稀土的用途

稀土的用途
稀土的用途

稀土的用途

稀土是元素周期表中15个镧系元系再加上钪和钇共计17个金元素的总称。

稀土有工业“黄金”之称,具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料。稀土最显著的功能就是大幅度提高其他产品的质量和性能。

稀土的用途十分广泛。只要在一些传统产品中加入适量的稀土,就会产生许多神奇的效果。目前,稀土已广泛应用于冶金、石油、化工、轻纺、医药、农业等数十个行业。稀土钢能显著提高钢的耐磨性、耐磨蚀性和韧性;稀土铝盘条在缩小铝线细度的同时可提高强度和导电率;将稀土农药喷洒在果树上,即能消灭病虫害,又能提高挂果率;稀土复合肥即能改善土壤结构,又能提高农产品产量;稀土元素还能抑制癌细胞的扩散。

由于稀土元素在光、磁、电领域能够产生特殊的能量转换、传输、存储功能,因而,通过对稀土原料的加工,已形成稀土永磁材料、稀土发光材料、稀土激光材料、稀土贮氢材料、稀土光纤材料、稀土磁光存储材料、稀土超导材料、稀土原子能材料等一批新型功能材料。这些材料因为无污染、高性能而被称为“绿色材料”,它们已经或将要在电子信息、汽车尾气净化、电动汽车以及空间、海洋、生物技术、生理医疗等领域发挥巨大的作用。

稀土有净化环境的功能。汽车尾气净化催化剂是稀土应用量最大的项目之一。电子信息产业的发展给稀土在高新技术领域应用带来高潮。由于稀土元素具有特殊的电子层结构,可以将吸收到的能量转换为光的形式发出。利用这一特性制成的稀土荧光材料可用于计算机显示器及各种显示屏和荧光灯。以彩电为代表的家电产品广泛应用了稀土的荧光、抛光、永磁、功能陶瓷、玻璃添加剂等多种功能材料,带动了80年代稀土开发应用;90年代以来,以计算机为代表的电子信息产品飞速发展,这些产品除用上述稀土材料外,还有稀土贮氢、磁光、超磁致伸缩等功能材料,直接拉动了世界稀土生产的增长。

以稀土制造的永磁材料,磁性能高出普通永磁材料4到10倍,尤其钕铁硼永磁体是目前发现磁性能最高的永磁材料,被称为超级磁体和当代永磁之王。由于此类材料具有超乎寻常的功能,使电子信息设备在不断提高性能的同时,也实现了轻、薄、小型化。稀土永磁材料还在各类电机、核磁共振仪器、磁悬浮列车等领域有着精妙的应用,并被确定为电动汽车主发动机的首选材料。有专家预测,未来几年内,如果稀土永磁材料得到良好的应用,仅材料产值就将达35亿美元,其辐射产值将达到数千亿美元。

稀土贮氢材料贮存密度大于液氢,体积却只有普通钢瓶的六分之一。目前应用最为成功的是镍氢电池,其等体积充电容量是目前广泛使用的镍镉电池的2倍,且没有记忆效应和镉的污染;与锂离子电池相比,又具备价低、安全性能好的优势,被各国科技和产业界称为“绿色电池”,已大量应用于便携式电器、移动电话等无线电子设备,并可望成为下世纪电动汽车的电源。

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土的性质及用途

立志当早,存高远 稀土的性质及用途 稀土元素系典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。稀土元素的电子层结构和核结构决定了稀土元素及其化合物的性质,而稀土的许多独特性质,又决定着它们的应用。有关稀土的结构与性质的关系示于下表。经历了60 多年的开发,因提取工艺复杂,产品价格昂贵,发展速度缓慢,消费量也不大。20 世纪50 年代以后,稀土分离技术得到了迅速的发展,近代的离子交换法、溶剂萃取法取代了经典的分级结晶、分步沉淀法,并在工业生产中获得各种较纯的单一稀土产品,从而为稀土的应用奠定了基础。近十年,稀土广泛用于冶金、石油化工、玻璃陶瓷、新材料领域。 在冶金工业方面:稀土金属或氧化物、硅化物加入钢中,能起到精练、脱硫、中和低熔点有害质的作用,并可以改善钢的加工性能;稀土铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机,柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面:用稀土制成的分子筛催化剂,具有活性高、选择性好,抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气特比镍铝催化剂大1.5 倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面:稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广

