原理: 1、压力式温度传感器:利用感温物质的压力随温度的变化而变化的性质来测量温度,是压力式温度传感器的基本测温原理。 2、膨胀式温度传感器是根据物体热胀冷缩原理制成的。根据膨胀物质的形态又分为固体膨胀式和液体膨胀式两大类水银温度计是利用水银液体的热胀冷缩性质来测温的,属于液体膨胀式温度计双金属温度计属于固体膨胀式温度计双金属温度计的测温元件是用线膨胀系数相差较大的两种不同金属材料叠焊在一起制成的。由于两个金属片的线膨帐系数不—样当温度升高时,双金属片将向膨胀系数小的一侧弯曲,温升越高,弯曲就越大。它是利用双金属片形变位移的大小与温度变化成正比的关系,通过杠杆放大机构带动指针,指小出温度值。同时通过杠杆带动记录指针(笔,在匀速前进的记录纸上自动汜录出所测温度。双金属温度汁结构简单,机械强度大,价格低廉,但其精度低,量程和使用范围有限。 3、热电阻式温度传感器:热电阻式温度传感器分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度增高而增大,称具有正的温度系数;而半导体热敏电阻的阻值一般随温度升高而减小称具有负的温度系数。由于导体和半导体的电阻阻值随温度变化,因此,测量它们的电阻值,便可测出相应的温度 铜热电阻的特点是它的电阻值与温度的关系足线性的,电阻温度系数也比较大,而且材料容易提纯,价格比较便宜:但它的电阻率低,精度不高,高温时易氧化,化学稳定性差;所以在温度不高、对传感器体积没有特殊限制时,可以使用铜热电阻。用半导体热敏电阻作温度传感器日趋广泛,半导体热敏电阻分度号有两种:NTC(负温度系

相关文档
最新文档