辐射防护实验报告

辐射防护实验报告
辐射防护实验报告

《辐射防护实验报告》

专业:xxx 姓名:xxx 学号:2010xxxx

实验一:γ射线的辐射防护

一、实验目的

1、掌握X-γ剂量率仪的使用方法;

2、了解环境中的γ照射水平;

3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。

二、实验原理

闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。

三、实验内容

1、测量实验室γ照射本底环境;

2、测量一条环境γ照射剂量率剖面;

3、测量岩石的γ照射剂量率;

4、加放射源,测量并计算不同测量时间情况下的剂量;

5、加放射源,测量不同距离情况下的剂量率。

四、实验设备

1、Ra-226源一个;

2、X-γ剂量率仪一台;

3、岩石标本。

五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良

好的操作习惯!!

实验步骤如下:

1、调节准直器以及探测仪器的相对位置;

2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值);

3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值);

4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值);

5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值);

6、暂时屏蔽放射源,源探距离为0.5米,测定并记录仪器的剂量率N1(连测3次,取平均值);

7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值);

8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值);

9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值);

10、数据处理。

数据处理如下: 1)本底剂量率为:

2)在距离放射源0.5、1、2米处不同时间计数率为:

43 43.1 43.7

平均值42.867 43.467 43.5

/ / 20.3

2 / / 20.3

/ / 20.2

平均值/ / 20.27

3)从核工楼到博物馆伽马剂量率坡面如下:

图1-1

4)博物馆前岩石计量率如下:

砂岩32.1 31.4 27.4 30.3

白云岩18.4 21.6 21.5 20.5

花岗岩44.6 48.7 43.6 45.633

钒钛磁铁矿11.1 12.8 12.3 12.067

六、思考与计算

1、根据测得的实验室γ照射本底环境Nd,计算在此环境下的年有效剂量。

答:在实验室本底环境下年有效剂量为:

E=Nd*365*8=13.633*365*8*10-8Gy/h=3.9*10-4 Gy

2、根据布置放射源情况下,不同距离测得的剂量率N0、N1、N2,计算在此条件下,每天工作八小时的年有效剂量,并进行比较。

答:N0:N0*365*8*10-8Gy/h =140.2*365*8*10-8Gy/h=4.092*10-3 Gy

N1:N1*365*8*10-8Gy/h =43.27*365*8*10-8Gy/h=1.264*10-3 Gy

N2:N2*365*8*10-8Gy/h =20.27*365*8*10-8Gy/h=5.918*10-4 Gy

3、布置放射源情况下,比较不同测量时间测得的剂量率N0、N01、N02,计算不同时间内所受的有效剂量。

答:不同测量时间测得的剂量率基本相等。

4、根据γ照射剂量率剖面,分析测量值高低情况,并统计平均值作为环境本底,计算在此环境下的

年有效剂量。

答:如图在1-1中在测量过程中得到的剂量率剖面基本维持在一个稳定的值附近,其波动较大的点引起的原因是粒子的统计涨落,没有特殊意义。得到平均剂量率为:7.7956

年有效剂量为:7.7956*365*8*10-8Gy/h=2.276*10-4Gy

5、比较不同岩性岩石的γ照射剂量率大小。

答:花岗岩>砂岩>白云岩>钒钛磁铁矿

6、为了更好的防护γ射线的辐射,应该注意什么?

答:应该注意,1保持与放射源的距离,2减少受照射的时间,3在放射源与人中间最好加入屏蔽层。

实验二:γ射线的辐射屏蔽防护

一、实验目的

1、了解各种材料对给定能量和强度的γ射线的屏蔽防护能力;

2、通过分析实验测定值与理论计算值之间的关系和差别,获得直观的认识,加强理论与实际的联系;

二、实验原理

利用宽束X 或γ射线的减弱规律,考虑康普顿散射效应造成的散射光子不是被完全吸收而仅仅是能量和传播方向发生改变,从而会继续传播而有可能穿出物质层。

辐射衰减的‘窄束’概念辐射衰减的‘宽束’概念

图1、窄束、宽束示意图

在辐射防护中遇到的辐射一般为宽束辐射,射线束较宽、准直性差,穿过的物质层也很厚,如上图1所示,在此情况下,受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。

窄束、宽束是物理上的概念,而不是由射线束的几何尺寸决定的,即不是几何上的概念。窄束可以看作是宽束的特殊情况。

宽束条件下X 、γ射线的衰减规律如下:

00d d

e BN e

μ

μρ

--=

对积累因子B 的数值可以从各种参考资料查找。

三、实验内容

1、测量给定厚度的混凝土层对γ射线的减弱程度,得到减弱倍数K 或透射比η的测量值;

2、测量上述混凝土层的厚度,通过理论计算给出减弱倍数K或透射比η的理论值,并与上述测量值进行比较与分析;

3、以上述给出的K或η的测量值为准,测量得到铁板、铅板达到上述减弱倍数值时所需的厚度,如果没有正好合适厚度的材料,则利用由偏厚和偏薄的对应材料测量得到的减弱倍数值进行线性插值计算得到对应材料厚度;

4、宽束时测量得到铁板达到上述减弱倍数值时所需的厚度,并分析比较。

四、实验设备

1、Ra-226源一个;

2、混凝土、铅、铁板若干;

3、X-γ辐射仪一台;

五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!!

实验步骤如下:

1、调节准直器以及探测仪器的相对位置,如下图2所示,调节到仪器的cps档,记录仪器的本底计数率Nd(连测3次以上,取平均值);

2、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,如下图3所示,测定并记录未加屏蔽材料时仪器的计数率N0(连测3次以上,取平均值);

3、暂时屏蔽放射源,并添加混凝土屏蔽材料,开启放射源,得到当前仪器的计数率N1(连测3次以上,取平均值),如下图4所示;

图2、不放置放射源,测量本底Nd示意图

图3、未加屏蔽材料,测量N0示意图

屏蔽材料

图4、添加混凝土屏蔽材料,测量N1示意图

4、利用上述测定的计数Nd 、N0、N1计算实验测定值,即减弱倍数

()

()001N Nd K N Nd -=

-;

5、暂时屏蔽放射源,计算混凝土的厚度d 。课后根据经验公式,计算得到理论减弱倍数K1,并与实验值K0相比较;

6、测定要实现上述的减弱倍数K0需要的铅、铁的等效厚度dPb 、dFe ,基本过程是:放入足够厚的材料,使得读数小于N1,然后逐步撤出部分材料,使得仪器读数逐渐增大到N1,此时的材料厚度就是等效厚度。如果没有正好合适厚度的材料,则利用偏薄和偏厚的测定值进行线性插值计算得到。

