铜铝复合材料

铜铝复合材料
铜铝复合材料

天津舒郎兰迪散热器

铜铝复合材料

铜铝复合材料,【舒ズ郎兰ズ迪】,当消费者走进建材市场选购暖气片时,满眼的产品瞬间挑花了眼。现在,各种材质、各种价格的暖气片在建材市场中均有销售,按其材质主要有铸铁暖气片、钢制暖气片、铜铝复合暖气片等等,一柱价格从几十块到上百块不等。下面介绍一下最适合集体供暖家庭,性价比最高的钢制暖气片。

钢制暖气片分为两种,钢制板式暖气片和钢制柱式暖气片。一般的家庭客户很难分辨这两者有什么不同,实际上二者有很大的区别,下面对这两种类型的暖气片进行详细介绍。

钢制板式暖气片是用一整块的钢材连接在一起的,焊点较少,不会出现漏水的情况,而且散热性能也不错。由于它散热性能好,外观小巧,采用内防腐之后,能够很好的保证暖气片的使用寿命和安全,不容易出现漏水的情况,一般南方家庭使用的比较多。不过,钢制钢制板式暖气片也有一个很大的缺陷,就是如果暖气片的某个地方出现问题,整个暖气片就要全部换新的,造成一定的经济损失。

钢制柱式暖气片是由相同规格的几片暖气片连接在一起,根据需要可以增加或者减少片数。如果某一片暖气片出现了问题,只要更换损坏的那片就可以了,而其他的暖气片不会受到任何影响。此外,钢制柱式暖气片外形美观,可选择性多,散热性能稳定,低碳节能,绿色环保,深受工厂、校园、家庭等众多场所的青睐。

钢制柱式暖气片的优势:

承压力高,散热性能好,外表光滑,外型大方多样,颜色丰富,线条简洁,提升家居环境档次;最为重要的是钢制柱式暖气片水流量大、水阻小、不易结垢、消耗体系能量少,供热成本低,散热量大,热效率高。

钢制柱式暖气片的弊端:

焊接点较多,容易出现腐蚀和漏水的事故,因此在选购时要挑选品牌大、实力大、技术装备领先的暖气片产品。同时,要请专业的安装公司进行安装。

综上所述,虽然钢制柱式暖气片有腐蚀漏水的危险,但是相对比钢制板式暖气片优势还是非常明显的。现在钢制柱式暖气片的制造技术已经相当成熟,设计使用寿命达几十年,质保期也比较长。因此,大家在选购钢制柱式暖气片时一定要认准品牌,以免出现漏水等事故,影响家庭采暖。

高性能复合材料拉挤成型工艺技术.ppt

高性能复合材料拉挤成型工艺技术聚氨酯拉挤技术需改进之处: 1 玻纤的处理 2 注射箱的设计 3 模具方面的特征 4工艺参数 5 机器设计 聚氨酯拉挤设备简介及运用

玻纤处理在玻纤中的水分可导致表面起泡 筒子架成形区域 灌注/钢型 辐射加热

玻纤中水分导致表面水泡的应对措施 检查下多余的水汽和溶剂是否是在混合过程中或由于不正确的加热而导致。水和溶剂在放热过程中会沸腾蒸发,造成表面的气泡或气孔。 降低线速,和/或升高模温,通过增加表面树脂硬度来更好地克服这个问题。 使用表面罩或表面毡。这将加固表层树脂,有助消除气泡或气孔。水式水蒸气会和材料起反应,改善生产环境,纱房抽湿处理。

低压注射优点: ?用尼龙或高密度聚乙烯制成?加工设计相对简单 -成本低 ?可以适用现有的模具 -适合研发用 ?质轻,方便处理

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Donec velit neque, auctor sit amet aliquam vel, ullamcorper sit amet ligula. Nulla quis. 高压注射 入口 出口 优点: ?可实现增强纤维的完全浸渍?复杂的截面 ?连续毡、针织毡、复合毡等?没有多余的树脂?更长的操作窗口期 缺点: ?费用?时间?重量 ?不适合研发 设计要求 ?不锈钢 ?根据模具定型

模具特征比普通模具更严格 PU模腔尺寸的允许偏差不能超过0.001英寸。 需要镀铬后重新打磨。 在有负锥度或类似阻塞的情况下聚氨酯不能平稳穿过模具。 正锥度可能导致堵模。 加热管内部热电偶紧密公差集成散热