各种稀土元素的应用领域

各种稀土元素的应用领域 镧(La):镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce):1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr):1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉

混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd):钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

稀土用途word版

17种稀土元素名称的由来及用途浅说 镧(La) “镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。从此,镧便登上了历史舞台。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。 铈广泛应用于(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约一千多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF 激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。 镨是用量较大的稀土元素,其主要用于玻璃、陶瓷和磁性材料中。(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

稀土的分类及其用途

稀土的分类及其用途 2009年09月28日 09点34分06秒 【概述】 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。简称稀土(RE或R)。 韩国并不是主要的稀土使用国,目前我国出口的稀土数量达到每年5万吨(合法出口),主要的应用大国为日本,欧洲和北美。与此同时稀土在我国的应用也在积极开展,目前占到7万吨。我国每年稀土实际的矿产的实际投入量大约为15万吨,这个数字近年来没有明显变化。尽管如此,稀土的数量仍然不能满足目前全球在汽车,电子等行业用量的要求。特别是稀土在抛光,催化,磁性材料方面的增长也是非常突出。然而稀土的应用也存在着参差不齐的问题,一些元素,例如:Sm,Gd,Ho,Er等就没有得到充分的应用而大量荒弃,非常可惜。 【稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE 表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【17种稀土元素名称的由来及用途】 稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

17种稀土元素名称的由来及用途(图文)

17种稀土元素名称的由来及用途 2010年03月22日 13:30 在海湾战争中,加入稀土元素镧的夜视仪成为美军坦克压倒性优势的来源。上图为氯化镧粉末。(资料图) 镧(La)

“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。(资料图) 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。

(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨钕合金(资料图)

稀土矿用途及分类

稀土矿的用途和分类 稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 铥的主要用途有以下几个方面: (1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X 射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。 (2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。 (3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),

达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。 (4)铥还可在新型照明光源金属卤素灯做添加剂。 (5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。 镱(Yb)年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊 特必(Ytterby)命名为镱(Ytterbium)。 镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

稀土元素在金属材料中的作用与机理

稀土元素在金属材料中的作用与机理 【摘要】稀土元素作为一种重要的新能源技术材料,在当今的研究开发中有着十分重要的意义,尤其是在建筑、工业、金属材料的运用中有着非常重要的作用。通过稀土元素技术的综合应用,并充分考虑在当前社会环境中的整体模式,稀土元素成为一种战略元素,既是高新技术的生长点,也是新材料的宝库,在工业生产中发挥着越来越大的作用。本文将围绕稀土元素的整体概念进行分析,并概述稀土元素在金属材料中的作用,从多方面考究稀土元素在金属材料中的机理,更好的发挥稀土元素的整体效能。 【关键词】稀土元素金属材料作用机理 稀土元素在当前新能源技术的发展中有着重要的作用,尤其是在金属材料的运用中能有效降低硫含量,并且能彻底改变杂物形态。在稀土元素的整体作用分析中,通过技术的改进措施,充分发挥稀土元素在金属材料中的净化作用、吸收作用等,形成整体的机理及功能运用模式。因此,要整体分析稀土元素与金属材料的融合性,在整个技术运用的过程中,通过对稀土元素在金属材料中的机理的全面分析,尤其是突出在化学效应、作用发挥等多方面的整体机能,更好的推动稀土元素的作用。在实际的操作过程中突出稀土元素的化学原理,构建更为有效的稀土元素运用机制,形成高标准的机理效能,充分发挥在金属材料中的作用。 1 简述稀土材料的整体概念 1.1 概念分析 稀土是历史遗留下来的名称。稀土元素(Rare Earth Element)是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,很稀少,因而得名为稀土(Rare Earth,简称RE或R)。稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素。稀土元素的共性是:①它们的原子结构相似;②离子半径相近(REE3+离子半径1.06×1010m~0.84×1010m,Y3+为0.89×1010m);③它们在自然界密切共生。 1.2 特性分析 稀土元素是周期表中IIIB族钇、钪和镧系元素之总称。其中钷是人造放射性元素。他们都是很活泼的金属,性质极为相似,常见化合价+3,其水合离子大多有颜色,易形成稳定的配化合物。溶剂萃取和离子交换是目前分离稀土的较好方法。镧、铈、镨、钕等轻稀土金属,由于熔点较低,在电解过程可呈熔融状态在阴极上析出,故一般均采用电解法制取。可用氯化物和氟化物两种盐系,前者以稀土氯化物为原料加入电解槽,后者则以氧化物的形式加入。