7.在宽束情况下用进行上述实验,求出实现上述的减弱倍数K0需要铁的等效厚度dFe ‘。

六、思考与计算

1、理论计算出铅、铁等效屏蔽厚度d ’Pb 、d ’Fe ,并与实验测定值dPb 、dFe 进行比较,以表格的形式列出对应结果,给出分析结论。

答:

理论求的的厚度要比实际所用的厚度大一些,因为在实际反应过程中,还有发生射线的散射以及和介质发生反应等现象。

2、利用计算得到的混凝土厚度d,利用经验理论公式,计算得到理论减弱倍数K1。

答:d=n*△1/2; n=logk/log2; 所以可以求的K。

3、分析宽束和窄束情况下铁的等效屏蔽厚度的差别原因。

答:宽束射线和窄束射线的区别是:宽束射线中含有散射成分而窄束射线中不含有散射成分,因而对于相同数量入射粒子的宽束射线和窄束射线的能量是不一样的,窄束射线由于没有发生散射而拥有更高的能量,因而在等效屏蔽的情况下,窄束需要的铁的厚度更大一些。

4、如果上述几组结果差别比较大,分析原因并给出分析结论。

答:我们计算所得的屏蔽材料的厚度是在理想的状态下,而在实际的实验过程中入射射线粒子会与屏蔽材料原子发生相应的反映,以及会产生散射,折射,因而实际在测量过程中的厚度和计算所得厚度是不一样的。

实验三:γ、β、中子射线的辐射屏蔽

一、实验目的

1、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 2 了解不同材料对给定能量和强度的γ射线和中子的屏蔽防护能力,以及了解不同材料对β射线的屏蔽能力;

3、通过分析实验测定值与理论计算值之间的关系和差别,获得直观的认识,加强理论与实际的联系;

二、实验原理

闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。

利用宽束X 或γ射线的减弱规律,考虑康普顿散射效应造成的散射光子不是被完全吸收而仅仅是能量和传播方向发生改变,从而会继续传播而有可能穿出物质层。

辐射衰减的‘窄束’概念辐射衰减的‘宽束’概念

图1、窄束、宽束示意图

在辐射防护中遇到的辐射一般为宽束辐射,射线束较宽、准直性差,穿过的物质层也很厚,如上图1所示,在此情况下,受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。

窄束、宽束是物理上的概念,而不是由射线束的几何尺寸决定的,即不是几何上的概念。窄束可以看作是宽束的特殊情况。

宽束条件下X 、γ射线的衰减规律如下:

00

d d N BN

e BN e

μ

ρ

μρ

--==

对积累因子B 的数值可以从各种参考资料查找。

三、实验内容

1、测量放射源和探测器在不同距离上,γ射线的剂量;

2、分别测量不同材料对不同能量的γ射线的防护水平;

3、分别测量不同材料对β射线的防护水平; 4 、分别测量不同材料对不同能力中子的防护水平;

四、实验设备

1、PC 及相关辅助软件。

五、实验步骤

1、打开软件,对软件进行正确的设定。

2、做γ剂量实验,测定γ射线在不同的距离下的剂量,列表记录结果。

3、做γ屏蔽实验,用实验室窄束γ射线,测量在不同厚度物质的条件下,射线通过不同物质的剂量,列表记录结果。

4、做β屏蔽实验,测量在不同厚度屏蔽物质的条件下,射线通过不同物质的剂量,列表记录结果。

5、做中子屏蔽实验,用快中子测量在不同厚度屏蔽物质的条件下,射线通过不同屏蔽物质的剂量,列表记录结果。

6、关闭软件,写实验报告。

六、实验结果

1.γ计量实验实验数据如下:

实验图像为:

1-1 γ计量Gy/cm

2.γ屏蔽实验实验数据如下:

材料粒子数

Fe 300000

厚度 2 4 6 8 10 12 计量 3.03E-04 2.30E-04 1.43E-04 7.61E-05 2.10E-05 1.94E-05 Pb

厚度0.5 1 1.5 2 2.5 3 计量 3.076284 2.60567 2.15423 1.42258 1.228001 1.09568

14 16

1.60E-05 6.86E-06

3.5 4

4.5 5

8.07694 5.975408 4.18521 3.017689

实验图像为:

1-2 Fe屏蔽γ射线(Gy/cm)

1-3 Pb γ射线屏蔽3.β射线屏蔽实验数据如下:

厚度(cm)剂量

厚度

(cm)

剂量AL铝锡

0.1 6.01E-05 0.01 6.43E-05

0.2 4.24E-05 0.02 5.13E-05

0.3 2.22E-05 0.03 4.57E-05

0.4 5.30E-06 0.04 3.85E-05

0.5 4.57E-08 0.05 3.25E-05

0.06 2.67E-05

0.07 2.15E-05

0.08 1.63E-05

0.09 1.18E-05

0.1 8.61E-06

0.11 5.97E-06

0.12 3.66E-06 实验图像为:

1-4 β射线屏蔽-Al

1-5 β射线屏蔽-锡

4.快中子屏蔽实验实验数据如下:

pb铅Fe Cu

5 5.15E-05 5 4.47E-05 5 4.32E-05

10 4.09E-05 10 3.04E-05 10 2.98E-05

15 3.57E-05 15 2.32E-05 15 2.28E-05

20 3.27E-05 20 1.96E-05 20 1.82E-05

25 3.08E-05 25 1.66E-05 25 1.46E-05

30 2.93E-05 30 1.48E-05 30 1.16E-05

35 2.79E-05 35 1.36E-05 35 8.99E-06

40 2.66E-05 40 1.25E-05 45 5.09E-06

45 2.56E-05 60 9.44E-06 60 1.90E-06

50 2.45E-05 65 8.74E-06 65 1.32E-06

55 2.35E-05 70 0.00E+00

60 2.25E-05

65 2.15E-05

70 0.00E+00

钨(W)水硼砂

5 4.42E-05 5 5.68E-05 5 4.22E-05

10 3.14E-05 10 4.45E-05 10 2.44E-05

20 1.48E-05 20 2.69E-05 15 1.40E-05

25 9.25E-06 30 1.56E-05 20 8.02E-06

35 3.09E-06 40 8.76E-06 25 4.57E-06

40 1.67E-06 50 4.76E-06 30 2.56E-06

35 1.43E-06

50 2.40E-07

实验图像为:

1-6 快中子屏蔽-pb(Gy/cm)

1-7 快中子屏蔽-Fe

1-8 快中子屏蔽-Cu

1-9 快中子屏蔽-W

1-10 快中子屏蔽-水

1-11 快中子屏蔽-硼砂

七、思考与分析

1、为了更好的防护γ射线的辐射,应该注意什么?