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

聚氨酯和海藻酸复合材料的制备及性能研究【开题报告】

毕业设计开题报告 高分子材料与工程 聚氨酯和海藻酸复合材料的制备及性能研究 一、选题的背景、意义 医用敷料作为伤口处的覆盖物,在伤口愈合过程中,可以替代受损的皮肤起到暂时性屏障作用,避免或控制伤口感染,提供有利于创面愈合的环境。[1]目前在创伤敷料方面应用的生物质纤维主要为骨胶原纤维、海藻纤维和甲壳素纤维。1980年以来,英国的医用敷料行业首先在世界上推广海藻酸医用敷料;日本尤尼吉卡公司于1998年4月推出甲壳素创伤敷料;东华大学研制的甲壳素类创伤敷料也于1998获得上海市高新技术成果转化项目证书,并获得了上海医药管理局市场准入注册。细菌纤维素敷料的性能比其它创伤敷料更好,巴西自1987年以来应用细菌纤维素膜治疗烧伤、烫伤、皮肤移植、创伤等治疗取得成功;美国Xylos公司的Xcell细菌纤维素创伤敷料于2003年在美国上市;Phisalaphong等证实了壳聚糖/细菌纤维素复合材料在处理烧伤、褥疮、难以愈合的伤口以及需要频繁更换敷料的伤口等中具有很好的应用价值。[2]医用敷料分类按采用的材料,医用敷料目前大致可分为:天然材料类,合成高分子材料类,无机材料类和复合材料类。天然材料又包括棉纤维、甲壳素/壳聚糖、海藻酸盐、明胶、胶原、动物皮、同种自体/异体皮。可以作为敷料的合成分子材料有很多种,如聚氨酯、聚乙烯醇、聚丙烯酰胺、聚乙烯、聚丙烯腈、聚己内酯、聚乳酸、聚四氟乙烯、增塑聚氯乙烯、硅橡胶、多氨基甲酸乙酯和硅氧烷弹性体等。无机材料包括石墨、无机活性玻璃等。[3] 伤口愈合过程是一个复杂的过程,不同的伤口和同一个伤口不同的阶段对敷料有不同的要求。目前任何一种单一材料都不能满足伤口愈合过程的复杂需要,天然材料制成的敷料大部分吸收性好,具有良好的生物相容性及生物学活性,但是机械性能差。合成高分子材料隔绝性能好,机械强度好,但是吸收性能相对天然材料差些。可以通过对材料的复合,兼具多种材料的优势,实现伤口愈合的要求。如用水凝胶和合成薄膜或泡沫结合使用,还可以通过物理或化学方法在敷料中引入药物,得到药物性敷料,它们可以在保护创面同时又可起到治疗伤口的作用。 二、相关研究的最新成果及动态 黄忠兵,李伯刚等[4]对敷料用透湿性聚氨酯膜的性能及其影响因素做了研究,以丙酮和N-N-二甲基-甲酰胺(DM F) 作溶剂, 将预聚体配成浓度为50% 的溶液,再加入微量水混合, 倒在玻

铜铝复合散热器优缺点

铜铝复合散热器优缺点 ——金旗舰铜铝散热器质保30年承诺铜铝复合散热器优缺点_铜铝复合散热器_金旗舰散热 器 随着人们生活水平的提高,采暖设备技术的更新换代,市场上散热器的品牌和类型真可谓琳琅满目。根据市场调查数据显示,铜铝复合材质的散热器,颇受消费者的喜爱。今天小编就给您介绍一下铜铝复合散热器优缺点。 铜铝复合散热器内部为铜管,外部为铝片,铜负铜是自然界里面,抗腐蚀性极佳的金属,容易铸造成型,与其他金属做成的合金更加的耐腐蚀责直接和水接触,铝片在外部负责将热量传导。铝的导热能力相当的好,这种新型散热器轻

薄美观装饰性强,防腐性能极佳,不失为家居采暖首选。中国的水质环境复杂,国外的采暖散热器很难达到国内标准。所以国内首创已申请国家专利的铜铝复合散热器应运而生。 如果从单片散热器造价来算的话,铜铝复合大约90-120元/片,钢制暖气片60-80元/片。但是,一片同规格的散热器,铜铝复合可供面积大约2平方,钢制暖气片只能满足1.2-1.5平方米。铸铁就更不用说了。比如15平方的房间,大约要用7、8片铜铝复合散热器。钢制散热器要用10片多。铜铝复合散热器最低要7*90=630元。钢制散热器要花 10*60=600元。所以两者在价格上是相差无几的。空间面积越大,选择铜铝复合散热器就越划算。比如写字楼,工厂,学校。 铜和铝都是稀有金属,有很高的保值性能。复合防腐性能优越几乎与建筑同寿,少了维护修理的时间和费用。另外,因为铜铝材质都是速冷速热型金属,一关就冷一开就热,而不像钢制暖气片和铸铁散热器要慢慢回温。所以铜铝复合散热器在节能方面也比钢制暖气片要好一些。这样一折算,铜铝复合真不愧为传统铸铁散热器的换代产品。 中国散热器十大品牌之一的金旗舰暖气片总结:相信消

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

铜铝复合排

铜铝复合排 铜铝复合排(也叫铜包铝排) 铜铝复合排是一种以铝为基体,外层包覆铜。按其制造工艺可分为:包覆焊接法是国内、外制备铜包铝线的方法,国内有些企业用此种工艺来制作铜包铝排,这种方法是采用平、立辊同芯压制,将铜带同心的包覆在铝排上,然后对纵缝进行氩弧焊接,再经过拉伸、退火。轧制压接法将经过清洗处理的铜带从上、下两宽面压接在铝板上,利用轧辊施加压力将铜带和铝板压接在一起,然后矫形或做进一步处理后退火。静液挤压法,模铸连轧直接成形法,由华铜公司研发的模铸连轧直接成形工艺铜和铝是固液结合,通过特殊的工艺处理形成良好的复合层。复合层由被铝熔解的铜层和铜、铝相互大面积扩散形成,真正实现了冶金结合。这种方法比固相结合复合层厚,结合强度高。将清洗后的铝棒穿入清洗后的铜管内制成复合坯料,放入静液挤压机,利用高静水压力和大加工变形率作用,实现铜、铝之间的冶金结合。铝芯与铜管,对铝芯外面和铜管内面进行清除氧化膜,将铝芯压入铜管内,拉伸或轧制使铜管与铝芯间固相结合,拉成所需外形尺寸,使他们之间形成永久性原子间扩散结合的双金属,表面光亮,圆整,无缺陷。它是将铜的高质量稳定导电性能与铝的低成本的能源,以较低的接触电阻,结合为一体的新型导体材料。可全面替代纯铜排,铜占比重的20%,铝占比重的80%,相同规格情况下是纯铜排的2.5倍长,载流量是纯铜排的85%,选择稍微大一点的规格可完全达到相同载流量,符合客户需要的线径及力学和电学性能技术要求一、铜包铝排优点: 1、良好的导电性:铜铝体积比为15%的铜包铝排电性能,与铜排相比其交流载流量是纯铜的85%。 2、重量轻:铜包铝排的密度仅为纯铜排的37%-40%,同等重量的长度(体积)是纯铜排的2.5-2.7倍。 3、良好的力学性能:具有良好的抗拉强度,可弯曲性和延伸率。 4、牢固的铜铝间结合:两种不同金属材料之间在各种环境温度中达到永久性的原子晶间结合,并且铜层(镀锡、锌层)分布均匀,不存在任何物理缺陷。 5、良好的延展性和可靠性:经过特殊的热处理工艺,具有一定的可塑性,有利于冲孔、剪切、弯曲加工产品不开裂、不分离。为了提高抗腐蚀性能,可在铜层表面进行镀锡、镀锌处理。 6、最佳的选择性:节省铜材,极大降低生产配套成本,绿色环保,无任何污染。 注:可根据用户加工各种宽度和厚度的铜铝复合排。

