MBR 与传统活性污泥法优势

MBR 与传统活性污泥法优势
MBR 与传统活性污泥法优势

1、M BR与传统活性污泥法工艺(CAS)相比有以下明显优势:

(1)污染物去除率高,出水水质好

M BR既可以用于高浓度、难降解有机工业废水处理,又可以用于生活污水和一般

工业废水的净化。在MBR中,由于膜组件对于反应池中的微生物,尤其是对于世代周期

较长的硝化反硝化菌种,及存在于小污泥颗粒中的微生物具有相当好的截留作用;同样

由于膜的存在,M BR体系中活性污泥可以高达(MLSS)8000-15000mg/L,远远高于传统

活性污泥法(约3000-4000mg/L),对污染物去除效率高,处理出水水质好,不仅对悬浮物(SS)、有机物去除效率高,出水的悬浮物(SS)和浊度可以接近零,而且可以去除细菌、病毒等可以作为污水深度处理及资源化技术。基于其高效的生物反应,及膜本身良

好的分离截留作用,通常膜生物反应器的COD、BO D、和SS的去除率分别可达

到95%、98%、99%,膜生物反应器的出水可以作为中水直接回用。

(2)负荷变化适应强,耐冲击负荷膜生物反应器由于膜的高效截留作用,可以完全截留活性污泥,使得反应器内污泥

浓度很高,实现了反应器内水力停留时间(HRT)和污泥停留时间(SRT)的完全分离,即

使进水量突然增大,整个反应器内部的生物性状也能保持在一个比较稳定的状态;同时,

由于污泥浓度的提高,强化了活性污泥的吸附作用;而且,在膜的截留作用下,来不及被

生物降解的污染物也不会随着出水排除。基于以上几点,整个反应器运行控制将会更加灵

活稳定。因此,膜生物反应器系统克服了当系统水力负荷和有机负荷发生变化时传统水处

理工艺出现污泥膨胀等问题。

(3)污泥排放量小膜生物反应器水处理技术除了作为污水深度处理及资源化技术之外,还可以作为一

种污泥减量的重要技术和避免常规污水厂大量剩余污泥处置难题的一种有效手段。膜生

物反应器的污泥排放量很小,甚至可以做到不产泥。污泥自降解和污泥水解可降低传统水

处理系统的效率,但对膜生物反应系统却非常有益。传统的活性污泥法通常采用的是稳

定期末尾至衰亡期初始时的活性污泥,而由于膜生物反应器中的高污泥浓度,有机物被

大量消耗,同时会有相当一部分处于衰亡期的微生物依靠自身的内源呼吸进行代谢分解,

在保持出水污染物低浓度的同时,消耗了污泥生长过程中的剩余量。膜分离使得污水中

的大分子难降解物质,在体积有限的膜生物反应器内有足够的停留时间,大大提高了难

降解物质的降解效率。反应器在高容积负荷、低污泥负荷、长泥龄的情况下运行,完全

可以实现较长周期内(如6月或者更长时间)不排泥或者排泥量很小,剩余污泥排

放量很小,甚至不产泥。

(4)工艺流程短,系统设备简单紧凑,占地省由于膜生物反应器无需在好氧污泥系统产生絮体以便之后二沉池的泥水分离,因此

生物反应器内污泥浓度可以比传统工艺高许多,而生化反应速率又与反应物浓度有关。反应物浓度越高,反应速率越大,因此膜生物反应器的容积负荷可高达5kgCOD/(m3d),

而传统工艺通常只有0.4~0.9kgBOD/(m3d),处理生活污水时水力停留时间(HRT)可减

至2h,生物反应池的容积可以大大减小,根据国外研究资料显示,相同规模

的污水量,膜生物反应器好氧池体积为传统处理工艺好氧池体积的三分之一。同时膜生物反应器省去了二沉池、滤池及污泥回流系统等辅助设备,甚至污

泥处理设备及费用。几乎所有的MB R工艺都对病菌有较好的去除作用,出

水中肠道病毒、总大肠杆菌、粪链球菌、粪大肠杆菌等都低于检测限,这表

明如果MBR出水直接排放或无余氯要求回用的话甚至可以省去消毒设施,因此膜生物反应器结构简单紧凑。

(5)易实现自动化控制,维护简单,节省人力在传统活性污泥法中,由于运行中经常出现波动和不稳定,为了确保良好的出水水

质,必须对运行管理投入大量的人力、财力和物力。而膜生物反应器采用膜

分离技术,做到了稳定的出水水质,同时省去了泥水分离设施,因此用微机

可以很容易的实现膜生物反应器系统从进水到出水的全程自动化控制。

(6)系统启动速度快,水质可以很快达到处理要求由于可以很好的保持水中的污泥浓度,在反应池启动期,不同于传统曝气池需要通

过沉淀排除上清液来提高污泥浓度。由于膜分离作用对污泥颗粒的完全截留,

能够在曝气及营养物质的共同作用下迅速的提高系统内的污泥浓度,使整个

膜生物反应器系统快速启动,水质可以很快达到处理要求。

污水处理各种工艺大全及优缺点对比

污水处理各种工艺大全及优缺点对比 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH 3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(N H4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BO D5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