答:为了更好的防护γ射线,在1、实验中应该注意与放射源保持距离足够远;2、在与放射源的中

间放入屏蔽介质,且原子序数越大越好;3、经量时间要短的接触放射源

2、通过表格列出不同物质对β,γ,中子的屏蔽效果。

答:

对于快中子屏蔽物质都为20cm厚时各物质屏蔽效果

Pb Fe Cu W 水硼砂

3.27E-05 1.96E-05 1.82E-05 1.48E-05 2.69E-05 8.02E-06

对于γ屏蔽物质都为2cm厚时各物质屏蔽效果

Fe Pb

0.00030314 0.000142258

对于β射线屏蔽物质都为0.1cm厚时屏蔽效果

Al 锡

6.00693E-05 8.60935E-06

3、在γ屏蔽实验中,分析宽束和窄束情况下铁的等效屏蔽厚度的差别原因。

答:宽束辐射的射线束较宽、准直性差,穿过的物质层也很厚,此时受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。

5 通过对α,γ,中子射线的屏蔽实验,分别分析不同物质对不同能量射线的屏蔽作用,并得出相关结论。

答:不同物质对同种能量的屏蔽效果不同,且同种物质对不同射线的屏蔽作用也不同。

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。

辐射防护基础知识试题

科目:辐射防护基础知识 考试用时:本次考试时间为90分钟 题号 一 二 三 四 总分 得分 阅卷人 一、单项选择题(共20题,每题1分,错选不得分) 1. 以下哪个标记是为“电离辐射”或“放射性”的标识:( ) A. B. C. D. 2. 原子核半径尺度为:( ) A. 10-15 m B. 10-12 m C. 10-10 m D. 10-6 m 3. β衰变一共有多少种模式:( ) A. 一种 B. 两种 C. 三种 D. 四种 4. 在下列给出的屏蔽材料中,屏蔽γ射线宜选用以下哪种:( ) A. 聚乙烯塑料 B. 混凝土 C. 有机玻璃 D. 铝合金 5. 原子核所带电性为:( ) A. 电中性 B. 负电 C. 不带电 D. 正电 6. 以下不属于γ射线与物质作用机制的有:( ) 姓名:_ _ _______ 单位/部门:_ __________ 岗位:___ __ ___ - -- - - -- - - - -密 - - - - - - - - 封 - - -- - -- - 线 - - - - - - - - 内 - - - - - - - - 不 - - - - - - - - 得 ____ 岗位:___ __ ___ -- - 内 - -- - - -- - 不 - - - - - - - -得

A. 光电效应 B. 碰撞散射 C. 康普顿散射 D. 电子对效应 7. 放射性活度的国际单位是:( ) A. 居里 B. 毫克镭当量 C. 贝克勒尔 D. 伦琴 8. 下列数字中,有可能是组织权重因子W T 的是:( ) A. B. C. 20 D. 9. 有效剂量的单位是:( ) A. 戈瑞 B. 伦琴 C. 希伏 D. 拉德 10. 以下哪一个是放射性货包的标识:( ) 下列属于职业照射的情况是:( ) A. 客机飞行员所受的来自宇宙射线的照射 B. 乘坐头等舱的商务精英所受的来自宇宙射线的照射 C. 核电厂职员工体检时所受的照射 D. 普通公众所受的来自土壤、建筑物的放射性照射 12. GB 18871-2002《电离辐射防护与辐射源安全基本标准》中规定 姓名:_ _ _______ 单位/部门:_ _ _________ 岗位:___ __ ___ -- - - - - - -- - -密 - - - - - - - - 封- - - - - - - - 线 - - - - - - - - 内 - - - -- - - - 不- - - - - - - - 得

辐射防护实验报告

《辐射防护实验报告》 专业:xxx :xxx 学号:2010xxxx 实验一:γ射线的辐射防护 一、实验目的 1、掌握X-γ剂量率仪的使用方法; 2、了解环境中的γ照射水平; 3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 二、实验原理 闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体,产生次级电子,使闪烁体原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。 三、实验容 1、测量实验室γ照射本底环境; 2、测量一条环境γ照射剂量率剖面; 3、测量岩石的γ照射剂量率; 4、加放射源,测量并计算不同测量时间情况下的剂量; 5、加放射源,测量不同距离情况下的剂量率。 四、实验设备 1、Ra-226源一个; 2、X-γ剂量率仪一台; 3、岩石标本。 五、实验步骤 布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良

好的操作习惯!! 实验步骤如下: 1、调节准直器以及探测仪器的相对位置; 2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值); 3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值); 4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值); 5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值); 6、暂时屏蔽放射源,源探距离为0.5米,测定并记录仪器的剂量率N1(连测3次,取平均值); 7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值); 8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值); 9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值); 10、数据处理。 数据处理如下: 1)本底剂量率为: 2)在距离放射源0.5、1、2米处不同时间计数率为:

辐射防护常用知识

辐射防护常用知识 、原子核与原子(核)能 自然界的物质由各种各样的元素组成,比如,水由氢元素和氧元素组成,食盐由钠元素和氯元素组成。元素通常被叫做原子(严格地说,把核电荷数相同的一类原子叫做一种元素),所 以,可以说,物质是由各种各样的原子组成的。 原子由原子核与电子组成。原子核位于中心”地位,几乎集中了原子全部质量,带正电荷;电子带负电荷,围绕核心”运动。原子的质量数取决于原子核,其电子质量数忽略不计。每种原子都有一个原子核心”和多个电子,电子一圈一圈守规矩”排列并且运动。不同的原子其电子数也不同,比如,炭原子6个电子,氢原子1个电子。不同原子,其原子核具有的正电荷数目就不同;原子核的正电荷数目,正是它在元素周期表中排列的序号。 原子核由质子和中子组成,姐妹”俩统称核子”不过,中子不带电荷。只有质子带正电荷,与对应的电子(负电荷)形成稳定局面”。比如,原子序号都为1的氢有3种,正宗”的氢只有1个质子,即带1个正电荷,另两种分别叫重氢和超重氢。重氢又叫氘(音刀”,其原子核中有1个质子,还有1个中子;超重氢又叫氚(音川”,1个质子,2个中子。它们的质量分别是正宗”氢的2倍和3倍。氢、氘、氚具有相同的化学性质,原子序数都是1,科学家把它 们叫做氢的3种同位素”也可以叫做3种不同的核素,分别写作11H、12D、13T。左下角数字表示原子序数”左上角数字表示其质量数。 原子核中的质子带有的正电荷数目,同电子(带负电荷)数目是相等的,正是它在兀素周期表中排列的序号,科学家称之为原子序数”又比如氦原子,写作24 He,原子序数为2,其质量数是4,显然,其原子核中有2个质子和2个中子。 质子和中子之间,中子和中子之间,质子和质子之间,总而言之,核子之间,存在着很强的吸引力一一核力,或者说结合能、原子能。在一般情况下,核力使所有核子结合成一个紧密的稳定结构。要想分裂一个原子核,就必须从外部供给能量,克服这种结合能。 研究表明,质量不同的原子核,其结合能是不同的。中等质量的原子核,其结合能较大;重 量级”质量的原子核,其结合能较小。当重量级”原子核分裂成中等质量的原子核时,要放出能量,这就叫核裂变能” 又知道,轻量级”原子核的结合能也比中等级质量的原子核结合能要小,两个轻量级”原子 核聚合成一个中等级质量的原子核时,也有能量放出,这就是核聚变能” 它们都叫核能。核电站就是利用核裂变能”原理进行发电 、放射性 1、放射性现象的发现 1896年,法国物理学家贝可勒尔在研究物质的荧光时发现,某些铀盐可以放射一种人的眼睛看不见的射线,这种射线能穿过黑纸、玻璃、金属箔使照像底片感光;而且还观测到,靠近铀盐的空气被“电离”了,验电器可以检验出来。