复合材料高性能聚氨酯

高性能聚氨酯/玻纤复合材料 (GRPU) 刘锦春 青岛科技大学高分子科学与工程学院 Liujinchun2001@https://www.360docs.net/doc/907639603.html,

1、聚氨酯/玻纤复合材料简介 近年来,聚氨酯树脂以其韧性好、固化快、无苯乙烯烟雾等优点使其复合材料脱颖而出。随着人们对聚氨酯成型技术的掌握和在控制其反应性以延长其适用期方面的进步,聚氨酯已进入长期由不饱和聚酯和乙烯基酯树脂主宰的复合材料领域。在过去,聚氨酯复合材料主要是用结构反应注射法(SRIM)成型的汽车内饰件和外部件,如皮卡车箱、车底板、行李架、内门板等(聚氨酯经过发泡)。然而在近几年中,聚氨酯复合材料发展了拉挤、缠绕、真空灌注和长纤维喷射等技术,主要用不发泡的聚氨酯复合材料来制造窗框、浴缸、电灯杆和卡车、越野车的大型部件等。聚氨酯拉挤聚氨酯拉挤一般具有低粘度、中度至高度反应性、良好的冲击强度和韧性以及短梁剪切性能。与其他材料相比,用聚氨酯拉挤可产生多种效益。它可以提高制品中玻璃纤维含量而使制品强度大大提高。例如,用玻璃纤维与聚氨酯树脂拉挤窗框,所得窗框的强度比PVC窗框高8倍,其导电性比铝低40倍,因而绝缘性能好得多。同时,因为聚氨酯拉挤窗框的脆性更小,它们不会开裂而经久耐用。 高性能聚氨酯/玻璃纤维复合材料是一种以高硬度聚氨酯弹性体为基体材料,玻璃行为为增强材料,采用连续拉挤工艺生产的一种具有高强度、高模量、轻质高分子复合材料。 聚氨酯拉挤技术的产品不仅比传统材料具有更高的强度、更好的隔热保温效果,而且更轻质环保。其应用领域十分宽广,从最初的华丽浴缸,到冲浪和滑雪板,再到今天的窗框、集装箱地板等创新应用,聚氨酯复合材料已融入了我们日常生活的方方面面。 据报道,在过去的几年中,中国对于复合材料的需求已呈现逐步增长的态势。复合材料是一种高科技材料,是将几种材料的特性整合成为一种具有卓越新性能的全方位解决方案。正是因为材料的独特性能,比如轻质、高强度和刚性、以及能够帮助实现更高的成本效率和生态责任,所以聚氨酯复合材料已备受各行业的关注。尤其是在建筑和运输行业,创新的技术与应用,更是备受瞩目。 2、聚氨酯/玻纤复合材料性能特点 经过数年开发,国外聚氨酯拉挤成型已实现商业化。在聚氨酯拉挤过程中,可以使用更多的增强纤维,使制品强度大大增高。同时,由于聚氨酯本身优异的

高性能环氧树脂基复合材料的研究现状及应用进展

高性能环氧树脂基复合材料的研究现状及应用进展2018年8月1日星期三 Linda 中山沃瑞森 环氧树脂是一类重要的热固性树脂,具有良好的粘结性、稳定性、耐热性、力学性能、且固化收缩率小,成本低廉。环氧树脂作为胶粘剂、涂料和复合材料等的树脂基体,被广泛应用于轻工、建筑、航天航空、电子电气及其他先进复合材料的各个领域。本文由苏州挪恩复合材料有限公司研究人员从环氧树脂的增韧、耐热、增强方面对高性能环氧树脂基复合材料的现状进行阐述。 在航空航天等领域,对环氧树脂韧性耐温性和模量有着较高要求。热塑性树脂具有高韧性、高强度和耐热性好的特性,用热塑性树脂作为增韧剂可以在增韧环氧树脂的同时保持耐热性能和模量。国外将EP/CF