利用COD指标进行活性污泥法系统的设计

利用COD指标进行活性污泥法系统的设计 朱明权 (Schueffl & Forsthuber Consulting) 摘要阐述了利用COD指标进行活性污泥法系统设计的主要思想和过程,并建立一套用于硝化和反硝化的活性污泥法COD设计方法。大量实际运行结果表明,利用该法对系统剩余污泥量和耗氧量以及活性污泥的组成计算所得的结果要较传统的BOD 5 方法更为精确。 关键词COD 活性污泥法设计剩余污泥量需氧量硝化 反硝化 活性污泥法是目前废水生物处理的最主要方法,长期以来活性污泥 法均根据污水处理厂的进、出水BOD 5指标进行设计。由于BOD 5 指标测定 精度低、费时耗力、其值也仅仅反映部分较易降解的有机物含量,故利 用BOD 5 指标不能对整个处理系统建立物料平衡。随着污水处理厂处理要求的不断提高,活性污泥法系统的设计污泥龄将逐渐提高,故难降解和部分颗粒性有机物的水解程度也将有所提高,污水处理厂中实际所降解 的有机物含量明显高于进水BOD 5 所反映的含量。与之相比,COD指标测定简单、精度高且具可比性,能反映污水中所含的全部有机物,故利用COD指标可以进行物料衡算。 虽然COD指标不能说明污水中有机物的生物可降解性,但对污水厂出水或将水样和活性污泥经混合后进行较长时间曝气所得过滤液的COD 以及对活性污泥增殖情况进行分析,可以基本反馈入流污水COD中可降解和难降解物质的含量比例,这就为利用COD指标进行污水厂的设计和运行提供了可能。据此,国际水质协会(IAWQ)所建立的活性污泥1号和2号动态模型也均采用COD指标为基础。随着现代分析技术的飞速发展,快速COD测定方法以及在线COD测定仪(on-line)不断应用,对进水COD 各个组分的分析技术及其在活性污泥法系统中动力学转化机理的认识不断提高,尤其是活性污泥法过程动态模拟方法不断普及,可以认为利用COD指标进行活性污泥法系统的设计将呈不断上升的趋势。 1 活性污泥法的COD设计方法 1.1进水水质组成及其转化过程 在利用COD指标进行活性污泥法系统设计前,应首先对进水水质进行分析。主要包括测定水样经混合后的总COD浓度、水样经过滤后(滤纸孔隙直径为0.45 μm)滤液的COD浓度(即水样的溶解性COD浓度)、SS 和VSS、进水氮和磷浓度等。 一般城市污水的水质组成及其在活性污泥法系统中的转化过程如图1所示。 根据图1,进水总COD和各个组分之间的关系可用下式表示:

环境工程习题

习题 第一章水质与水体自净 1.什么叫水的自然循环和社会循环?它们之间存在着怎样的矛盾?水体环境保护和给水排水工程技术的任务是什么? 2.地下水和地面水的性质有哪些主要差别?为什么选择民用给水水源时,应尽先考虑地下水?工业给水的水源应该怎样来考虑? 3.试讨论天然水中可能含有的物质及其对饮用和工业生产的影响。 4.在我国饮用水水质标准中,最主要的有那几项?制定这几项标准的根据是什么? 5.制定了饮用水水质标准,为什么对于给水水源的水质还要提出要求?主要有哪些要求? 6.对于工业用水水质主要有哪些要求? 7.废水是怎样分类的? 8.废水水质指标主要有哪些?它们为什么重要? 9.试讨论生活污水和工业废水的特征。 10.为什么制定了地面水水中有害物质最高容许浓度标准,还要制定工业“废水”的排放标准?这些标准的主要内容有哪些? 11.什么叫生化需氧量?试比较生化需氧量和化学需氧量。 12.有机物的生物氧化过程一般分两个阶段进行。这是指哪些有机物来说的?对于不含氮有机化合物的情况是怎样的呢?为什么以五天作为标准时间所测得的生化需氧量(BOD5)一般已有一定的代表性? 13.生化需氧量间接表示废水的有机物含量,废水中有机物的量是一定的为什么第一段生化需氧量随温度的不同而发生变化? 14.如某工业区生产污水和生活污水的混合污水的2天20℃生化需氧量为200mg/L,求该污水20℃时5天的生化需氧量(BOD5)(20℃时,K1=0.1d–1)。 15. 根据某污水处理厂的资料,每人每天所排BOD5为35克,如每人每天排水量为100升,试求该污水的BOD5浓度(以毫克/升计)。