辐射防护基础知识

辐射防护基础知识 第一章放射源 §1-1 物质、原子和同位素 自然界中存在的各种各样的物体,大的如宇宙中的星球,小的如肌体的细胞。都是由各种不同的物质组成的。 物质又是由无数的小颗粒所组成的。这种小颗粒叫做“原子”由几个原子还可以组成较复杂的粒子叫分子。如水,就是由二个氢原子和一个氧原子化合成一个水分子。无穷多的水分子聚在一起。就是宏观的水。 原子虽然很小,它仍有着复杂的结构。原子由原子核和一定数量的电子组成。原子核在中心,带正电。电子绕着原子核在特定的轨道上运动,带负电。整个原子的正负电荷相等,是中性的。原子核内部的情况又是怎样的呢?简单地讲,原子核是由一定数量的质子和中子组成。中子数比质子数稍多一些。两者数目具有一定的比例。 一个原子所包含的质子数目与中子数目之和,称为该原子的质量数。它也就是原子核的质量数。简单归纳一下: 质子(带正电,数目与电子相等) 原子核 原子中子(不带电,数目=质量数-原子序数)电子(质量小,带负电,数目与质子相等,称为原子序 数) 原子的化学性质仅仅取决于核外电子数目,也就是仅仅取决于

它的原子序数。我们把原子序数相同的原子称作元素。 有些原子,尽管它们的原子序数相同,可是中子数目不相同,这些原子的化学性质完全相同。而原子核有着不同的特性。例如:11H、 2 1H、3 1H,它们就是元素氢的三种同位素。又如: 59CO和60CO是元素钴的两种同位素。 235U和238U是元素铀的两种同位素 自然界中已发现107种元素,而同位素有4千余种。 原子核里的中子比质子稍多,确切地说,质子数与中子数应有 一个合适的比例(如轻核约为1:1,重核约为1:15)。只有这样的原子核才是稳定的,这种同位素就叫做稳定同位素。如果质子的数目过多或过少,也即中子数目过少或过多。原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。这种原子核就叫做放射性原子核。它组成的原子就叫做放射性同位素,如59CO是稳定同位素,60CO是放射性同位素。 放射性同位素分为天然和人工两种。天然的就是自然界中容观存在的。如铀、钍、镭及其子体;以及钾、钙等等。人工的就是通过人为的方法制造的。如利用反应堆或加速器产生的粒子打在原子核上,发生核反应,使原子核内的质子(或中子)数目发生变化。生成放射性同位素,60CO就是把59CO放在反应堆里照射。吸收一个中子后变成的,所以60CO就是人工放射性同位素。 §1-2放射性衰变和三种射线 放射性原子核通过自发地变化,放出射线和能量,同时自己变成一个新的原子核。这个过程叫做放射性衰变。

2020国家核技术利用辐射安全与防护考核测试试题(十)(附答案)

班级__________姓名__________学号__________座位号__________ __________ …………○…………密…………○…………封…………○…………线…………○………… 绝密★启用前 2020国家核技术利用辐射安全与防护考核测试试题(十)(附答案) 国家核技术利用辐射安全与防护考核题目 一、单项选择题(共30题,每题2分,共60分) 1、GB18871-2002的中文说法是(). A:电离辐射防护与辐射源安全基本标准 B:射线装置安全和防护条例 C:国标2002年18871号文件 D:射线装置管理办法 2、根据GB18871-2002 规定,职业照射人员四肢的年当量剂量限值是 A:20mSv B:100mSv C:500mSv D:1000mSv 3、放射性活度的专用单位为---- A:贝可勒尔(Bq) B:居里(Ci) C:当量剂量(Sev) D:半衰期(T/z) 4、下面不能选作X射线屏蔽材料的是 A:铅 B:聚乙烯 C:混凝土 D:砖 5、随机性效应指的是()与照射剂量的大小有关的一类效应. A:严重程度 B:发生概率 C:剂量闯值 D:危险程度 6、电子对效应是描述(). A:X线与原子的内层电子的相互作用 B:X线与原子的外层电子的相互作用 C:X线与原子的内层电子和外层电子的相互作用 D:X线与原子的原子核的相互作用 7、在其它条件相同的情况下,α、β、Y射线在内照射时的危害程度的排序为() .A:a<β

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

三基三严-辐射安全与防护基础知识考试题

辐射安全与防护基础知识考试题 一、名词解释(每题2分,总共10 分)1.核素和同位素。 2.韧致辐射。 3.外照射和内照射。 4.吸收剂量: 5.平均电离能: 二、选择题(每题2分,总共20 分) 1.1896 年,法国科学家()发现天然放射现象,成为人类第一次观察到核变化的情况,通常人们把这一重大发现看成是核物理的开端。 A ?卢瑟福 B ?贝克勒尔C.汤姆逊D ?居里夫人 2.下列人体组织和器官中哪一种的辐射敏感性最低:() A ?心脏 B ?淋巴组织 C ?肌肉组织 D ?骨髓 3.下面哪种粒子的穿透力最弱() A . 丫光子 B . B粒子C. a粒子D .中子 4. 丫光子把全部能量转移给某个束缚电子,使之发射出去,而光子本身消失的过程叫做()A .电子对效应B .康普顿效应C.光电效应D .穆斯堡尔效应5.世界人口受到的人工辐射源的照射中,居于首位的是() A .大气层核实验 B .医疗照射C.地下核试验D .核能生产 6.在相同能量的下列射线中,哪种射线的穿透力最强?() A. a射线 B. B射线 C. 丫射线 D.质子7.在下述医疗照射中,每次检查的有效剂量最大的是哪种?() A . CT B.血管造影C.介入治疗D.胸部X射线透视 8.在医学上X射线可用于透射的机制是() A .穿透能力强 B .电离能力强C.射线能量大D .不同组织的吸收不同 9.辐射致癌属于那种效应:() A .急性B.遗传C.确定性D.随机性 10.剂量率与点源距离的关系:() A .正比B.反比C.平方正比D.平方反比 三、填空题(每空1分,总共20 分)