复合材料应用在战斗机和直升机的机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到明显减重作用,大大提高了抗疲劳耐腐蚀等性能。 在广泛的应用领域中环氧树脂除了要具备基本的力学性能要求外,还需要有良好的耐高温性能,对于提高环氧树脂体系耐热性的方法主要有改变环氧树脂、固化剂的结构或导入新结构,采用耐热性较好的材料对环氧树脂改性。 碳纤维具有十分优异的力学性能,由碳纤维增强环氧树脂所制备的复合材料性能表现优异。而由于碳纤维表面能低、与基体浸润性差,使其与基体材料的界面粘结力较弱,因此需要提前对其进行表面处理。玻璃纤维/环氧树脂复合材料是目前研究较成熟应用最广的一种环氧复合材料,该材料具有轻质高强、耐疲劳和绝缘等性能,在军事中可被用作防弹头盔、防弹衣等。 (图示:碳纤维安全头盔) 环氧树脂是先进复合材料中应用最广泛的树脂体系,适用于多种成型工

艺,可配制成不同配方,可调节粘度范围大,适用于不同的生产工艺,国内外对高性能环氧树脂的研究近几年已取得很大进展,很多环氧树脂复合材料集多种优异性能于一体,极大推动了高端科技产业的发展。 沃瑞森拥有自已强大的黏结数据库,有匹配各种功能黏结的推荐。配合世界知名品牌胶粘剂材料。给您最适合及高性价比的技术支持!

国家标准铜铝复合板带(征求意见稿).doc

国家标准《铜铝复合板带》(征求意见稿) 编制说明 一、工作简况 1、产品简介 铜铝复合板带是以铝及铝合金为基层,采用连续铸造半熔态轧制复合方法或者其他方法,在其一面或两面连续复合一定厚度铜及铜合金板带的新型材料。它广泛应用于导电、导热、防腐、装饰等领域,可以满足电器装备、装饰、IC、IT、化工、军工等行业要求。 目前,国内外铜铝复合技术主要有爆炸复合、热轧复合等,但因结合率和结合强度低、机械性能差、产品尺寸范围窄等缺点,在使用过程中存在一定的局限性。洛阳铜一金属材料发展有限公司自成立以来致力于铜铝复合板带的研发,经过近几年的发展,铜铝复合板带生产系统日臻完善。采用连续铸造半熔态轧制复合工艺技术已经解决了铜铝复合板带结合率和结合强度低、机械性能差、产品尺寸范围窄等问题,产品质量达到国际先进水平,工艺成熟稳定。 2、任务来源 根据国标委×××号和全国有色金属标准化委员会×××号文件《×××年第××批有色金属国家标准项目计划表》下达了《铜铝复合板带》标准制订任务(项目编号××××××),由洛阳铜一金属材料发展有限公司负责制订。 3、申报单位情况 洛阳铜一公司座落于九朝古都洛阳,是集新金属材料研发、生产、销售、服务于一体的综合性高科技公司。 公司拥有复合专用设备五十余台(套)、工程技术人员34人。公司根据自主研发的技术和成果,获得多项发明专利和省部级科技成果。公司于2009年通过lSO9000质量管理体系认证,并建立了河南省院士工作站、洛阳市工程中心。 以张国成院士为首的专家组于2010年底对我公司铜铝复合板带项目进行了鉴定,认为该项目工艺先进,质量稳定,有广阔的应用前景;该工艺技术和装备属国内外首创,达到国际领先水平。 公司已开发完成铜铝、钢铝、钛铝、铝铝四大产品种类,产品规格有板、带、箔、排,宽度1000mm,厚度0.05-15mm,主要用于导电、导热、防腐、装饰等领域,可以满足电器装备、装饰、LED、IC、IT、化工、军工等行业要求。现产品已广泛用于国内外多个项目和企业,并出口至欧盟、美国、韩国、台湾等国家和地区。 4、主要工作过程(主要是征求意见的过程,包括讨论会和预审会的情况)以及主要工作内容。 标准制订计划任务正式下达后,洛阳铜一公司成立了标准起草小组,并落实起草任务,确定标准的主要起草人,拟定该标准的工作计划。着手收集、查阅有关铜铝复合板带的技术资料,并会同市场营销人员对铜铝复合板带生产及应用两方面进行调研,全面、准确地了解了市场不同客户的需求及国内外目前铜铝复合板带整体生产水平和现状。通过多次讨论,广泛征求各方意见之后,于2014年5月形成了标准征求意见稿及编制说明。 二、标准编制原则和确定标准主要内容的论据

铜包铝复合材料及其制备方法

铜或铜合金一直被视为同轴电缆内导体的首选材料,但铜资源比较稀少,价格较高。随着复合技术的不断发展与进步,在保证导电性能的前提下采用复合技术,用廉价的金属部分替代铜以降低生产成本,显然是一个合理的研发方向,其中铜包铝复合线材是纯铜材料的比较理想的替代品。铜包铝线的结构特点是:外层为纯铜或紫铜,其厚度较小,芯部为铝金属。有线电视信号和移动通信信号的频率很高,一般在50~800MHz,由于“集肤效应”,高频电流主要集中在导体的表面层传输,而且铝本身也具有良好的导电性能,因而采用铜包铝复合材料代替纯铜或紫铜可以保证电缆的传输效率。铝的价格低于铜,采用复合线材,可以节省我国较缺乏的铜资源;铜包铝线的密度是纯铜线的37%~40%,直接用作射频电缆的内导体可使其重量大幅度降低,便于运输、安装,降低敷设费用。实际应用的结果表明,与用纯铜作内导体的情形相比,在信号传递,特别是在高频信号传递方面,由于导体的集肤效应,性能上相差很小。上海、深圳等地各有线电视台已经采用了用铜包铝线作为内导体的同轴电缆,实际应用效果与纯铜线没有区别。此外,当同轴射频电缆用铝管作外导体时,采用铜包铝线作为内导体,可使其热膨胀系数和弹性模量与铝管相接近,从而提高了电缆使用的稳定性和可靠性。因此,铜包铝双金属层状复合材料在信号传输和电力输送等领域正在获得越来越广泛的应用。 铜包铝线的制备工艺基本上均采用固相结合法,即通过塑性变形使两金属结合面接近到原子间距离,形成大量的结合点,经过扩散热处理,最终形成界面的牢固结合。工业上的制备方法主要有铸造?挤压