16. 含水率为99%的活性污泥,浓缩至含水率97% 其体积将缩小多少?17.控制水体污染的重要意义何在? 18.什么是水体的正常生物循环?向水体中排放的污染物质过多为什么能破坏水体的正常生物循环? 19. 什么叫水体的自净?为什么说溶解氧是河流自净中最有力的生态因素之一?其变化规律如何?根据氧垂曲线,可以说明些什么问题? 20.研究水体自净在水污染控制工程中有何重要意义? 21.进行水体污染的调查,主要要采取哪些步骤? 22.在研究水体污染问题时,为什么除毒物外,还要考虑溶解氧和生化需氧量这两个问题?在进行水体自净的计算时,关于溶解氧一般是以夏季水体中不低于4毫克/升为根据的,但在北方严寒地区,对于溶解氧的要求往往提高,这是什么原因?。 23.影响水体耗氧和复氧的因素,主要有哪些?在水体自净的计算中,对于有机污染物的去除,为什么通常仅考虑有机物的耗氧和大气的复氧这两个因素。24.解决废水问题的基本原则有哪些? 25.试举例说明废水处理的物理法、化学法和生物法三者之间的主要区别。26.根据什么原则来考虑给水的处理? 27.给水处理有哪些基本方法?其基本流程如何? 第二章水的物理化学处理方法 1.试说明胶体颗粒表面带电的原因。 2.请叙述动电现象、双电层与ζ电位。 3.一个胶团由那些成分组成?写出胶团公式的通式。 4.亲水胶体有那些特点? 5.试概述水的混凝的机理。 6. 试说明水的混凝的过程。 7 .铝盐混凝剂的作用过程有那些? 8 .试述高分子混凝剂的作用。 9.某粗制硫酸铝含Al2O3 15%、不溶解杂质30%,问:(1)商品里面Al2(SO4)3

传统活性污泥工艺

传统活性污泥工艺:工艺特征:吸附和代谢的完整过程、完全生长周期、需氧量延池长逐渐降低。优点:处理效果好经验成熟。问题:前段缺氧后端富余能耗大、占地面积大基建费用高、对水质水量变化的适应性弱 曝气活性污泥工艺特点:分段进水多段进水、需氧和供氧平衡、耐冲击负荷能力强 完全混活性污泥工艺:特点:池中个点水质相同各部分有机物降解工况相同、抗冲击能力强、处理效果差与推流式、易出现污泥膨胀 吸附再生活性污泥工艺:特点:吸附池能接触时间短、占地面积小、耐冲击负荷能力强、处理效果低于传统法 SBR工艺(间歇式活性污泥法):特点:工艺简单可省略掉二沉池和污泥回流设备、反应推动力大效率高、沉淀效果好、调节运行方式可脱氮除磷、便于自动控制、适用于中小型污水处理 AB法工艺:特点:无初沉池、AB段有各自的微生物群体、A段起到微生物选择器作用、处理效果好、可分期建设 活性污泥工艺发展方向:提高氧利用率、减少占地面积、减少运行费用、提供自动化水平、强化净化功能 普通生物滤池:原理:污水时间以滴状喷洒在滤料表面,与生物膜中的微生物充分接触,有机污染物被微生物吸附并降解,使污泥得以净化。优点:BOD去除率高运行稳定节约能源。缺点:占地面积大进水负荷低易阻塞有气味问题 高负荷生物滤池:特征:大幅提高了滤池负荷、限制进水BOD值、采用处理水回流技术、均化水质加大水力负荷减轻臭味抑制滤池蝇 塔式生物滤池:特征:滤层内部的分层微生物的优势菌种、能抵御较高的冲击负荷、水量不超过10000m3/d、充氧效果好污染物降解速度快 曝气生物滤池:原理:过滤生物吸附与生物代谢作用净化污水。特征:三相接触充分O2的转移效率高、不需要沉淀池占地少、滤料3-5mm比表面积大微生物附着力强、不需要污泥回流无污泥膨胀。 向上曝气生物滤池的特点:在整个滤池高度上提供正压条件避免短流、延长反冲洗周期减少清洗时间和水,气的量 生物转盘:净水机理:当转盘浸没水中时有机物被生物膜吸附、转盘离开水面时固着水层从空气中吸收氧转移到生物膜和污水中、盘的搅动使大气中的氧进入水中、生物膜与水及空气交替接触去除BOD COD工艺特征:转速可调适用性强、耐冲击负荷、不需要污泥回流动力消耗低、不产生池蝇 生物接触氧化池:特征:采用蜂窝状波纹板状软性纤维状填料形成生物膜立体结构、完全混合型流态充氧抑制厌氧膜的增殖、负荷高处理时间短、可间歇运行、不需要污泥回流不产生污泥膨胀 厌氧法工艺:特征:污泥回流可降低停留时间、真空脱气设备可避免污泥上浮、冷却器使混合液降温抑制甲烷菌在沉淀池内活动 厌氧生物滤池:机理:涂料表面形成厌氧生物膜污水淹没通过滤料水中的有机物被截流吸附及分解。特征:生物量浓度高、抗冲击负荷能力强、不需污泥回流运行管理方便、适合于处理多种浓度的有机废水 升流式厌氧污泥槽:特征:适合处理高中低浓度的有机废水、无需设沉淀池和污泥回流装置、无需填料节约费用提高了容积利用率