1. X 射线在医学上的用途较广,目前主要有两种诊断方式:__________ 和 ______ 。 2. _____________________________ X 射线机主要包括:和。 3. _________________________________ 天然辐射源按起因分为: _____ 、和三类。 4. _________________________________________ 人体受到的照射的辐射源有两类,即:和________________________________________________ ,其中主要的人工辐射源是: ________ ,_________ 和_______ 。 5. _______________________________ 辐射防护检测的对象是: ______________________ 和_____________________________________ 。具体检测有四个领域: ______________________ 6. 丫射线与物质发生的相互作用主要有光电效应、___________ 和_________ < 四、判断题(每题2分,总共20 分) 1. 地球上的天然辐射源都是来自宇宙射线。 () 2. 原子核的质量等于组成原子核的中子和质子质量之和。() 3. 放射性衰变符合指数衰减规律。() 4. B粒子的能谱是连续的。() 5. B衰变不仅放出B粒子,还要放出一个中微子。() 6. 大多数气体探测器都工作于有限正比区。() 7. 闪烁体都很容易潮解。() 8. 吸能核反应的发生有一定的阈能。() 9. 发生自发裂变的条件是自发裂变能Qf,s< 0。() 10. 一种粒子与某种原子核的核反应反应道只有一个。() 五、简答题(每题10 分,总共30分) 1. 什么是密封源和非密封源? 2. 在放射性同位素和射线装置应用中,必须遵循辐射防护的哪三原则? 3. 辐射防护的四个标准是什么?

EJ 380-1989 开放型放射性物质实验室辐射防护设计规范

F 70 EJ 380-1989 开放型放射性物质实验室 辐射防护设计规范 1989-03-24发布 1989-10-01实施 中国核工业总公司发布 附加说明: 本标准由中国核工业总公司安防环保卫生部提出。 本标准由中国核工业总公司第二研究设计院负责起草。 本标准主要起草人:孙维奇、范深根。 1 主题内容与适用范围 本标准规定了开放型放射性物质实验室(以下简称开放型实验室)设计中的辐射防护要求,目的在于从设计上保障工作人员及附近居民的健康和安全及保护环境。 本标准适用于放射性同位素生产及应用开放型放射性物质实验室辐射防护设计,也可供已建成单位在扩建和改建中参照使用。 本标准不适用于乏燃料后处理厂和铀矿冶金系统实验室的辐射防护设计。 2 引用标准 GB 8703 辐射防护规定 GB 4792 放射卫生防护基本标准 GB 11806 放射性物质安全运输规定 EJJ 6 加工处理裂度材料临界安全规定 3 术语 3.1 开放型实验室 指由一个或多个处理非密封的放射性物质的实验室,实验室内设有热室、屏蔽工作箱、手套箱和通风柜等设备,还有为实验室正常运行所需的各种辅助设施。 3.2 开放性放射性工作 指非密封放射性工作,即在箱室或工作台上正常操作工作中,有可能引起工作场所和周围环境污染的工作。 3.3 开放型实验室分区 为控制污染,在设计上把实验室内分成数个区域,不同区域的设计要求不同。 3.4 白区(一区) 该区为实验室内不从事放射性工作的区域,一般情况下,该区无放射性污染。白区包括:办公室、会议室、休息室、“冷”工作间(如试剂、药品间),“冷”实验室等。 3.5 绿区(二区) 实验室内从事隔离操作放射性物质的工作区,事故时可能出现污染,但能及时发现和清除。绿区包括:热室、屏蔽工作箱、手套箱的操作房间或存有密封容器的房间。 3.6 橙区(三区) 实验室内工作人员不经常停留的区域,只有在进行去污、检修和取样等工作时才进入。该区在正常运行时也会出现污染,污染一般能清除。橙区包括:热室、屏蔽工作箱、手套箱的检修区、放射性污染物暂

氡测量实验报告

本科生实验报告实验题目氡测量得设计 学院名称核技术与自动化工程学院专业名称辐射防护与环境工程 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2016年1月3日

编写说明 1、专业名称填写为专业全称,有专业方向得用小括号标明; 2、格式要求:格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1、5倍行距,页边距采取默认形式(上下2、 54cm,左右2、54cm,页眉1、5cm,页脚1、75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要得文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开, 小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0、5行) 1、1 ×××××小三号黑体×××××(段前、段后0、5行) 1、1、1小四号黑体(段前、段后0、5行) 参考文献(黑体小二号居中,段前0、5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

室内氡得主要来源及其对人体健康得危害 人得一生中有70%~90%得时间就是在室内度过得,室内环境质量如何,直接关系到人体健康。室内氡就是影响室内环境得主要因素,人们应该对其有所了解,以便采取适当措施减少氡对自身健康得危害。 一、什么就是氡? 氡普遍存在于我们得生活环境中。氡就是由镭、钍衰变产生得自然界唯一得天然放射性惰性气体,它没有颜色,也没有任何气味。氡在空气中得衰变产物被称为氡子体。常温下氡及其子体在空气中能形成放射性气溶胶而污染空气,很容易被呼吸系统截留,并在局部区域不断累积。 二、氡对人体有多大危害? 据美国国家安全委员会估计,美国每年因为氡而死亡得人数高达 30000 人。早在上个世纪80年代,美国卫生部就宣布,氡就是肺癌得第二大诱因。我国也存在着严重得氡污染问题。据部分调查结果显示,室内氡浓度远高于室外,为室外氡浓度得数倍,有得室内氡含量最高得达到国家标准得 6 倍!据不完全统计,我国每年因氡致肺癌为 50000 例以上。因此,氡已被国际癌症研究机构列入室内重要致癌物质,排在世界卫生组织所确认得三类人类致癌物中得第一类物质当中,必须引起我们得注意。中国疾病预防控制中心辐射防护与核安全医学所研究员王作元率领得研究小组在经过长达9年得调查研究之后,首次拿出了室内氡污染所造成得肺癌危险度指数:0、19。它意味着当室内空气中氡浓度每增加100贝克/立方米时,在这种环境里居住得人患肺癌得几率就会增加19%。 三、室内氡就是怎么来得? 室内氡主要有以下几种来源: 1、从房基土壤中析出得氡。在地层深处含有铀、镭、钍得土壤、岩石中人们可以发现高浓度得氡。这些氡可以通过地层断裂带,进入土壤与大气层。建筑物建在上面,氡就会沿着地得裂缝扩散到室内。 2、从建筑材料中析出得氡。1982 年联合国原子辐射效应科学委员会得报告中指出,建筑材料就是室内氡得最主要来源。如花岗岩、砖沙、水泥及石膏之类,特别就是含有放射性元素得天然石材,易释放出氡。另外还有从户外空气中进入室内得