法、静液挤压法、轧制压接法和包覆焊接法等,但这些方法普遍存在界面结合差和表面处理困难等缺点。北京科技大学谢建新等人开发了充芯连铸复合法,这是一种适合于包覆材料熔点远高于芯材的复合材料连铸直接成形工艺,具有工艺流程短、所制备的坯料界面达到冶金结合、可实现大断面复合坯料成形等优点。这种新工艺的原理为:在连续铸造外层金属坯壳的同时充填芯部金属;首先形成外层金属材料铜的管状坯壳,在坯壳温度降低到一定程度时充填芯部金属液,通过两种元素间的相互扩散或中间反应将两种金属材料结合为一体.实现复合过程。实践证明,该工艺可以实现无氧化复合,克服了包覆成形制造工艺中芯材或包覆层预处理过程复杂、界面质量不稳定等缺陷。复合连铸开始时,铜液充入结晶器中先凝固成铜管并通过牵引机构连续引出。随后铝液通过石墨芯管连续充入铜管中,通过结晶器的一次冷却和喷水二次冷却控制铝的凝固过程以及铜铝之间的界面反应,实现铜包铝复合材料的连续制备。

高性能复合材料发展现状与发展方向

8 高性能复合材料发展现状与发展方向 8.1 国内复合材料发展现状与发展方向 复合材料学界较普遍认为我国复合材料发展中亟待研究解决下列问题: (1)在发展复合材料新品种的同时,注意发展复合材料构件的制造技术,特别是先进制造技术; (2)在研究复合材料构件无损检测方法的同时,加紧研究制定无损评价标准。 其中有五个问题是研究重点: ①增强纤维的研制、生产与供应; ②复合材料低成本生产技术; ③新工艺、新设备的研制与发展; ④复合材料生产环境及回收利用; ⑤国际大环境与市场经济条件下我国复合材料发展的对策。 8.1.1 航天功能复合材料的现状与展望 (1)引言 《美国国防部关键技术计划》指出:“下一代复合材料结构的研究将侧重于材料的多功能性能方面”。 20世纪90年代初、中期,美国用于这方面的研究经费为(1.7~1.8)亿美元/年。 功能复合材料的成功应用,使先进战略导弹弹头的有效载荷与结构重量之比大幅度提高(达到4:1),并实现了小型化、被动滚控和强突防。同时具有全天候能力和百米级命中精度。 (2)航天高技术对功能复合材料的要求 1)军事对抗要求 航天高技术对功能复合材料的军事对抗要求包括: ①生存性(全天候、突防、隐身、探测—透波); ②小型化、轻质化(结构—功能一体化、多功能一体化); ③高精度(稳定外形)。 2)环境要求 航天高技术对功能复合材料的环境要求(即生存性要求)包括: ①防热; ②抗热应力; ③抗侵蚀; ④耐空间原子氧; ⑤耐高低温交变; ⑥耐空间辐射 ⑦阻尼减震。 (3)航天功能复合材料的研究方向与主要研究内容 航天功能复合材料的研究方向包括:防热功能复合材料、透波和多功能复合材料、功能复合材料的加工技术和功能复合材料测试评价技术。 ①防热功能复合材料主要研究内容 防热功能复合材料的研究内容主要包括:先进碳/碳复合材料技术、先进碳/酚醛防热复合材料技术、低成本、碳/碳复合材料、新型防热复合材料探索和防热复合材料修补技术; 探索研究防热复合材料现场诊断与损伤预警。 ②透波、多功能复合材料主要研究内容

铜铝复合材料

天津舒郎兰迪散热器 铜铝复合材料 铜铝复合材料,【舒ズ郎兰ズ迪】,当消费者走进建材市场选购暖气片时,满眼的产品瞬间挑花了眼。现在,各种材质、各种价格的暖气片在建材市场中均有销售,按其材质主要有铸铁暖气片、钢制暖气片、铜铝复合暖气片等等,一柱价格从几十块到上百块不等。下面介绍一下最适合集体供暖家庭,性价比最高的钢制暖气片。 钢制暖气片分为两种,钢制板式暖气片和钢制柱式暖气片。一般的家庭客户很难分辨这两者有什么不同,实际上二者有很大的区别,下面对这两种类型的暖气片进行详细介绍。 钢制板式暖气片是用一整块的钢材连接在一起的,焊点较少,不会出现漏水的情况,而且散热性能也不错。由于它散热性能好,外观小巧,采用内防腐之后,能够很好的保证暖气片的使用寿命和安全,不容易出现漏水的情况,一般南方家庭使用的比较多。不过,钢制钢制板式暖气片也有一个很大的缺陷,就是如果暖气片的某个地方出现问题,整个暖气片就要全部换新的,造成一定的经济损失。 钢制柱式暖气片是由相同规格的几片暖气片连接在一起,根据需要可以增加或者减少片数。如果某一片暖气片出现了问题,只要更换损坏的那片就可以了,而其他的暖气片不会受到任何影响。此外,钢制柱式暖气片外形美观,可选择性多,散热性能稳定,低碳节能,绿色环保,深受工厂、校园、家庭等众多场所的青睐。 钢制柱式暖气片的优势: 承压力高,散热性能好,外表光滑,外型大方多样,颜色丰富,线条简洁,提升家居环境档次;最为重要的是钢制柱式暖气片水流量大、水阻小、不易结垢、消耗体系能量少,供热成本低,散热量大,热效率高。 钢制柱式暖气片的弊端: 焊接点较多,容易出现腐蚀和漏水的事故,因此在选购时要挑选品牌大、实力大、技术装备领先的暖气片产品。同时,要请专业的安装公司进行安装。 综上所述,虽然钢制柱式暖气片有腐蚀漏水的危险,但是相对比钢制板式暖气片优势还是非常明显的。现在钢制柱式暖气片的制造技术已经相当成熟,设计使用寿命达几十年,质保期也比较长。因此,大家在选购钢制柱式暖气片时一定要认准品牌,以免出现漏水等事故,影响家庭采暖。