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法和生物膜法的优缺点及其他

1.试比较活性污泥法和生物膜法的优缺点。 答:活性污泥法和生物膜法一样,同属好氧生物处理方法。但活性污泥法是依靠曝气池中悬浮流动着的活性污泥来分解有机物的,而生物膜法则上要依靠固着于载体表面的微生物膜来净化有机物。下面以活性污泥法为参照,比较它们之间的优缺点: (1)生物膜法优点: ①固着于固体表面上的生物膜对废水水质、水量的变化有较强的适应性,操作稳定性 好。②不会发生污泥膨胀,运转管理较方便。而活性污泥法则容易发生污泥膨胀。 ③由于微生物固着于固体表面,即使增殖速度慢的微生物也能生长繁殖。而在活性污泥法中,世代期比停留时间长的微生物被排出曝气池,因此,生物膜中的生物相更为丰富,且沿水流方向膜中生物种群具有一定分布。 ④同高营养级的微生物存在,有机物代谢对较多的转移为能量,合成新细胞即剩余污泥量较少。 ⑤采用自然通风供氧。 (2)生物膜法缺点: ①活性生物难以人为控制,因而在运行方面灵活性较差。而活性污泥法运行比较方便灵活。 ②由于载体材料的比表面积小,故设备容积负荷有限,空间效率较低。而且需要较多的载体填料和支撑结构,通常基建投资超过活性污泥法。 ③处理出水往往含有较大的脱落的生物膜片,使得出水澄清度降低。而活性污泥法在正常情况下获得比较好的澄清水。 2.好氧与厌氧优缺点,使用条件。 答:(1)厌氧生物处理与好氧生物处理相比,优点如下: ①无须充氧,运行能耗大大降低,而且能将有机污染物转化成沼气加以利用。 ②污泥产生量很少,剩余污泥处理费用低,产酸菌污泥产率为 0.15-0.34kg(VSS)/[kg(COD)],产甲烷菌污泥产率为0.03kg(VSS)/[kg(COD)]左右,而好氧微生物污泥产率可达0.25 -0.6kg(VSS)/[kg(COD)]。 ③适于处理难降解的有机废水,或者作为高难降解有机废水的预处理工艺,以提高其

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

CASS工艺优缺点

CASS工艺介绍 1原理概述 CASS(Cyclic-Activated-Sludge-System)是周期循环活性污泥法的简称。最早产生于美国,90年代初引入中国,目前,由于该工艺的高效和经济性,应用势头迅猛,受到环保部门的广泛关注和一致好评。已成功应用于生活污水、食品废水、制药废水的治理,取得了良好的处理效果。CASS法工作原理如下图所示: CASS工艺曝气池由三个反应区(选择区、次反应区和主反应区)组成。在反应器的前部设置了生物选择区,后部设置了可升降的自动滗水装置。其工作过程可分为曝气、沉淀和排水三个阶段,周期循环进行。污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。根据进水水质可对运行参数进行调整。

2工艺特点 CASS工艺是将序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,CASS池分预反应区和主反应区。前部为生物选择区也称预反应区,后部为主反应区,在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气沉淀、排水于一体[1]。 对于一般城市污水,CASS工艺不需要很高程度的预处理,只需设置粗格栅、细格栅和沉砂池,无需初沉池和二沉池,也不需要庞大的污泥回流系统(只在CASS反应器内部有约20% 的污泥回流)。 3CASS工艺的主要优点 3.1工艺流程简单、占地面积小、投资较低、运转费用低 CASS的核心构筑物为反应池,没有二沉池及污泥回流设备,一般情况下不设调节池及初沉池。与传统活性污泥工艺相比,建设费用可节省10%~25%,占地面积可减少20%~35%。 CASS池24200,A2O14000+4775+500=19275 由于CASS工艺曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧的浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%。有机物去除率高,出水水质好[2]。 A2O池运行中勿需投药,两个A段只用轻缓搅拌,并不增加溶解氧浓度,运行费用低