辐射防护实验报告

《辐射防护实验报告》 专业:xxx 姓名:xxx 学号:2010xxxx 实验一:γ射线的辐射防护 一、实验目的 1、掌握X-γ剂量率仪的使用方法; 2、了解环境中的γ照射水平; 3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 二、实验原理 闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。 三、实验内容 1、测量实验室γ照射本底环境; 2、测量一条环境γ照射剂量率剖面; 3、测量岩石的γ照射剂量率; 4、加放射源,测量并计算不同测量时间情况下的剂量; 5、加放射源,测量不同距离情况下的剂量率。 四、实验设备 1、Ra-226源一个; 2、X-γ剂量率仪一台; 3、岩石标本。 五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!! 实验步骤如下: 1、调节准直器以及探测仪器的相对位置; 2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值); 3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值); 4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值); 5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值); 6、暂时屏蔽放射源,源探距离为米,测定并记录仪器的剂量率N1(连测3次,取平均值); 7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值); 8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值); 9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值); 10、数据处理。 数据处理如下: 1)本底剂量率为: 2)在距离放射源、1、2米处不同时间计数率为:

辐射防护基础知识.

辐射防护 7.1 辐射量的定义、单位和标准 描述X和丫射线的辐射量分为电离辐射常用辐射量和辐射防护常用辐射量两类。前者包括照射量、比释动能、吸收剂量等。后者包括当量剂量、有效剂量等。 所谓“剂量”是指某一对象接收或“吸收”的辐射的一种度量。 7.1.1 描述电离辐射的常用辐射量和单位 1、照射量 (1)照射量的定义和单位 照射量是用来表征X射线或丫射线对空气电离本领大小的物理量。 定义:所谓照射量是指X射线或丫射线的光子在单位质量的空气中释放出来的所有电次级电子(负电子或正电子),当它们被空气完全阻止时,在空气中形成的任何一 种符号的(带正电或负电的)离子的总电荷的绝对值。其定义为dQ除以dm的所得 的商,即:P=dQ dm 式中dQ ――当光子产生的全部电子被阻止于空气中时,在空气中所形成的任何一种符号的离子总电荷量的绝对值。 dm ――体积球的空气质量 用图表示1立方厘米的干燥空气,其质量为0.001293克,这些次级电子是光子从0.001293克空气中打出来的,它们在0.001293克空气中的里面和外面都形成离子,所有这些离子都计算在内,而在0.001293克外产生的次级电子发射形成的离子则不计算在内。 照射量(P)的SI单位为库仑/千克,用称号CKg '表示,沿用的专用单位为伦琴,用字母R 表示。1伦的照射量相当于在标准的状况下(即0C, 1大气压)1立方厘米的干燥空气产生1静电位(或2.083 X 109对离子)的照射量叫1伦琴。 =1静电单位=3.33 X 10-10库伦 3 6 1 cm 干燥空气质量为0.001293克=1.293 X 10-千克 1 伦=3.33 10=2.58 X 10-4库伦/ 千克 1.293 10 一个正(负)离子所带的电量为4.8 X 10-10静电单位,1伦是在干燥空气中产生1静电单位的电量,所以产生的电子对数为1/4.8 X 10-10=2.083 X 109对离子。照射量只适用于 X、丫射线对空气的效应,而只适用于能量大约在几千伏到3MV之间。 (2)照射量率的定义和单位 dp 照射量率的定义是单位时间的照射量也就是dp除以dt所得的商即:P = & 照射量率(P)的SI单位为库伦/千克时,用符号CKg h 或伦/时(Rh )、伦/ 秒(RS_1)

放射物理与防护实验指导

铜陵职业技术学院 放射物理与防护实验指导

实验一半价层的测量 实验目的:掌握半价层的基本概念;学习半价层的测量方法 实验器材:X线机、照射量计、不同厚度标准滤过铝片、铅准直器、水准仪、米尺等 实验步骤: 1、按照实验图所示放置测量仪器,利用水准仪调整X线管焦点、准直器圆孔中心及探头中心之位置,使其在一条直线上。利用米尺测量,使焦点到标准滤过片(准直器圆孔中心位置)距离为50cm,焦点到探测器有效中心位置为100cm。 2、分别预选照射条件:X线机管电压Kv,管电流mA及曝光时间s。 3、在铅准直器内分别放置不同厚度标准铝滤过片,测量对应不同吸收铝片时投射X线照射量率,并将测量结果列于实验表1-1: 标纸上绘制标准铝片吸收曲线。 5、由标准铝片吸收曲线确定透射量为没有吸收铝片时射线强度一半所对应的铝片厚度,即在该照射条件下的半价层厚度。 6、变换照射条件,观察半价层与照射条件之间的关系。

实验二 X线机输出量的测量 实验目的:学习X线机输出量的测量方法 实验器材:具有透视功能的医用诊断X线机,照射量仪,米尺。 实验步骤: 1、将照射量仪电离室置于X线机透视床面板后射线束中心轴距床面板20mm处。如实验图2-1所示。 2、将照射量仪置于照射量率测量档,并选择适当量程。 3、选择不同管电压、管电流,分别测量X线机输出照射量率,并将结果列于实验表2-1 实验表2-1 不同曝光条件下X线机输出量表 曝光条件 60/2 60/3 70/2 70/3 80/2 80/3 (Kv/mA) X线机输出量

实验三透视X线机防护区照射量率的测试 实验目的:对透视X线机防护区照射量率进行测试和评价 实验器材:X线机、X、r射线巡测仪、米尺、水模体和防护区测试平面模型架等实验步骤:透视时X线工作者所处的位置,包括偷、胸、腹、性腺和手等部位所在位置成为防护区。《医用诊断X射线卫生防护标准》中规定,立位和卧位透视防护区测试平面的照射量率,分别不得大于1.29×10-6和3.87×10-6。如实验图3-1所示,立位透视防护区测试平面设13个测试点。实验图3-2c和实验图3-2a分别所示卧位透视防护区床上和床侧测试平面上所设的7个和12个测试点。 (一)立位透视防护区照射量率的测量 1、按照实验图3-1所示尺寸,调整好X线机、水模体和模型架的测试位置。取台屏距250mm,荧光屏上照射野面积调至250mm×200mm。 2、选择和调试好X线测试仪的合适量程。 3、将X线机的管电压调至70Kv,管电流调至3mA。 4、先用X、r射线巡测仪在立位透视防护平面上进粗测扫描,将最大照射量率及其位置记录在实验表3-1中。然后对13个测试逐个进行测量,将结果记录于实验表3-1。 1、参照实验图3-2所示几何尺寸,将X线机、水模体及模型架位置调整好。

辐射防护知识.