复合材料常用热塑性树脂简介

复合材料常用热塑性树脂简介 1、聚烯烃 聚烯烃树脂是一类发展最快、品种最多、产量最大的热塑性树脂,主要品种有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯等。 (1)聚氯乙烯 聚氯乙烯在工业上是由氯乙烯通过游离基型加聚反应而得。工业聚氯乙烯树脂主要是非晶态结构。硬质聚氯乙烯(未添加增塑剂)具有良好的力学性能、耐候性和耐燃性,可以单独用作结构材料。硬质聚氯乙烯可用增强材料(如玻璃纤维)进行增强,增强后聚氯乙烯强度与刚度可增加数倍,但热扭变温度无显著提高。聚氯乙烯有较高的化学稳定性。除了浓硫酸(浓度超过90%)和50%以上的浓硝酸以外,聚氯乙烯耐酸、碱的性能良好,并耐大多数油类、脂肪和醇类的侵蚀,但不耐芳烃类、酮类、酯类的侵蚀。环己酮、四氢呋喃、二氯乙烷和硝基苯则是它的溶剂。聚氯乙烯在室温下是稳定的,但温度超过100℃导致释出氯化氢,使聚合物颜色变深,为了改善其热稳定性,在进一步加工过程中都要加入稳定剂。 (2)聚乙烯 聚乙烯是聚烯烃树脂中发展最为迅速的一种树脂,制造方法有高压法、中压法、低压法等。聚乙烯的分子结构简单,具有良好的结晶性,使聚乙烯的溶解性能降低,但提高了聚合物的力学强度和硬度。低压法聚乙烯软化点在120℃以上,使用温度可达80~100℃,但此时不能承受载荷。其耐寒性良好,摩擦性能良好,化学稳定性高。它的吸水性极小,并且有突出的电绝缘性能和良好的耐辐射性。其缺点是力学强度不高,热变形温度很低,故不能承受较高的载荷。用玻璃纤维增强聚乙烯可使力学性能和热性能有很大提高,通常用20%~25%的玻璃纤维增强聚乙烯。 (3)聚丙烯 聚丙烯的特点是结晶度很高,相对密度小(约为0.90~0.91g/cm2),熔点在170~175℃范围内,分子量一般在15~70万之间,与其它聚烯烃相比,聚丙烯相对分子质量的分布较宽。聚丙烯的强度和刚性均超过聚乙烯,尤其具有突出的耐弯曲疲劳性能。缺点是蠕变比聚酰胺和聚氯乙烯要大得多。聚丙烯耐热性较好,热变形温度为90~105℃。聚丙烯为非极性高聚物,有优良的电绝缘性能,更兼有优良的耐热性。此外,它还有良好的化学稳定性,聚丙烯几乎不吸水,除对强氧化性的酸(发烟硫酸、发烟硝酸)外,几乎都很稳定,耐碱性也很突出。由于聚丙烯大分子链中的碳原子对氧的侵蚀非常敏感,在光、热和空气中的氧作用下容易老化,一般常将抗氧剂与紫外光稳定剂并用使之起到协同效应作用,以抑制老化过程。用玻璃纤维增强的聚丙烯,其力学性能有很大的提高,热变形温度、尺寸稳定性及低温冲击性能和老化性能亦有所提高。 (4)聚苯乙烯 聚苯乙烯的相对密度为1.05~1.07,为无定形结构,玻璃化温度为80℃左右,最高使用温度仅为60~75℃。聚苯乙烯具有优良的电性能,有很高的体积电阻、表面电阻和极低的介电损耗(0.00001~0.00003),且这些性能随温度、湿度仅有微小的变化。它的吸水性极小(在水中浸300 h以上其吸水率仅为0.05%),它可以耐许多矿物油、有机酸、低级醇和脂肪烃。但受许多芳烃和氯代烃类的侵蚀而溶胀或溶解。聚苯乙烯具有良好的透明性,其透明度可达88%~92%。由于分子中含有苯环,可使α位的C-H键活化而容易氧化,长时间在空气中会老化而产生龟裂。聚苯乙烯用玻璃纤维增强后,最突出的性能改善是提高低温冲击韧性。 2、氟树脂 氟树脂是一类由乙烯分子中氢原子被氟原子取代的后的衍生物合成的聚合物。氟树脂的分子链结构中由于有C-F键,碳链外又有氟原子形成的空间屏蔽效应,故其具有优异的化学稳定性、耐热性、介电性、耐老化性和自润滑性等。主要的品种有聚四氟乙烯、聚二氟氯乙烯、聚偏氟乙烯和

