二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
二阶常系数线性微分方程的解法

第八章 8.4讲

第四节 二阶常系数线性微分方程

一、二阶常系数线形微分方程的概念

形如 )(x f qy y p y =+'+'' (1)

的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.

如果0)(≡x f ,则方程式 (1)变成

0=+'+''qy y p y (2)

我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常

系数非齐次线性方程. 本节我们将讨论其解法.

二、二阶常系数齐次线性微分方程

1.解的叠加性

定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是

式(2)的解,其中21,C C 是任意常数.

证明 因为1y 与2y 是方程(2)的解,所以有

0111

=+'+''qy y p y 0222

=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得

)()()(22112211221

1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111

1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.

定理1说明齐次线性方程的解具有叠加性.

叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.

2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数

,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n

个函数在区间I 内线性相关,否则称线性无关.

例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为

0sin cos 12

2≡--x x

又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k

必须0321===k k k .

对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2

1y y 常数, 则1y ,2y 线性无关.

3.二阶常系数齐次微分方程的解法

定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则

212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.

例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的

两个解,且≠=x y y tan 2

1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=

( 21,C C 是任意常数)是方程0=+''y y 的通解.

由于指数函数rx

e y =(r 为常数)和它的各阶导数都只差一个常数因子,

根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,

使rx e y =满足方程(2).

将rx e y =求导,得

rx rx e r y re y 2,=''='

把y y y ''',,代入方程(2),得

0)(2=++rx e q pr r

因为0≠rx e , 所以只有 02=++q pr r (3)

只要r 满足方程式(3),rx e y =就是方程式(2)的解.

我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,

其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数.

特征方程(3)的两个根为 2

422

,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根.

2421q p p r -+-=,2

422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2

121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=

(2) 当042=-q p 时, 21,r r 是两个相等的实根.

221p r r -

==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠1

2y y 常数,设)(12x u y y =, 即 )(12x u e y x r =

)2(),(211212

11u r u r u e y u r u e y x r x r +'+''=''+'='. 将22

2,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得

0])()2([12111=+++'++''u q pr r u p r u e x r

由于01≠x r e , 所以 0)()2(12

11=+++'++''u q pr r u p r u

因为1r 是特征方程(3)的二重根, 所以 02,

0112

1=+=++p r q pr r 从而有 0=''u

因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.

那么,方程(2)的通解为

x r x r xe C e C y 1121+=

即 x

r e x C C y 1)(21+=.

(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)

于是 x i x i e y e y )(2)(1,βαβα-+==

利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为 )sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=?==+

)sin (cos )(2x i x e e e e y x x i x x

i ββαβαβα-=?==-- 21,y y 之间成共轭关系,取

-

1y =x e y y x βαcos )(2

121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-

2y 还是方程(2)的解,并且≠==--

x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=

综上所述,求二阶常系数线性齐次方程通解的步骤如下:

(1)写出方程(2)的特征方程

02=++q pr r

(2)求特征方程的两个根21,r r

(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.

例1求方程052=+'+''y y y 的通解.

解: 所给方程的特征方程为

0522=++r r

i r i r 21,2121--=+-=

所求通解为 )2sin 2cos (21x C x C e y x +=-.

例 2 求方程0222=++S dt dS dt

S d 满足初始条件2,400-='===t t S S 的特解.

解 所给方程的特征方程为

0122=++r r

121-==r r

通解为 t e t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是

t e t C S -+=)4(2,对其求导得

t e t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得

22=C

所求特解为

t e t S -+=)24(

例3求方程032=-'+''y y y 的通解.

解 所给方程的特征方程为 0322

=-+r r

其根为 1,321=-=r r

所以原方程的通解为 x x e C e C y 231+=-

二、二阶常系数非齐次方程的解法

1.解的结构

定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.

证明 把*+=y Y y 代入方程(1)的左端:

)()()(*++*'+'+*''+''y Y q y Y p y Y

=)()(*+*'+*''++'+''qy py y qY Y p Y

=)()(0x f x f =+

*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4)

而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''

与 )(2x f qy y p y =+'+''

的特解,那么**+2

1y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.