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

水质工程学复习题

污水处理复习题 1.解释生化需氧量BOD 2.解释化学需氧量COD 3.解释污泥龄 4.绘图说明有机物耗氧曲线 5.绘图说明河流的复氧曲线 6.解释自由沉降 7.解释成层沉降 8.解释沉淀池表面负荷的意义 9.写出沉淀池表面负荷q0的计算公式 10.曝气沉砂池的优点 11.说明初次沉淀池有几种型式 12.说明沉淀有几种沉淀类型 13.说明沉砂池的作用 14.辐流沉淀池的进水和出水特点 15.解释向心辐流沉淀池的特点 16.绘图解释辐流沉淀池的工作原理 17.解释竖流沉淀池的特点 18.解释浅层沉降原理 19.说明二次沉淀池里存在几种沉淀类型、为什么 20.活性污泥的组成 21.绘图说明活性污泥增长曲线 22.说明生物絮体形成机理 23.解释混合液浓度MLSS 24.解释混合液挥发性悬浮固体浓度 MLVSS 25.解释污泥龄 26.解释污泥沉降比 SV,污泥指数 SVI 27. 解释BOD污泥负荷率,容积负荷率及计算公式 28.解释活性污泥反应的影响因素 29.解释剩余污泥量计算公式 30.解释微生物的总需氧量计算公式 31.解释传统活性污泥法的运行方式及优缺点 32.解释阶段曝气活性污泥法的运行方式及优缺点

33.解释吸附——再生活性污泥法的运行方式及优缺点 34.解释完全混合池的运行方式及优缺点 35.绘图说明传统活性污泥法、阶段曝气活性污泥法、吸附——再生活性污泥法、 完全混合池的各自BOD降解曲线 36.绘图说明间歇式活性污泥法的运行特点 37.解释活性污泥曝气池的曝气作用 38.根据氧转移公式解释如何提高氧转移速率 39.氧转移速率的影响因素 40.活性污泥的培养驯化方式 41.解释活性污泥系统运行中的污泥异常情况 42.解释污泥膨胀 43.解释生物膜的构造与净化机理 44.解释生物膜中的物质迁移 45.解释生物膜微生物相方面的特征 46.说明高浓度氮的如何吹脱去除 47.解释生物脱氮原理 48.解释A/O法生物脱氮工艺 49.解释生物除磷机理 50.绘图说明A2/O法同步脱氮除磷工艺 51.解释生污泥 52.解释消化污泥 53.解释可消化程度 54.解释污泥含水率 55.说明污泥流动的水力特征 56.污泥浓缩的目的 57.重力浓缩池垂直搅拌栅的作用 58.厌氧消化的影响因素 59.厌氧消化的投配率 60.厌氧消化为什么需要搅拌 61.说明污泥的厌氧消化机理 62.解释两段厌氧消化的机理 63.说明厌氧消化的C/N比 64.说明厌氧消化产甲烷菌的特点 65.消化污泥的培养与驯化方式