稀土金属主要用途

十七种稀土用途一览 1 镧用于合金材料和农用薄膜 2 铈大量应用于汽车玻璃 3 镨广泛应用于陶瓷颜料 4 钕广泛用于航空航天材料 5 钷为卫星提供辅助能量 6 钐应用于原子能反应堆 7 铕制造镜片和液晶显示屏 8 钆用于医疗核磁共振成像 9 铽用于飞机机翼调节器 10 铒军事上用于激光测距仪 11 镝用于电影、印刷等照明光源12 钬用于制作光通讯器件 13 铥用于临床诊断和治疗肿瘤 14 镱电脑记忆元件添加剂 15 镥用于能源电池技术 16 钇制造电线和飞机受力构件 17 钪常用于制造合金 1 . 镧(La) “镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。 铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。(资料图) 2. 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。 (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 3. 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个

稀土元素的发现、种类和用途

稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 1.稀土种类 镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。 与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 2.稀土分类 (1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆 (2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组: (1)除钪之外(有的将钪划归稀散元素) (2)轻稀土组:为镧、铈、镨、钕、钷; (3)中稀土组:钐、铕、钆、铽、镝; (4)重稀土组:钬、铒、铥、镱、镥、钇。

稀土元素介绍

稀土元素介绍 在周期系中,你知道什么是镧系元素?什么是稀土元素吗?它们的电子层结构 和性质有什么特点?它们在科学技术和生产中扮演了什么样的角色? “镧系元素”在周期表中从原子序数为57号的镧到原子序数为71号的镥共15种元素,它们的化学性质十分相似,都位于周期表中第ⅢB 族,第6周期镧的同一格内,但它们不是同位素。同位素的原子序数是相同的,只是质量数不同。而这15种元素,不仅质量数不同,原子序数也不同。称这15种元素为镧系元素,用Ln 表示。它们组成了第一内过渡系元素。 “稀土元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格子上方的钇和钪,共17种元素总称为稀土元素,用RE 表示。按照稀土元素的电子层结构及物理和化学性质,把钆以前的7个元素:La 、Ce 、Pr 、Nd 、Pm 、Sm 和Eu 称为轻稀土元素或铈组稀土元素;钆和钆以后的7个元素:Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,再加上Sc 和Y 共10个元素,称为重稀土元素或钇组稀土元素。 “稀土”的名称是18世纪遗留下来的。由于当时这类矿物相当稀少,提取它们又困难,它们的氧化物又和组成土壤的金属氧化物Al2O3很相似,因此取名“稀土”。实际上稀土元素既不“稀少”,也不像“土”。它们在地壳中的含量为0.01534,其中丰度最大的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。铈在地壳中的含量比锡还高,钇比铅高,就是比较少见的铥,其总含量也比人们熟悉的银或汞多,所以稀土元素并不稀少。这些元素全部是金属,人们有时也叫它们稀土金属。 我国稀土矿藏遍及18个省(区),是世界上储量最多的国家。内蒙包头的白云鄂博矿是世界上最大的稀土矿。在我国,具有重要工业意义的稀土矿物有氟碳铈矿Ce(CO 3)F ,独居石矿RE(PO 4),它们是轻稀土的主要来源。磷钇矿YPO 4和褐钇铌矿YNbO 4是重稀土的主要来源。 我们从以下几个方面来讨论镧系元素的通性: 1、价电子层结构 2、氧化态 3、原子半径和离子半径 4、离子的颜色 5、离子的磁性 6、标准电极 7、金属单质 电子层结构 这是目前根据原子光谱和电子束共振实验得到的镧系元素原子的电子层结构:

最新稀土用途大全

稀土用途大全 稀土是元素周期表中的镧系元素和钪、钇共十七种金属元素的总称,自然界中有250 种稀土矿 稀土的用途是什么? 1、军事方面 稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,得益于稀土科技领域的技术。 2、冶金工业 稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。