2.)()(x P e x f m x λ=型的解法

)()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.

把 x e x Q y λ)(=*

x e x Q x Q y λλ)]()(['+=*'

x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''

代入方程(1)并消去x

e λ,得

)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5)

以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:

(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :

m m m x b x b x b b x Q ++++= 2210)(

代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为

x m e x Q y λ)(=*

(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令

)()(x xQ x Q m =

用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.

(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.

要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令

)()(2x Q x x Q m =

用同样的方法来确定)(x Q m 的系数.

综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为

x

m k e x Q x y λ)(=*

其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.

例4 求方程x e y y 232-='+''的一个特解.

解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m

对应齐次方程的特征方程为 022

=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令

x

e xb y 20-=*,代入原方程解得

23

0-=b

故所求特解为 x

xe y 223--=* .

例5 求方程x e x y y )1(2-='-''的通解.

解 先求对应齐次方程02=+'-''y y y 的通解.

特征方程为 0122=+-r r , 121==r r

齐次方程的通解为 x e x C C Y )(21+=.

再求所给方程的特解

1)(,1-==x x P m λ

由于1=λ是特征方程的二重根,所以

x e b ax x y )(2+=*

把它代入所给方程,并约去x e 得

126-=+x b ax

比较系数,得

61

=a 21

-=b

于是 x

e x x y )216(2-=*

所给方程的通解为 x e x x x C C y y y )6

121(3221+-

+=+=* 3.x B x A x f ??sin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.

此时,方程式(1)成为

x B x A q y p y ωωsin cos +=+'+'' (7)

这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为

)sin cos (x b x a x y k ωω+=*

其中b a ,为待定常数.k 为一个整数.

当ω±i 不是特征方程02=++q pr r 的根, k 取0;

当ω±i 不是特征方程02=++q pr r 的根, k 取1;

例6 求方程x y y y sin 432=-'+''的一个特解.

解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .

因此原方程的特解形式为

x b x a y sin cos +=*

于是 x b x a y cos sin +-=*'

x b x a y sin cos --=*''

将*''*'*y y y ,,代入原方程,得

?

??=--=+-442024b a b a 解得 5

4,52-=-=b a

原方程的特解为: x x y sin 5

4cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.

解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为

0322=--r r

3,121=-=r r

x x e C e C Y 321+=-

再求非齐次方程的一个特解*y .

由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为

,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*2

1y y y 是原方程的一个特解.

由于1=λ,ω±i i ±=均不是特征方程的根,故特解为

)sin cos (21x c x b ae y y y x ++=+=**

*

代入原方程,得 x e x c b x c b ae x x sin sin )42(cos )24(4=-++--

比较系数,得

14=-a 024=+c b 142=-c b

解之得 5

1,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-

=* 所以所求方程的通解为

x x e e C e C y Y y x x x sin 5

1cos 10141321-+-+=+=-*.

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

(整理)常系数线性微分方程的解法

常系数线性微分方程的解法 摘要:本文对常系数线性方程的各种解法进行分析和综合,举出了每个方法的例题,以便更好的掌握对常系数线性微分方程的求解. 关键词:特征根法;常数变易法;待定系数法 Method for solving the system of differential equation with Constant Coefficients Linear Abstract: Based on the linear equations with constant coefficients of analysis and synthesis method, the method of each sample name, in order to better grasp of the linear differential equation with constant coefficients of the solution. Key Words: Characteristic root ;Variation law ;The undetermined coefficient method 前言:常系数性微分方程因形式简单,应用广泛,解的性质及结构已研究的十分清楚,在常微分方程中占有十分突出的地位。它的求解是我们必须掌握的重要内容之一,只是由于各种教材涉及的解法较多,较杂,我们一般不易掌握,即使掌握了各种解法,在具体应用时应采用哪种方法比较适宜,我们往往感到困难。本文通过对一般教材中涉及的常系数线性微分方程的主要解法进行分析和比较,让我们能更好的解常系数线性微分方程。 1.预备知识 复值函数与复值解 如果对于区间a t b ≤≤中的每一实数t ,有复值()()()z t t i t ?ψ=+与它对应,其中()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,1i =-是虚数单位,我们就说在区间a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于 0t 时有极限,我们就称复值函数()z t 当t 趋于0t 时有极限,并且定义