铜铝复合散热器常识

铜铝复合散热器常识 基础知识:散热器的品种 目前市场上销售的散热器主要有:铁制散热器、铝制散热器、钢制散热器、铜铝复合散热器等。选购时首先要看你家的供暖系统是集中供暖还是独立供暖。若是集中供暖,选择就比较多,钢制和铜铝的散热器都可以;独立供暖的家最好选择铜铝复合散热器。 钢制散热器:外形美观,但怕氧化,要采取内防腐处理,停水时一定要充水密封,防止空气进入。并且其对小区的供暖系统有一定要求,需专业人员上门查看。 铝制散热器:不受小区采暖系统的限制,散热性较好,节能;若发现室内温度不够,还可以在采暖季之后加装暖气片。但铝材料怕碱水腐蚀,进行内防腐处理可提高使用寿命。铜铝复合散热器:承压能力高,散热效果好,防腐效果好,采暖季过后无须满水保养,没有碱化和氧化之虞,比较适合北方的水质及复杂的供暖系统,但造型较单一。 进阶知识:选购散热器对散热器的材质做出选择之后,还要注意买多少和买多高多长的散热器。 散热器买多少要按照一定的步骤计算。 1.算面积:计算卧室、起居室、卫生间等面积,作为测算的基础数据。 2.算瓦数(W):“W”(瓦)是暖气的供暖量,多大“W”可以温暖多大面积的房间有计算依据,我们可根据以下民用建筑供暖热指

标测算参考数据,来计算出应购暖气的数量。住宅45-70,办公室、学校40-80,医院、幼儿园65-80,单层住宅80-105,食堂、餐厅115-140(单位:W/平方米)。 消费者可根据房屋的用途,用房屋面积乘以上述数据,得出房间需要的供热量。但以上仅为理论数值,实际生活中可能还会有所变化。一般情况下,楼房、北房、城里、中间要比平房、南房、城外、两端的房子暖和一些,在计算供暖量的时候可以不考虑富裕量。反之,可再适当加上10%~20%作为富裕量,以免暖气在冷天时热量不够。 3.算片数:当需要的总瓦数计算出来后,消费者就可以换算出需要购买暖气的片数,进而可以计算出需要购买暖气的组数。但暖气并不都是可以拆分组合的,消费者可根据面积选择其适用功率的暖气就可以了。 高度和长度:散热器应放置在窗下。 散热器的长度最好与窗户的宽度相近,散热器高度的选择取决于窗台的高度。散热器的下部应留100毫米的空隙,以确保空气能顺畅通过散热器,形成气流循环。 安装和售后服务: 暖气装修重在安装,原则是:专业、熟练、有保障。到销售、安装、售后服务一体化的卖场选购较省心放心。 1. 我国散热器目前主要有哪几种? 答 : 我国散热器主要种类 : (1)铸铁散热器 : 柱型、翼型

铜基自润滑复合材料综述

铜基自润滑复合材料综述 前言 铜及其合金不仅具有优良的导热性、导电性、耐腐蚀性、接合性、可加工性等综合物理、力学性能,而且价格适中,所以铜及其合金作为导电、导热等功能材料在电子、电器工业、电力、仪表和军工中用途十分广泛,是不可缺少的基础材料之。但是随着科学技术的发展,纯铜和现有牌号铜合金的导电性与其强度及高温性能难以兼顾,不能全面满足航天、航空、微电子等高技术迅速发展对其综合性能的要求。相对于铜及其合金,铜基复合材料是一类具有优良综合性能的新型结构功能一体化材料.它既继承了紫铜的优良导电性,又具有高的强度和优越的耐磨性,在各种领域都有着广阔的应用前景。所以研制高强度、高电导率的铜基复合材料是发挥铜的优势、开拓铜的应用领域的一种行之有效的方法。目前,研制高强度、高导电铜基材料遇到的首要问题是材料的导电性与强度难以兼顾的矛盾,即电导率高则强度低,强度的提高是以损失电导率为代价的。传统的强化手段(如合金化)由于自身的局限性,在提高铜的强度的同时,很难兼顾铜的导电性。导电理论指出,固溶在铜基体中的原子引起的铜原子点阵畸变对电子的散射作用较第二相引起的散射作用要强得多。因此,相对于合金化而言,复合强化不会明显降低铜基体的导电性.而且由于强化相的作用还改善了基体的室温及高温性能.成为获得高强度、高导电铜基复合材料的主要强化手段。铜基复合材料具有高强度、高耐磨性、高导电性的优势,目前已经成为研究的热点。铜石墨复合材料不仅含有良好强度、硬度、导电导热性、耐蚀性好等特点的铜,而且还含有良好自润滑性、高熔点、抗熔焊性好和耐电弧烧蚀能力好的石墨,从而使得铜石墨复合材料在摩擦材料、含油轴承、电接触材料、导电材料和机械零件材料领域发挥着重大作用,特别是作为受电弓滑板材料和电刷材料,有着广泛的应用。提高铜石墨复合材料的综合性能一直以来都是科研人员研究的主要内容。 复合材料定义:复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。 复合材料分类:复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 1.铜基复合材料的制备方法: 铜基复合材料的制备方法很多,如内氧化法、粉末冶金法、复合铸造法、机械合金化法、浸渍法、燃烧合成法、溅射成型法、原位形变法等,各有其优缺点。下面对主要的制备方法及其大致发展趋势进行叙述,以期对制备工艺进行优化或为开发新的制备方法提供参考。