3、石油化工 用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 4、玻璃陶瓷 主要包括以下几个方面:超导陶瓷、压电陶瓷、导电陶瓷、介电陶瓷及敏感陶瓷等。 稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显像管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

稀土元素在镁合金中的作用及其应用

稀土元素在镁合金中的作用及其应用() 稀土元素在镁合金中的作用及其应用(1).txt爱情是艺术,结婚是技术,离婚是算术。这年头女孩们都在争做小“腰”精,谁还稀罕小“腹”婆呀?高职不如高薪,高薪不如高寿,高寿不如高兴。稀土元素在镁合金中的作用及其应用.. 张景怀1,2,唐定骧1,张洪杰1,王立民1,王..军1,孟..健1* (1.中国科学院长春应用化学研究所稀土资源利用国家重点实验室,吉林长春130022;2.中国科学院研究 生院,北京100039) 摘要:综述了稀土元素在镁合金中的主要作用和效果,从冶金物理化学角度对稀土元素在镁合金中的作用行为进行了初步分析。结合中国科 学院长春应用化学研究所的初步研究成果介绍了含稀土镁合金Mg..Zn..RE,Mg..Al..RE,Mg..RE等系列的性能及其应用,展示了含稀土镁合金的 优良综合性能,特别是高强、高韧、耐热和抗蠕变性能、耐腐蚀性能,稀土镁合金将成为研制高性能镁合金的重要方向。 关键词:镁合金;力学性能;耐热性;稀土 中图分类号:TG146.2;O614.33....文献标识码:A....文章编号: 0258-7076(2008)05-0659-09

....镁合金是工程应用中最轻的金属结构材料, 具有密度低、比强度高、比刚度高、减震性高、易加工、易回收等优点,在航天、军工、电子通讯、交通运输等领域有着巨大的应用市场,特别是在 全球铁、铝、锌等金属资源紧缺大背景下,镁的资源优势、价格优势、产品优势得到充分发挥,镁合金成为一种迅速崛起的工程材料。面临国际镁金 属材料的高速发展,我国作为镁资源生产和出口 大国,对镁合金开展深入研究和应用前期开发工 作意义重大。然而目前普通镁合金强度偏低、耐热耐蚀等性能较差仍然是制约镁合金大规模应用的 瓶颈问题[1~5]。 稀土元素由于具有独特的核外电子结构,作 为一种重要的合金化元素,在冶金、材料领域起着独特的作用,例如净化合金熔体、细化合金组织、提高合金力学性能和耐腐蚀性能等。作为合金化 元素或微合金化元素,稀土已经被广泛应用于钢 铁及有色金属合金中[6]。在镁合金领域,尤其是在耐热镁合金领域,稀土突出的净化、强化性能逐渐被人们认识与把握,稀土被认为是耐热镁合金中 最具使用价值和发展潜力的合金化元素。我国的 镁资源和稀土资源特别丰富,近年来国内科研工

稀土元素镧及其应用(精)