活性污泥法

(1)、生物固体停留时间(solid retention time,SRT ) 活性污泥在曝气池、二沉池和污泥回流系统内的停留时间称为生物固体停留时间。可用下式表示: SRT=) //(/d kg kg 污泥量每天从系统排出的活性系统内活性污泥量 (2)有机物负荷 有机物(BOD 5)负荷分为污泥负荷(Ls)和容积负荷(Lv),用公式表示如下: Ls= XV Q O S Lv=V QS 0×103 式中:Ls ——BOD-SS 负荷,kgBOD/(kgMLSS.d); Lv ——BOD 容积负荷,kgBOD/(m 3.d); S 0——反应器进水BOD 浓度,mg/L ; X ——污泥浓度,mg/L 。 (3)水力停留时间 水力停留时间(HRT )表示污水在反应池内的反应时间,用下式表示: t=Q V 式中:t ——曝气池水力停留时间,h ; V ——曝气池有效容积,m 3; Q ——进水流量,m 3/h BOD-SS 负荷和生物固体停留时间都是活性污泥法设计和污水处理厂运行管理的重要参数。 (4)污泥浓度 污泥浓度是指曝气池中1L 混合液内所含的悬浮固体(常表示为MLSS ,mixed liquor suspended solids )或挥发性悬浮固体(MLVSS )的浓度,单位是g/L 或mg/L 。污泥浓度的大小可间接地反映曝气池中所含微生物的浓度。对于普通活性污泥法而言,曝气池中污泥浓度一般在1.5~3g/L 之间。 (5)污泥沉降比和污泥容积指数 污泥沉降比(settling velocity,SV)指曝气池混合液在量筒中静置30min 后,所得的沉淀污泥体积与混合液总体积的比(用百分数表示),即: 污泥沉降比=混合液经30min 静置沉淀后的污泥体积/混合液体积 污泥容积指数(sludge volume index ,SVI)指曝气池的污泥浓度与污泥沉降比的比值。即1g 干污泥所相当的沉淀污泥体积数,单位为mL/g ,但一般不标注。SVI 计算式为: SVI=SV 的百分数×10/MLSS SVI 通常反应了活性污泥的沉降性好坏。如果SVI 较高,表示SV 值较大,则表明沉降性较差;如果SVI 较小,污泥颗粒密实,则表明沉降性较好。但是,如果SVI 过低,则可能反映出污泥中泥的成分过多,微生物量太少。通常,当SVI>100时,污泥的沉降性能良好;当SVI=100~200时,沉降性一般;而当SVI>200时,沉降性较差,污泥可能处在膨胀状态。 二、活性污泥法工艺的运行与管理 活性污泥法工艺 的运行与管理工作主要包括活性污泥的培养与驯化、系统运行状态的监察与相关检测、异常现象的预防及处理等。

几种常用污水处理主要工艺及优缺点比较

几种常用污水处理主要工艺及优缺点 比较 汉赢创业(北京)科技有限公司 二〇二〇年六月十日

目录 第一章污水处理常见工艺 (1) 1.1概述 (1) 1.2污水处理工艺分类 (1) 1.2.1 物理法 (1) 1.2.2 化学法 (1) 1.2.3 物理化学法 (2) 1.2.4 生物法 (2) 第二章中小型生活污水处理工艺对比 (3) 2.1常用生活污水处理工业简介 (3) 2.1.1 氧化沟工艺 (3) 2.1.2 A/O法 (4) 2.1.3 SBR法 (7) 2.1.4 曝气生物滤池 (7) 2.1.5 MBR工艺 (8) 2.2各种工艺之比较 (9) 2.2.1 在生活污水中的应用 (9) 2.2.2 占地面积与总池容 (10) 2.2.3 投资费用 (10) 2.2.4 运行成本及管理 (10) 2.2.5 出水水质 (10) 2.3结论 (10)

第一章污水处理常见工艺 1.1 概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 1.2 污水处理工艺分类 目前,污水处理行业,常用的工艺有以下几种:物理法、化学法、物理化学法、生物法。 1.2.1 物理法 (1)沉淀法,主要去除废水中无机颗粒及SS; (2)过滤法,主要去除废水中SS和油类物质等; (3)隔油,去除可浮油和分散油; (4)气浮法,油水分离、有用物质的回收及相对密度接近于1的悬浮固体; (5)离心分离:微小SS的去除; (6)磁力分离,去除沉淀法难以去除的SS和胶体等。 1.2.2 化学法 (1)混凝沉淀法,去除胶体及细微SS; (2)中和法,酸碱废水的处理; (3)氧化还原法,有毒物质、难生物降解物质的去除; (4)化学沉淀法,重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除。