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

8.1.n阶常系数线性方程的解法

第二讲§4.2 n 阶常系数线性齐次方程的解法(2学时) 教学目的: 本节主要讨论n 阶常系数线性齐次方程的解法。 教学要求: 掌握n 阶常系数线性齐次方程的一些解法,了解复值函数与复值解的有关结论。 教学重点: n 阶常系数齐次线性方程的特征根法和待定系数法 教学难点: 特征根法和待定系数法 教学方法: 讲练结合教学法、提问式与启发式相结合教学法。 教学手段: 传统板书与多媒体课件辅助教学相结合。 上一节我们已详细地讨论线性方程通解的结构问题,但是如何求通解的方法还没有具体给出,事实上,对一般的线性方程是没通用的解法.本节介绍求解常系数齐次线性方程通解的方法,是在线性方程基本理论上化为解一个相应的代数方程,而不必进行积分运算.进而介绍可化为常系数齐次线性方程的解法. 讨论常系数线性方程的解法时,需要涉及到定变量的变值函数及复指数函数的问题.为此首先作一介绍. 一. 复值函数与复值解 1. 复值函数 若)()(t t ψ?和是区间b t a ≤≤上定义的实函数,我们称) 1(),()()(2 -=+=i t i t t z ψ?为区间b t a ≤≤上的复值函数. 若)(),(t t ψ?在b t a ≤≤上连续,则称z(t)在b t a ≤≤上连续. 若)(),(t t ψ?在b t a ≤≤上可微,则称z(t)在b t a ≤≤上可微. 且z(t)的导数为: ,dt d i dt d dt dz ψ?+= 复函数求导法则与实函数相同. 2.复指数函数 ()()(cos sin )i t t z t e e t i t αβαββ+==+, 欧拉公式:cos sin i e i θθθ=+ 3.复值解 定义 定义在区间a t b ≤≤上的实变量复值函数)(t z x =称为方程(4.5)的复值解,如果 ()(1)11()()()()n n n n z p t z p t z p t z f t --'++++= 对于a t b ≤≤恒成立。 对线性方程的复值解有下面的两个结论:

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法 一 公式解法 目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]: '''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本 身的特解之和。微分方程阶数越高, 相对于低阶的解法越难。那么二阶常系数齐 次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系 数非齐次微分方程降为一阶微分方程求解。而由此产生的通解公式给出了该方程 通解的更一般的形式。 设二阶常系数线性非齐次方程为 '''()y ay by f x ++= (1) 这里b a 、都是常数。为了使上述方程能降阶, 考察相应的特征方程 20k ak b ++= (2) 对特征方程的根分三种情况来讨论。 1 若特征方程有两个相异实根12k 、k 。则方程(1) 可以写成 '''1212()()y k k y k k y f x --+= 即 '''212()()()y k y k y k y f x ---= 记'2z y k y =- , 则(1) 可降为一阶方程 '1()z k z f x -=由一阶线性方程的通解公 ()()[()]p x dx p x dx y e Q x e dx c -? ?=+?[5] (3) 知其通解为 1130[()]x k x k t z e f t e dt c -=+?这里0()x h t dt ?表示积分之后的函数是以x 为自变量的。再由11230[()]x k x k t dy k y z e f t e dt c dx --==+? 解得