稀土元素镧及其应用 在稀土元素家族中,锢无疑是个非常重要的成员。论地位和名气,他居于稀土家族主体“镧系元素”之首,作为15个元素的代表占据了化学元素周期表主表中的一个空格,并以他的名字来命名这个元素族系。论地壳中丰度为32ppm,占稀土总丰度的14.1%,仅次于铈和钕,居第三位。从发现年代看,他也仅排在钇和铈之后,是第三个被发现的稀土元素。 1839年,那位曾经发现铈的瑞典化学家伯采利乌斯(J.J.Berzelius),有一个瑞典学生名叫莫桑德(Car1 Mosander),在研究“铈土”时,分离并发现其中还隐藏着一种新元素,于是莫桑德便借用希腊语中“隐藏”一词把这种元素取名为”镧”。从此,镧便登上了被人类认识和利用的历史舞台。 镧之所以被较早发现,与他在元素周期表中的位置,也就是原子结构和性质密切相关。他居镧系元素之首,4f轨道上电子数为0,与其他元素发生化学反应时呈正三价。钪和钇虽然与他同在IIIB族,但不在一个周期,性质悬殊。与他紧邻的铈又能呈稳定正四价状态,也造成较大的化学性质差异,易于分离。而他与错钕等其他稀土元素之间又有铈相隔,因此镧比较容易同其他稀土分离并提纯。 稀土元素作为典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。在17个稀土元素当中,按金属的活泼次序排列,由钪、钇到镧递增,又由镧到镥递减,属镧最为活泼。因此作为金属热还原工艺的还原剂,他可以用来还原制备其他稀土金属,而还原制备金属镧,则只能采用比他更为活泼的碱金属和碱土金属,通常采用金属钙作还原剂。 活跃的化学活性和丰富的储量,使镧广泛应用于冶金、石油、玻璃、陶瓷、农业、纺织和皮革等传统工业领域。尽管生产镧并不困难,但为了降低成本,在充分发挥镧及稀土共性的前提下,经常以混合轻稀土或富镧稀土的产品形式使用。 稀土作为金属材料的净化和变质剂,通常以混合稀土金属或中间合金的形态来使用。而镧作为最活泼的一员,在去除氧、硫、磷等非金属杂质和铅、锡等低熔点金属杂质,以及细化晶粒等方面自然会发挥首当其冲的作用。只是他经常和铈错钕等轻稀土弟兄们一起协同作战。当然,也能同其他金属协同作战,如在铅中加入富镧稀土金属(0.01‰~0.2‰)和铁(0.005‰~ 0.1‰),可明显提高抗折拉性能,使铅板机械强度提高上百倍。不仅改善了铅板防辐射性能,还扩大了合金基材的应用范围。以银-氧化镧复合镀层取代纯银作为电接触材料,可节约用银70%~90%,有很大经济效益。 20世纪80年代,石泊裂化催化剂曾经是稀土最大应用领域,因为稀土用作Y 型沸石催化剂,以镧的催化活性最强。在美国一直采用富镧稀土作为石油裂化催化

17种稀土元素用途

17种稀土元素名称的由来及用途 一个常用的比喻是,如果说石油是工业的血液,那稀土就是工业的维生素。 稀土是一组金属的简称,包含化学元素周期表中镧、铈、镨等17种元素,目前已被广泛应用于电子、石化、冶金等众多领域。几乎每隔3-5年,科学家们就能够发现稀土的新用途,每六项发明中,就有一项离不开稀土。 中国稀土矿藏丰富,雄踞着三个世界第一:储量第一,生产规模第一,出口量第一。同时,中国还是唯一一个能够提供全部17种稀土金属的国家,特别是军事用途极其突出的中重稀土,中国占有的份额让人艳羡。 稀土是宝贵的战略资源,有“工业味精”“新材料之母”之称,广泛应用于尖端科技领域和军工领域。据工业和信息化部介绍,目前稀土永磁、发光、储氢、催化等功能材料已是先进装备制造业、新能源、新兴产业等高新技术产业不可缺少的原材料,还广泛应用于电子、石油化工、治金、机械、新能源、轻工、环境保护、农业等。。 早在1983年,日本就出台了稀有矿产战略储备制度,其国内83%的稀土来自中国。值得一提的是,曾有媒体报道称,日本在购得大量稀土后,并不急于使用,而是将之存于海底,以应对未来能源之需。 再看美国,它的稀土储量仅次于中国,但其从1999年开始,就采取封存等手段逐步停止开采本国稀土资源,转而从中国大量进口。 邓小平同志曾说:“中东有石油,中国有稀土。”其话语的弦外之音不言而喻。稀土不但是世界上1/5高科技产品必备的“味精”,更是未来中国在世界谈判桌上的一张强有力的底牌筹码。保护并科学利用好稀土资源,不让宝贵的稀土资源盲目贱卖出口西方国家,成为近年来诸多仁人志士呼吁的一项国家战略。邓小平在1992年就一语道明了中国稀土大国的地位。全球97%的稀土供应量来自中国,西方担心对中国稀土资源的过分依赖。但是稀土是中国的资源,中国有权处置,无需在意欧美的不满态度。 17种稀土用途一览 1 镧用于合金材料和农用薄膜 2 铈大量应用于汽车玻璃 3 镨广泛应用于陶瓷颜料 4 钕广泛用于航空航天材料 5 钷为卫星提供辅助能量 6 钐应用于原子能反应堆 7 铕制造镜片和液晶显示屏 8 钆用于医疗核磁共振成像 9 铽用于飞机机翼调节器 10 铒军事上用于激光测距仪 11 镝用于电影、印刷等照明光源 12 钬用于制作光通讯器件 13 铥用于临床诊断和治疗肿瘤