国内外复合材料研究现状

国内外高性能复合材料发展概况 2004-06-24 https://www.360docs.net/doc/907639603.html,来源: 作者:佚名点击数:2406次 玻璃市场将缓慢复苏 | 2015年中国有望进入光伏平价消费时代 | 玻璃:需求渐缓,价格逐稳 由于高性能复合材料包含于整个复合材料之中,且高性能是相对而言的,因此叙述国内外发展概况宜论述整个复合材料为好。复合材料根据基体种类可分为树脂基复合材料、金属基复合材料、陶瓷基复合材料、水泥基复合材料等。 一、树脂基复合材料树脂基复合材料是最先开发和产业化推广的,因此应用面最广、产业化程度最高。根据基体的受热行为可分为热塑性复合材料和热固性复合材料。 1、热固性树脂基复合材料热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。 树脂基复合材料自1932年在美国诞生之后,至今已有近70年的发展历史。1940~1945年期间美国首次用玻璃纤维增强聚酯树脂、以手糊工艺制造军用雷达罩和飞机油箱,为树脂基复合材料在军事工业中的应用开辟了途。1944年美国空军第一次用树脂基复合材料夹层结构制造飞机机身、机翼;1946年纤维缠绕成型在美国获得专利;1950年真空袋和压力袋成型工艺研究成功并试制成功直升飞机的螺旋桨;1949年玻璃纤维预混料研制成功,利用传统的对模法压制出表面光洁的树脂基复合材料零件;20世纪60年代美国用纤维缠绕工艺研制成功"北极星A"导弹发动机壳体。为了提高手糊成型工艺的生产率,在此期间喷射成型工艺得到了发展和应用,使生产效率提高了2-4倍。1961年德国研制成功片状模塑料(SMC),使模压成型工艺达到新水平(中压、中温、大台面制品);1963年树脂基复合材料板材开始工业化生产,美、法、日等国先后建起了高产量、大宽幅连续生产线,并研制成功透明复合材料及其夹层结构板材;1965年美国和日本用SMC压制汽车部件、浴盆、船上构件等;拉挤成型工艺始于20世纪50年代,60年代中期实现了连续化生产,除棒材外还生产细管、方形、工字形、槽形等型材,到了70年代,拉挤技术有了重大突破,目前美国生产拉挤成型机组最先进,其制品断面达76×20cm2,并设计有环向缠绕机构;进入70年代,树脂反应注射成型(RRIM)研究成功,改善了手糊工艺,使产品两面光洁,已用于生产卫生洁具、汽车零件等。70年代初热塑性复合材料得到发展,其生产工艺主要是注射成型和挤出成型,只用于生产短纤维增强塑料。1972年美国PPG公司研制成功玻璃纤维毡增强热塑性片状模塑料(GMT),1975年投入生产,其最大特点是成型周期短,废料可回收利用。80年代法国研究成功湿法生产热塑性片状模塑料(GMT)并成功地用于汽车制造工业。离心浇铸成型工艺于20世纪60年代始于瑞士,80年代得到发展,英国用此法生产10m。长复合材料电线杆,而用离心法生产大口径压力管道用于城市给水工程,技术经济效果十分显著。到目前为止,树脂基复合材料的生产工艺已有近20种之多,而且新的生产工艺还在不断的出现。

质量标准及保证(铜铝复合散热器)

铜铝复合产品质量标准及保证 1. 铜铝散热器产品应符合以下标准: 《漆膜附着力测定法》GB1720 《漆膜一般制备法》GB1727 《漆膜耐冲击性测定法》GB1732 《漆膜耐热性测定法》GB1735 《铝合金建筑型材,第一部分,基材》 GB5237.1 《焊接质量控制要求》GJB481/1988 《采暖散热器散热量测定法》GB/T13754 《55°非密封管螺纹》GB/T7307. 《铜及铜合金焊接及钎焊接技术规程》HGJ223 《变形铝及铝合金化学成分》GB/T3190 其他国家相关标准 2.材质要求: 1). 散热器上下联箱管(水室管)及立柱铜管(水道管)使用TP2或TU2 挤压扎制拉伸铜管,并符合GB/T17791的规定:立管直径≥18mm,壁厚≥0.6mm,上下联箱所用的铜管直径≥35mm,壁厚≥0.8mm.承压≥ 1.0MPa。 2).铝型材散热片材料牌号为6063,符合GB/T5237.1中有关力学性能和 GB/T3190中有关化学成分的规定。 3.质量要求: 1). 散热器焊接符合GB/T985和HGJ223的规定。联箱与立柱的联接,在 联箱钻孔并翻边后再将立柱管插入焊接;翻边高度≥3mm;采用硬钎焊 焊接。 2). 散热器单片之间采用专用焊接设备焊接,焊接部位焊接牢固,表面 光洁,无裂缝气孔。散热器整体外观平整,外观光滑,无明显变形、 扭曲和表面缺陷。 3). 散热器表面涂层均匀光滑、附着牢固、无漏喷或起泡。 4). 散热器内外表面无凹陷及扭曲变形; 5). 散热器与系统连接,采用配套的专用管件。 6). 所有散热器均逐组进行静压试验,试验压力为工作压力的1.5倍; 7).试验中发现有缺陷进行修补,修补后的散热器重新进行静压试验,试 验压力为工作压力的1.5倍; 8). 散热器接管螺纹符合GB7307的规定。 4.其他:

相关文档
最新文档