辐射防护知识 1、四种常见的射线: 在我们的周围到处存在着射线—太阳光、无线电波、微波、红外线、宇宙射线,这些射线都是电磁波。由于光子的能量较低,强度较小,它们大多是没有危害的。核射线就和它们有很大的不同。 1)它们由α、β和中子组成同γ射线一样具有很短的波长。 2)它们的能量高到足以使分子离子化导致生物组织遭到破坏。 核射线有时也叫做“离子射线”。受到射线照射的生物体可能使机体遭到不同程度的破坏。这取决于射线源的强度和广度以及采取的防护措施。通常情况下穿透力较强的射线是γ射线和中子射线,它们破坏性较小,但是防护困难。α、β射线穿透力较弱,破坏性较大,但是防护比较简单。所有这些放射源都是向四周空间时刻放射射线。 2γ射线和X射线 X和γ射线都是电磁波(光子)。唯一的区别是来源:γ射线是属于原子核发射出来的辐射;X射线指的是在原子核外部产生的辐射。 它们和光速一样快,能穿透大多数物体,在介质中穿过波长不会发生变化但强度会逐渐减弱。Gamma射线在空气中传播几乎不受影响,它可以被几英尺的水,数英尺的混凝土,几英寸的钢或铅完全阻挡。由于它不容易被减弱,所以能轻易的检测到它的存在,同时人体也容易被它照射到。多数放射源在释放Gamma射线时都伴随着释放出α、β射线或中子射线。X射线能量比γ射线能量稍低。 3、辐射危害 1、职业照射 2、公众照射 3、医疗照射 4、潜在照射 4.吸收剂量 对X射线、γ射线,吸收剂量在0.25戈瑞以下时,人体一般不会有明显效应;但是,剂量再增加,就可能出现损伤。当达到几个戈瑞时,就可能使部分人死亡。接受同样数量的“吸收剂量”,受照射时间越短,损伤越大;反之,则轻。吸收同样数量剂量,分几次照射,比一次照射损伤要轻。 表1、常用放射线单位及换算关系

辐射防护知识培训教程

放射性检测仪表应用辐射防护知识 培 训 材 料

北京树诚科技发展有限公司 第一部分:放射源基本知识 1、什么是放射性? 放射性是自然界存在的一种自然现象。世界上一切物质都是由一种叫“原子”的微小粒子构成的,每个原子的中心有一个“原子核”。大多数物质的原子核是稳定不变的,但有些物质的原子核不稳定,会自发地发生某些变化,这些不稳定原子核在发生变化的同时会发射各种各样的射线,这种现象就是人们常说的“放射性”。 有的放射性物质在地球诞生时就存在,如铀、钍、镭等,它们叫做天然放射性物质。另一方面,人类出于不同的目的制造了一些具有放射性的物质,这种物质叫人工放射性物质。 尽管100多年前人们才发现放射性,但放射性从来就存在于我们的生活中。放射性可以说无时不有,无处不在,我们吃的食物、喝的水、住的房屋、用的物品、周围的天空大地、山川草木乃至人体本身都含有一定的放射性。 人们受到的放射性照射大约有82%来自天然环境,大约有17%来自医疗诊断,而来自其他活动大约只有1%。 2、什么是放射源? 放射源是指用放射性物质制成的能产生辐射照射的物质或实体。放射源按其密封状况可分为密封源和非密封源。 密封源是密封在包壳或紧密覆盖层里的放射性物质,工农业生产中应用的料位计、探伤机等使用的都是密封源,如钴-60、铯-137、铱-192等。非密封源是

指没有包壳的放射性物质,医院里使用的放射性示踪剂属于非密封源,如碘-131、碘-125、锝-99m等。 放射源按发出射线的类型可分为阿尔法源(α射线)、贝塔源(β射线)、伽玛源(γ射线)、中子源(n射线)等。不同的放射源发射出不同类型的射线。这些射线看不见、摸不着,必须使用专门的仪器才能探测得到。不同的射线在物体中穿透能力也各有不同。一张厚纸可挡住阿尔法射线;有机玻璃、铝等材料可有效阻挡贝塔射线;伽玛射线穿透能力较强,可以用混凝土、铅等阻挡;中子射线需用石蜡等轻质材料来阻挡。因此,放射源并不可怕,对放射源无端的恐惧是没有必要的,特别是那些已经采取了安全保护措施,放射源品种很多,应用广泛,不仅在核设施,而且在科研院校、医疗机构、地质和煤田勘探与开采、石油开采与炼油、公路与桥梁建设、机械制造与安装、建材(尤其是水泥厂)、纺织、卷烟、造船、电力、制药、育种、造纸、冶金、仪表和钟表制造、电影制片、木材、塑料、面粉、饲料加工、电缆、荧光灯生产等各行各业都得到应用。 3、放射源的应用 几十年来,放射源的应用为发展国民经济、保障人民健康做出了重大贡献。在医学方面放射源广泛用于医学诊断、治疗和消毒灭菌。在农业方面用于辐照育种,可以改良品质,增加产量,还可用于灭菌保鲜等。在工业方面可用于石油、煤炭等资源勘探,矿石成份分析,工业探伤、无损检测、材料改性和料位、密度、厚度测量等。放射源还可用于人造卫星供电,火灾烟雾报警,污水治理等。 正常使用的放射源,对人体是基本没有危害的。 4、放射源的活度 一个放射源强度的大小通常不用体积或质量的大小来衡量,而使用放射性活度来表示。一个放射源在单位时间内发生衰变的原子核数称为它的放射性活度。1975年召开的国际计量大会规定了放射性活度的国际单位是秒的倒数(s-1),叫贝可勒尔(Becquerel),简称贝可,符号是Bq,1Bq就是放射性物质在1秒

辐射镭源屏蔽实验

本科生实验报告 实验课程辐射防护实验 学院名称核技术与自动化工程学院 专业名称辐射防护与环境工程 学生姓名 学生学号2012060801 指导教师张庆贤 实验地点核110 实验成绩 二〇一五年四月二〇一五年四月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

辐射镭源屏蔽实验 1.实验目的 1)了解镭源的辐射的γ辐照强度以及屏蔽材料的屏蔽防护能力. 2)通过计算求得镭源的γ辐照强度以及所需屏蔽材料屏蔽到15mSv/a需 要多厚 3)学会设计屏蔽层,再通过分析实验测定值与理论计算值之间的关系核差 别,清楚两者之间的联系 2.实验原理 利用宽束X或γ射线的减弱规律,考虑康普顿散射效应造成的散射光子不是被完全吸收而仅仅是能量和传播方向发生改变,从而会继续传播而有可能穿出物质层。探测器探测器辐射衰减的‘窄束’概念辐射衰减的‘宽束’概念 图1、窄束、宽束示意图在辐射防护中遇到的辐射一般为宽束辐射,射线束较宽、准直性差,穿过的物质层也很厚,如上图1所示,在此情况下,受到散射的光子经过多次散射后仍然可能会穿出物质,到达观察的空间位置,此时考察点上观察到的不仅包括那些未经相互作用而穿出物质层的光子,而且还包括初级γ射线经过多次散射后产生的散射光子。 窄束、宽束是物理上的概念,而不是由射线束的几何尺寸决定的,即不是几何上的概念。窄束可以看作是宽束的特殊情况。 实验k值计算:Γ=1.758*10-18 aC*m2/kg A=3.7*10^6Bq 查表得水中的转换因子fm=36.16