活性污泥法的各种指标及相互关系

活性污泥法的各种指标及相互关系:MLVSS /MLSS一般0.75左右,SVI =混合液30min 静沉后污泥溶积/污泥干重=SV%×10/MLSS(100ML 量筒) 影响活性污泥处理效果的因素:①溶解氧2mg/l左右为宜②营养物BOD:N:P=100:5:1③PH值6.5-9.0④水温:20-30度⑤有毒物质:重金属、H2S等无机物质和氰、酚等有机物质。会破坏细菌细胞某些必要的生理结构,或抑制细菌的代谢过程。 衡量曝气效果的指标及适用围:动力效率(Ep)、氧转移效率(EA)对鼓风曝气而言即氧利用率、充氧能力(对机械曝气而言) 活性污泥法常见的问题及处理方法:①污泥膨胀:防止办法:加强操作管理,经常检测污水水质、溶解氧、污泥沉降比、污泥指数等。解决办法:缺氧、水温高可加大曝气量或降低进水量以减轻负荷或适当降低MLSS,使需氧量减少。如污泥负荷率过高,可适当提高MLSS值,以调整负荷。如PH值过低,可投加石灰调整PH。若污泥大量流失,则可投氯化铁,帮助凝聚。②污泥解体:污水中存在有毒物质,鉴别是运行方面的问题则对污水量、回流污泥量、空气量和排泥状态以及SV%、MLSS、DO、Ns等进行检查,加以调整;如是混入有毒物质,需查明来源,采取相应对策。③污泥脱氮:呈块状上浮,由于硝化进程较高,在沉淀池产生反硝化,氮脱出附于污泥上,从而使污泥比重降低,整块上浮。解决办法:增加污泥回流量或及时排除剩余污泥,在脱氮之前将污泥排除;或降低混合液污泥浓度,缩短污泥岭和降低溶解氧等,使之不进行到硝化阶段。④污泥腐化:污泥长期滞留而进行厌氧发酵生成气体,从而大块污泥上浮的现象。防止措施:a、安设不使污泥外溢的浮渣清除设备;b、消除沉淀池的死角区;c、加大池底坡度或改进池底刮泥设备,不使污泥滞留于池底。⑤泡沫:原因污水中存在大量合成洗涤剂或其他起泡物质。措施:分段注水以提高混合液浓度;进行喷水或投加除泡剂等。 生物滤池:是以土壤自净原理为依据,有过滤田和灌溉田逐步发展来的。废水长期以滴

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析 活性污泥法、生物膜法、厌氧处理法、生物脱氮、除磷等工艺技术,是废水生物处理借助环境工程和化学工程的手段和方法,以微生物作用为主体开发出了种种用于控制和治理水污染治理的新方法。 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应。所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物。 1.活性污泥法的特点 曝气池中污泥浓度一般控制在2—3g/L,废水浓度高时采用较高数值; 废水在曝气池中的停留时间(HRT)常采用4—8h,视废水中有机物浓度而定; 回流污泥量约为进水流量的25%—50%左右; BOD和悬浮物去除率都很高,达到90%—95%左右。 2.作用原理 普通活性污泥法是依据废水的自净作用原理发展而来的。 3.不足之处 对水质变化的适应能力不强; 所供的氧不能充分利用,因为在曝气池前端废水水质浓度高、污泥负荷高、需氧量大,而后端则相反,但空气往往沿池长均匀分布,这就造成前端供氧量不足、后端供氧量过剩的情况。 因此,在处理同样水量时,同其他类型的活性污泥法相比,曝气池相对庞大、占地多、能耗费用高。 阶段曝气活性污泥法 阶段曝气法也称为多点进水活性污泥法,它是普通活性污泥法的一个简单的改进,可克服普通活性污泥法供氧同需氧不平衡的矛盾。 曝气池容积同普通活性污泥法比较可以缩小30%左右,但其出水差于普通活性污泥法。 渐减曝气法

克服普通活性污泥法曝气池中供氧、需氧不平衡另一个改进方法是将曝气池的供氧沿活性污泥推进方向逐渐减少,这即为渐减曝气法。 该工艺曝气池中有机物浓度随着向前推进不断降低、污泥需氧量也不断下降、曝气量相应减少。 吸附再生活性污泥法 吸附再生活性污泥法系根据废水净化的机理,污泥对有机污染物的初期高速吸附作用,将普通活性污泥法作相应改进发展而来。 特点: 回流污泥量比普通活性污泥法多,回流比一般在50%—100%左右 吸附池和再生池的总容积比普通活性污泥法曝气池小得多,空气用量并不增加,因此减少了占地和降低了造价。 具有较强的调节平衡能力,以适应进水负荷的变化 缺点是去除率较普通活性污泥法低,尤其是对溶解性有机物较多的工业废水,处理效果不理想。 完全混合活性污泥法 完全混合活性污泥法的流程和普通活性污泥法相同,但废水和回流污泥进入曝气池时,立即与池内原先存在的混合液充分混合。 (a)采用扩散空气曝气器的完全混合活性污泥法工艺流程; (b)采用机械曝气的完全混合活性污泥工艺流程; (c)合建式圆形曝气沉淀池。 1.优点: 微生物的代谢速率甚高; 废水水力停留时间往往较短,系统的负荷较高; 构筑物的占地较省。 2.缺点: 导致出水水质较差; 较易发生丝状菌过量生长的污泥膨胀等运行间题。 序批式活性污泥法

活性污泥法工艺分类

活性污泥法工艺分类

————————————————————————————————作者:————————————————————————————————日期:

活性污泥法主要工艺分类 类型具体工艺 普通活性污泥法及其变型普通活性污泥法硝化工艺 A/O脱氮工艺 A/O脱磷工艺 A2/O脱氮除磷工艺AB法 氧化沟卡鲁赛尔氧化沟双沟式氧化沟三沟式氧化沟奥贝尔氧化沟一体化氧化沟 SBR工艺传统SBR工艺ICEAS CAST DAT-JAT UNITANK 各种工艺的主要优缺点和最佳适用条件 工艺名称主要优缺点最佳适用条件 优点: 1、去除有机物效果好 2、硝化工艺可去除氨氮 3、技术成熟,十分安全可靠

普通活性污泥法及硝化工艺4、污泥经厌氧消化达到稳定 5、用于大型污水厂费用较低 6、沼气可回收利用 缺点: 1、生物脱氮除磷效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 不要求脱氮除磷的大 型和较大型污水处理 厂 A/O除磷工艺优点: 1、去除有机物的同时可生物除磷 2、污泥沉降性能好 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、用于中小型污水厂费用偏高 3、沼气回收利用经济效益差 4、污泥渗出液需化学除磷 要求除磷但不要求硝 化脱氮的大型和较大 型污水处理厂 A/O脱氮工艺优点: 1、去除有机物的同时可生物除氮,效率高 2、污泥经厌氧消化达到稳定 3、用于大型污水厂费用较低 4、根据不同的脱氮要求可灵活调节运行工况 要求脱氮但不要求除

5、沼气可回收利用 缺点: 1、生物脱氮效果差 2、反应池和二沉池容积较普通活性污泥法大幅增加 3、污泥内回流量大,能耗较高 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差磷的大型和较大型污水处理厂 A2/O脱氮除磷工艺优点: 1、去除有机物的同时可生物脱氮除磷 2、出水水质很好,有利于回用 3、污泥经厌氧消化达到稳定 4、用于大型污水厂费用较低 5、沼气可回收利用 缺点: 1、污泥内回流量大,能耗较高 2、反应池容积比A/O脱氮工艺还要大 3、污泥渗出液需化学除磷 4、用于中小型污水处理厂费用偏高 5、沼气回收利用经济效益差 要求脱氮除磷或硝化 除磷的大型和较大型 污水处理厂 优点: 1、污水有机物浓度高时刻显著节省基建投资和 运行费用 2、污泥经厌氧消化达到稳定 3、有利于分期修建

哈工大 水质工程学复习题

水质工程学复习题 1. 解释生化需氧量BOD 2. 解释化学需氧量COD 3. 解释污泥龄 4. 绘图说明有机物耗氧曲线 5. 绘图说明河流的复氧曲线 6. 绘图说明河流氧垂曲线的工程意义 7. 解释自由沉降 8. 解释成层沉降 9. 解释沉淀池表面负荷的意义 10. 写出沉淀池表面负荷q0的计算公式 11. 曝气沉砂池的优点 12. 说明初次沉淀池有几种型式 13. 说明沉淀有几种沉淀类型 14. 说明沉砂池的作用 15. 辐流沉淀池的进水和出水特点 16. 解释向心辐流沉淀池的特点 17. 绘图解释辐流沉淀池的工作原理 18. 解释竖流沉淀池的特点 19. 解释浅层沉降原理 20. 说明二次沉淀池里存在几种沉淀类型、为什么 21. 绘图说明斜管沉淀池的构造 22. 活性污泥的组成 23. 绘图说明活性污泥增长曲线 24. 绘图说明活性污泥对数增长期的特点 25. 绘图说明活性污泥减速增长期的特点 26. 绘图说明活性污泥净化污水过程

27. 绘图说明生物絮体形成机理 28. 解释混合液浓度 29. 解释混合液挥发性悬浮固体浓度 30. 解释BOD负荷 31. 解释污泥龄 32. 解释污泥沉降比 33. 解释BOD负荷率 34. 解释活性污泥反应的影响因素 35. 解释剩余污泥量计算公式 36. 解释微生物的总需氧量计算公式 37. 解释传统活性污泥法的运行方式及优缺点 38. 解释阶段曝气活性污泥法的运行方式及优缺点 39. 解释吸附——再生活性污泥法的运行方式及优缺点 40. 解释完全混合池的运行方式及优缺点 41. 绘图说明传统活性污泥法、段曝气活性污泥法、吸附——再生活性污泥法、完全混合池的各自BOD降解曲线 42. 绘图说明间歇式活性污泥法的运行特点 43. 解释活性污泥曝气池的曝气作用 44. 根据氧转移公式解释如何提高氧转移速率 45. 氧转移速率的影响因素 46. 解释BOD污泥负荷率计算公式 47. 解释容积负荷率计算公式 48. 活性污泥的培养驯化方式 49. 解释污泥处理系统的异常情况 50. 解释污泥膨胀 51. 解释生物膜的构造与净化机理 52. 85. 常用的调节池形式?

相关文档
最新文档