12212()()340012 [(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-?? 应用分部积分法, 上式即为 1212212()()3400121212 1[()()]k k x k k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---?? 1122121200 121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-?? (4) 2 若特征方程有重根k , 这时方程为 '''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---= 由公式(3) 得到 '10[()]x kx kt y ky e e f t dt c --=+? 再改写为 '10()x kx kx kt e y ke y e f t dt c ----=+? 即10()()x kx kt d e y e f t dt c dx --=+? 故120()()x kx kt kx kx y e x t e f t dt c xe c e -=-++? (5) 例1 求解方程'''256x y y y xe -+= 解 这里2560k k -+= 的两个实根是2 , 3 2()x f x xe =.由公式(4) 得到方程的解是 33222232 1200x x x t t x t t x x y e e te dt e e te dt c e c e --=-++?? 32321200x x x t x x x e te dt e tdt c e c e -=-++?? 2 232132x x x x x e c e c e ??=--++???? 这里321c c =-. 例2 求解方程'''2ln x y y y e x -+=

常系数线性微分方程的解法

常系数线性微分方程的解法 摘 要:本文主要介绍了常系数线性微分方程的解法.着重讨论利用代数运算和微分运算来求常系数齐次线性微分方程和非齐次线性微分方程的通解. 关键词:复值函数与复值解;欧拉方程;比较系数法;拉普拉斯变换法 The Solution of Linear Differential Equation with Constant Coefficients Abstract :The solutions of linear differential equation with constant coefficients are introduced in this article. And using the algebraic operation and differential operation to solv the general solution of homogeneous linear differential equation and nonhomogeneous linear differential equation are discussed emphatically. Key Words :complex flnction and complex answer; euler equation;the method of coefficients comparison; the method of laplace transformation. 前言 为了让我们更多的认识和计算常系数线性微分方程,本文通过对复值函数和复值解以及常系数线性微分方程和欧拉函数的简单介绍,进而简单讨论了常系数线性微分方程的解法,以此来帮助我们解决常系数线性微分方程的解. 1. 预备知识 1.1复值函数与复值解 如果对于区间a t b ≤≤中的每一个实数t ,有复数()()()z t t i t ?ψ=+与它对应,其中 ()t ?和()t ψ是在区间a t b ≤≤上定义的实函数,i =是虚数单位,我们就说在区间 a t b ≤≤上给定了一个复值函数()z t .如果实函数()t ?,()t ψ当t 趋于0t 时有极限,我们 就称复值函数()z t 当t 趋于0t 时有极限,并且定义 lim ()lim ()lim ()t t t t t t z t t t ?ψ→→→=+. 如果0 0lim ()()t t z t z t →=,我们就称()z t 在0t 连续.显然,()z t 在0t 连续相当于()t ?,()t ψ在0 t 连续.当()z t 在区间a t b ≤≤上每点都连续时,就称()z t 在区间a t b ≤≤上连续.如果极

二阶常微分方程的降阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times differential equation and derivative operation and turn two order constant

常系数二阶微分方程的齐次通解

常系数二阶微分方程的齐次通解

————————————————————————————————作者:————————————————————————————————日期:

附录2 常系数二阶微分方程的齐次通解 常系数二阶齐次微分方程 0=+2+2022y dt dy dt y d ωα 设其中α、ω0都是正实数。 要使二阶微分方程有确定的解,必须知道两个初始条件:初始值y (0)和一阶导数的初始值0 =t dt dy 。 这里只讨论齐次通解在一些典型的系数值下的特点,不求出解中的待定常数。目的在于避免过多的数学式子,突出对有普遍意义的特征的认识。 尝试St e y =(S 为实的或复的常数)是否能为方程的解。 代入方程可得恒等式: 0=)+2+(202S S S e St ωα 由此得到决定常数S 的特征方程: 0=+2+202ωαS S 该一元二次代数方程的根为: 202-±-=ωααS 因常数项的值不同,解的形式不同: 1.自由振荡情况(无阻尼情况)(0=α) 此时,S 是一对共轭虚数: 01j =ωS 02-j =ωS 齐次通解为: t t e K e K t y 00-j 2j 1+=)(ωω 变为常用的三角函数式 )+sin(=)(0θωt K t y 这是一个等幅正弦振荡,ω0 是自由振荡角频率或谐振角频率。K 和θ 是由初始条件决定的常数。 2.欠阻尼情况( 0<<0ωα ) 此时,S 是一对共轭复数: d 1j +-=ωαS d 2j --=ωαS 齐次通解为: )+sin(=)(d -θωαt Ke t y t 这是一个衰减振荡。其中,220-=αωωd (正实数)是衰减振荡角频率。 振幅按指数函数t e α-衰减,故称α为衰减系数。 K 和θ 是由初始条件决定的常数。 这种情况下,系统开始会有正弦振荡,但随时间而衰减,过一段时间后就消失。 3.过阻尼情况(0>ωα)