黄豆芽微核实验报告

生态工程学院 遗传学设计性实验报告 题目:黄豆根尖微核技术系别:生态工程学院 专业班级:生物科学2012级 组员姓名:孟迎、罗廷、何忠平 蔡国宪、丁琴 姓名:罗廷 学号:28111201029 指导教师:蹇黎 完成时间: 2015 年 6月11日

黄豆根尖微核实验报告 一、实验目的 1、了解环境诱变物对微核产生的原理。 2、掌握微核试验技术。 3、了解毒理遗传学在环境监测中的应用及意义 二、实验原理 微核简称(MCN),是真核生物细胞中的一种异常结构,往往是细胞经辐射或化学药物的作用而产生。微核是无着丝点的染色体断片,在有丝分裂后期由于不能向两极移动而游离于细胞质中,在间期细胞核形成时,可在它附近看到若干个圆形的结构,游离于主核之外直径大约是细胞直径的1/20到1/5,这就是微核。微核的折光率及细胞化学反应性质和主核一样。一般认为微核是由有丝分裂后期丧失着丝粒的断片产生的,但有些实验也证明整条的染色体或多条染色体也能形成微核。这些断片或染色体在细胞分裂末期被两个子细胞核所排斥便形成了第三个核块。已经证实微核率的大小是和用药的剂量或辐射累积效应呈正相关,这一点和染色体畸变的情况一样。所以可用简易的间期微核计数来代替繁杂的中期畸变染色体计数。 由于大量新的化合物的合成,原子能应用,各种各样工业废物的排出,使人们需要有一套高度灵敏、技术简单的测试系统来监视环境的变化。微核产生的概率可与诱变因子的剂量成正比,因此可以用微核出现的频率来评价环境诱变因子对生物遗传物质的损伤程度。目前微核测试已经广泛应用于辐射损伤、辐射防护、化学诱变剂、新药试验、染色体遗传疾病及癌症前期诊断等各方面。 随着经济发展、经济总量增加,废水排放总量增长迅速,污染物排放总量超过水环境容量,尤其在一些人口密集、企业密布或重污染企业分布较多的区域。水质恶化问题已经比较突出;饮用水水源地有机污染日渐严重,饮用水安全问题已经显现,人民群众生产、生活受到影响。利用毕节市流仓河道河水以黄豆萌发的芽作为实验材料进行微核测试,一方面可准确的显示各种处理诱发植物畸变的效果,另一方面可用于当今发展地区对河道污染程度的间接反应和监测。

辐射防护知识培训

辐射防护知识讲座 ?第一部分辐射防护的目的原则与方法 一、放射防护目的 防止发生确定性效应,把随机性效应控制在可以接受的水平。限制随机性效应的发生率并降低到可以接受的水平;保障从事放射工作的人员和公众以及他们的后代的健康与安全,保护环境,促进放射性同位素和核技术的应用和发展。 实现辐射防护目的的办法: 1、为了防止确定性效应的发生,把剂量当量限值定在足够低的水平上,以保证工作者在终生全部时间内受到的照射也不会达到产生有害效应的阈值。 2、使一切具有正当理由的照射保持在合理的可以达到的尽量低的水平。 二、放射防护基本原则 1、实践的正当化 ?是指从事任何与放射性有关的活动,都要有正当理由。采取任何可能接受辐射剂量的行动,都要经过事先论证,进行正当化分析。 2、辐射防护最优化 ?在考虑辐射防护时,并不是要求受照剂量越低越好,而是通过利益/代价分析,在考虑了社会和经济的因素之后使照射保持在合理可行尽量低的水平。 ?3. 个人剂量限制 个人剂量限制是指在具备实践正当化和防护最优化的条件下,人员接受的剂量不能超过一定量值。 职业性外照射个人监测规范 GBZ128-2002 ?监测目的:对明显受到照射的器官或组织所接受的平均当量剂量或有效剂量作出估算,进而限制工作人员所接受的剂量,并且证明工作人员所接受的剂量是否符合有关标准。 ?监测原则:所有从事或涉及放射工作的个人,都应接受职业外照射个人监测。 ?a) 对于任何在控制区工作,或有时进入控制区工作且可能受到显著职业外照射的工作人员,或其职业外照射年有效剂量可能超过5mSv/a

的工作人员,均应进行外照射个人监测。 ?b) 对于在监督区工作或偶尔进入控制区工作、预计其职业外照射年有效剂量在1mSv/a─ 5mSv/a范围内的工作人员,应尽可能进行外照射个人监测。 ?c) 对于职业外照射年剂量水平可能始终低于法规或标准相应规定值的工作人员,可不进行外照射个人监测。 个人计量计佩带要求及监测周期 ?对于比较均匀的辐射场,当辐射主要来自前方时,剂量计一般在左胸前;当辐射主要来自人体背面时,剂量计应佩带在背部中间。 ?对于工作中穿戴铅围裙的场合(如放射科),通常应佩带在围裙里面。 ?当受照剂量可能相当大时(如介入放射学操作),则还需在围裙外面衣领上另外佩带一个剂量计,以估算人体未被屏蔽部分的剂量。 ?只有当受照剂量很小且个人监测仅是为了获得剂量上限估计值时,剂量计才可佩带在围裙外面胸前位置。 ?对于短期工作和临时进入放射工作场所的人员(包括参观人员和检修人员等),应佩带直读式个人剂量计,并按规定记录和保存他们的剂量资料。 ?常规监测周期 ?一般为30日,也可视具体情况延长或缩短,但最长不得超过90天。 三、外照射防护 ?外照射系指来自体外的电离辐射对人体的照射。 ?能够引起外照射的电离辐射源主要包括:①放射性核素,其中包括放射性核素、放射性核素和放射性中子源等。②X射线机。③粒子加速器。④核裂变反应堆。 (一)外照射防护目的和出发点 ?目的:保护特定人(群)不受过分的直接或潜在的外照射危害。 ?出发点:从防护目的的实现以及与此相关的社会付出方面综合进行考虑。 (二)外照射防护基本原则 ?保证完满达到电离辐射源的应用目的,又使人员受到的辐射照射保持在可合理做到的最低水平,即 ALARA 原则。 ?1、最优化:在应用辐射源带来的利益和进行防护所付出的代价之

相关文档
最新文档