稀土元素资料汇总

稀土元素资料汇总 第一篇 周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~71的15种化学元素又统称为镧系元素。稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土元素;钆、铽、镝、钬、铒、铥、镱、镥、钇称为重稀土元素。稀土元素是历史遗留下来的名称,通常把不溶于水的固体氧化物叫做土,而在18世纪,这17种元素都是很稀少的尚未被大量发现,因而得名为稀土元素。现已查明,它们并不稀少,特别是中国的稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从铀的裂变产物中分离出钷,共经历150多年。 已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7·H2O]。 第二篇 稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。 “稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”: “轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。 “重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 二、稀土资源及储备状况 由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因

稀土元素在铝合金中的作用和应用

在铝合金中加入微量稀土元素,可以显著改善铝合金的金相组织,细化晶粒,去除铝合金中气体和有害杂质,减少铝合金的裂纹源,从而提高铝合金的强度,改善加工性能,还能改善铝合金的耐热性、可塑性及可锻性,提高硬度、增加强度和韧性。稀土元素的加入使得稀土铝合金成为一种性能优良、用途广泛的新型材料,目前稀土铝合金的产量已近全国铝产量的1/4。 稀土元素在铝合金中的作用 稀土元素非常活泼,极易与气体(如氢)、非金属 (如硫)及金属作用,生成相应的稳定化合物。稀土元素的原子半径大于常见的金属如铅、镁等,在这些金属中的固溶度极低,几乎不能形成固溶体。一般认为,稀土元素加入到铝合金中可起到微合金化的作用;此外,它与氢等气体和许多非金属有较强的亲和力,能生成熔点高的化合物,故它有一定的除氢、精炼、净化作用;同时,稀土元素化学活性极强,它可以在长大的晶粒界面上选择性地吸附,阻碍晶粒的生长,结果导致晶粒细化,有变质的作用。以下就这3方面的作用详细介绍。 1.变质作用 变质处理是指在金属及合金中加入少量或微量的变质剂,用以改变合金的结晶条件,使其组织和性能得到改善的过程。变质剂又称晶粒细化剂或孕育剂。稀土元素的原子半径为0.174 ~0.204mm,大于铝原子半径(0.143mm)。稀土元素比较活泼,它熔于铝液中,极易填补合金相的表面缺陷,从而降低新旧两相界面上的表面张力,使得晶核生长的速度增大,同时还在晶粒与合金液之间形成表面活性膜,阻止生成的晶粒长大,使合金的组织细化。此外,铝与稀土形成的化合物在金属液结晶时作为外来的结晶晶核,因晶核数的大量增加而使合金的组织细化。研究表明:稀土对铝合金具有良好的变质效果。例如,合金化的7005铝合金铸锭本身就呈十分细小的组织。同时值得一提的是,稀土的变质作用具有长效及重熔稳定性的特点,比用钠(Na)、锶(Sr)等变质剂具有明显优点。稀土的变质作用只受共晶硅变化的影响。 2.精炼、净化作用 稀土元素的脱氧能力比强脱氧剂Al、Mg、Ti等强,微量稀土就能使[O]脱到<lppm(即<10-4%)。稀土的脱硫能力也相当强,可以生成RES或RE2S3,生成物主要取决于稀土与硫的活度或溶解度。稀土元素在金属液中还可以与氧和硫同时发生反应生成RE2O2S型硫化物。稀土元素还能与P、Sn、As等低熔点金属元素化合,生成REP、RESn、REAs等化合物。这些稀土化合物都具有熔点高、比重轻,当它们的熔点高于金属冶炼温度时,能上浮一部分成渣,它们微小的质点则成为铝结晶过程的异质晶核,而留在固态金属内的部分则能降低其危害性。稀土对氢的的吸附力特别大,能大量吸附和溶解氢,稀土与氢的化合物熔点较高,并且弥散分布于铝液中,以化合物形成的氢不会聚集形成气泡,大大降低铝的含氢量和针孔率。 3.合金化作用

相关文档
最新文档