常系数线性微分方程的解的结构分析

常系数线性微分方程的解的结构分析 【 摘要】在参考和总结了许多场系数线性微分方程的解法的基础上,本文总结了一些常系数微分方程的解的解法,并针对一类常系数线性微分方程的已有结论给予证明,以解给予一些结论证明思路,以及一些实例,并向高阶推广。 【关键词 】常系数 线性 微分方程 结构 一阶常系数齐次线性微分方程 0=+ax dt dx , (1.1) 的求解 上式可以改写为 adt x dx -= , (1.2) 于是变量x 和t 被分离,再将两边积分得 c at x +-=ln , (1.3) 这里的c 为常数。又由对数的定义,上式可以变为 at ce x -= , (1.4) 其中c= , 因为x=0也是方程的解,因此c 可以是任意常数。 这里首先是将变量分离,然后再两边积分,从而求出方程的解。这便要方程式可以分离变量的,也就是变量分离方程。 一阶常系数微分方程 )()(x Q y x P dx dy += , (2.1) 其中P (x ),Q(x)在考虑的区间上式连续函数,若Q (x )=0 ,上式就变为 y x P dx dy )(= , (2.2) 上式为一阶齐次线性微分方程。还是变量分离方程我们可以参考上面变量分离方程的解法,先进行变量分离得到 dx x P y dy )(= , (2.3) 两边同时积分,得到 ? =dx x p ce y )( , (2.4) 这里c 是常数。 若Q (x )≠ 0 , 那么上式就变成了 一阶非齐次线性微分方程。 我们知道一阶齐次线性微分方程是一阶常微分方程的一种特殊情况,那么可以设想将一阶

齐次线性微分方程的解 ? =dx x p ce y )( , (2.5) 中的常数c 变易成为待定的函数c (x ),令 ?=dx x p e x c y )()( , (2.6) 微分之,就可以得到 ?+?=dx x p dx x p e x P x c e dx x dc dx dy )()()()()( , (2.7) 以(2.7),(2.6)代入2.1,得到 )()()()()()()()()(x Q e x c x p e x P x c e dx x dc dx x p dx x p dx x p +?=?+?,(2.8) 即 ?=-dx x p e x Q dx x dc )()() (, 积分后得到 c (x )=c dx e x Q dx x p +?? -)()( , (2.9) 这里c 是任意常数,将上式代入(2.6)得到方程(2.1)的通解 ))(()()(c dx e x Q e y dx x p dx x p +? ? =?- (2.91) 在上面的一阶线性微分方程中,是将一阶齐次线性微分方程中的通解中的常数c 变成c(x) ,常数变易法一阶非齐次线性微分方程的解, 感觉这个方法之所以用x 的未知函数u(x)替换任意常数C,是因为C 是任意的,C 与x 形成函数关系,要确定C,需要由初始条件确定,一个x,确定一个C,也就形成一对一或多对多的映射,也就是函数关系,而这里的C 是任意的,也就可以用一个未知的,也就是任意的函数u(x)来代替,进而求得非齐次线性微分方程的解。这种将常数变异为待定函数的方法,我们通常称为常数变易法。常数变易法实质也是一种变量变换的方法,通过变换(2.6可将方程(2.1)化为变量分离方程。 二阶常系数线性微分方程 (1)二阶常系数线性齐次方程 022=++qy dx dy p dx y d (3.1) 其中p 、q 是常数,我们知道,要求方程(3.1)的通解,只要求出其任意两个线性无关的特 解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(3.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,

相关文档
最新文档