动态无功补偿控制算法

动态无功补偿控制算法
动态无功补偿控制算法

动态无功补偿器的控制算法

摘要: 针对无功动态补偿问题 ,通过分析单相系统结构原理 ,提出一种新型的基于直流侧电容电压控制和系统无功电流反馈控制的算法 ,直接对装置输出的电流进行控制 ,避开监测有功和无功电流分量的繁琐过程 ,简化了监测谐波的过程。所提出算法的控制目标是使补偿装置发出的电流为系统的无功电流 ,该算法包括电流和电压 2个反馈环。电流环采用滞环比较的方式 ,将计算得到的目标电流和补偿装置实际输出的电流进行闭环比较;电压环采用周期控制思想。通过说明直流侧电压和变流器两侧功率传输的关系 ,推导出损耗电流与直流侧电压的变化关系公式;提出损耗有功电流和负荷无功电流的计算方法 ,以及直流侧电压的控制策略;数值仿真计算和动态模拟实验结果表明该算法无功补偿效果良好。

关键词: 控制算法; 直流侧电压控制; 损耗电流; 无功电流; 仿真Abstract:Comparison between simulative and recorded data of short-circuit current

Abstract :the simulative results and the actual recorded data of a short-circuit fault in power grid are compared.It shows that they are matched well with small error,which consisted of the wave recording error and the simulative calculation.The former includes CT error,relay protection (fault recorder) error and virtual value calculation error.The latter includes operation mode simulation error and element parameter error.The proper control of influencing factors,such as calculation method (based on power flow or not),zero-sequence mutual inductance,low voltage small generators,load models,etc,the error can be controlled with in 5%,which means that,the current short-circuit current calculation method is advisable.

Key words:short-circuit current,virtual value,instantaneous value,simulation,wave record

引言

各种非线性、冲击性装置的广泛应用 ,给电网带来了大量的谐波和无功功率污染,如何有效地治理谐波和无功功率的污染已经成为一个备受关注的问题。

对于一个补偿装置而言,其补偿性能决定于谐波及无功电流检测方法以及补偿电流控制方法。这些年,无功谐波电流的检测方法和补偿电流控制算法发展很快。当前的算法研究中大都采用瞬时无功功率理论或其他检测方法进行相应的控制,这些方法需要进行大量的数学运算,对系统的实时性能有一定的影响。

文献[6]中指出在实际系统的负荷电流中含有容性无功分量时,存在着在控制算法中引入正反馈的肯能,从而导致补偿效果差及系统电流震荡。基于此,本文提出了一种新型的基于直流侧电容电压控制和系统无功电流反馈控制的算法,

直接对装置输出的电流进行控制,避开了检测有功和无功电流分量的繁琐过程,简化了检测谐波的过程。该算法针对系统基波无功电流进行补偿,载系统基波无功很大,功率因数较低的情况下,补偿效果良好。利用数值仿真对该算法进行了大量的计算,仿真结果表明,使用该算法对系统进行具有保持系统电流无畸变的优点,可以工作在感性区和容性区,无功补偿范围广,稳定性能好。

系统单相结构图如图 1 所示。图 1 中所示系统基波无功很大 ,功率因数较低。 is 为电源电流 , iL 为负载电流 , ic 为补偿电流 , Udc 为变流器直流侧电容电压 , us 为电源电压 ,设电网电压为无畸变正弦波 ,直接以 us 的相位为参考相位 ,变流器交流侧电感 L上输出的补偿电流 ic 包含基波有功电流、基波无功电流和谐波电流。

所提算法的控制目标是使补偿装置发出的电流为系统的无功电流。系统电流提供负荷的有功电流分量和补偿装置的损耗等有功电流分量 ,同时使系统的电流和系统电压同相位 ,达到基波功率因数为 1的目标。该算法包含电流和电压

2 个反馈环。电压环采用周期控制思想 ,通过 P I调节控制 ,与直流侧电压 U dc 形成负反馈 ,保持直流侧电容电压为恒定值。电流环控制采用滞环比较的方式 ,将计算得到

的目标电流和补偿装置实际输出的电流进行闭环比较。

采用周期控制 ,设电网电压为无畸变正弦波:

u s ( t) = U

sM

sinωt

负荷瞬时电流如下式:i L( t) = I L sin (ωt +θ) =I p sinωt + I q co s ωt

补偿目标为电源电流i s ( t) 中只含有基波的有功分量i p( t) ,即补偿后系统电流为i s( t) = I p sinωt,从而达到无功补偿的目的。由于基波有功电流与基波电压产生有功功率,其他电流与基波电压产生无功功率,各功率的计算如下:

负荷瞬时功率为p wL ( t) = u s ( t) i L ( t) = p L + q L =I p U sM sin2ωt + I q U

sM

sinωt co sωt

瞬时无功功率 qL在任一个周期 [ t0 , t0 + T ]内的积分为零 , 如下式:

电源输出功率为负荷有功功率和补偿装置的损耗功率之和:

p wS ( t) = p

L

+ p

A

= I

p L

U

sM

sin2ωt + I p A U s×sin2ωt= ( I p L + I p A )

sinωt u s ( t)

补偿装置输出功率为负荷的无功功率,计算如下所示:

p wA = - p

A

= I

q

U

sM

sinωt co sωt

有功电流和无功电流

即i ( t) = i ( t) -i s ( t) = i p A ( t) + i q ( t) ,

为负荷的无功电流和装置的损耗电流之和。有功电流为电源侧流向补偿装置的损

耗电流;无功电流与负荷的无功电流分量大小相同,由补偿装置产生,流向负荷进行无功补偿。

根据以上原理设计的算法结构图可以简单表示为图 2,即计算目标电流i3

c

中的有功分量和无功分量,以i3c为目标电流与采集到的系统补偿电流

i

c

进行比较 ,作为电流滞环控制的输入 ,进行滞环电流比

控制算法结构图

算法的关键部分在于直流侧电压控制和对目标电流i3c的求取 ,由以上分析可知 ,主要在于求出补偿的无功电流i q( t)和装置的需补偿的有功电流i p A ( t) , 有功电流又分为2部分: 损耗电流和动态时直流侧电容电压充放电电流。其中,通过对电容电压的周期变化进行 P I变换 ,得到需要补偿的有功电流 ,通过对采样进行周期控制 ,保证在电网电压过零时刻发生变化 ,使得电网电压和电流畸变较小。无功计算部分包含了 sinθ信息 (θ为基波电流超前系统电压的电角度 ) ,它表明了系统中负荷电流含有的是感性分量还是容性无功分量及无功分量含量大小 ,将无功计算结果直接作用于无功补偿设备发出的电流信号 ,因此系统电流为感性或容性时均可以得到有效的补偿。

算法设计

直流侧电压控制

按照PWM控制规律,要有效地对系统无功电流进行补偿,变流器的直流侧电容就必须保持恒定。保持直接侧电容电压恒定是系统控制目标之一。

无功功率Ql通过变流器与直流侧储能元件电容C产生能量交换,引起直流侧电容电压波动,但其在一个周期内的积分为零,因此一个无损的无功补偿设备系统其直流侧电容电压载一个周期内的周期平均值保持为一个定值。由于电力电子器件开断不可避免地会消耗能量,有功率的存在将要消耗电容上储存的能量,似的电容电压不断下降,有以上式子可得,实际补偿装置存在的损耗功率在一个周期内的积分不为零,所以会引起电容电压周期值的变化,即电容电压周期值的变化反映了逆变器二侧有功功率的传递。在该算法里对电容电压进行周期采样,进行比较,即找出电容电压的周期值期变化值计算等效的损耗电流 ,控制有功的传递情况 ,保证直流侧电压稳定在某一值附近波动。

稳态时直流侧电容的电压如图 3 所示。图 3 为电容电压参考值为U ref = 380 V 时的真结果图。图3 ( a)表示稳态时的直流侧电容电压;图 3 ( b)为局部放大图 ,从图中可以到 ,稳态时直流侧电容电压在固定值附近上下波动 ,该波动是无功功率的传递引起的 ,波动变化幅度与变流器两侧无功传递大小有关。正常运行后,在 0. 1 s时投入大容量无功负荷,直流侧电流的变化如图 4所示 ,可见大量无功负荷投入后 ,补偿装置输出的无功电流增加,损耗相应增大,稳态时直流侧的电压稳定值下降 ,电压波动也有

通过以上分析可得: 由于损耗电流的存在电容电压值会使直流侧电压不断下降; 并且在系统动态过程中 ,功率平衡会短时被破坏 ,电容电压也发生波动。通过 P I调节对直流侧电压进行控制 ,其中比例环节使得电容电压快速接近给定值 ,积分环节用来调节静差 ,使得电容上电压在给定参考电压值附近波动 ,改善系统的稳态性能。

直流侧电压的控制框图如图 5所示。

由上图可以看书,当电容电压偏高时,ipa就会减小,即有功电流从无功补偿装置侧流向系统侧。此时系统电流会相应有所减小。反之,当电容电压偏低时,ipa就会增大即有功电系统侧流向无功补偿装置。此时,系统电流会相应有所增大。由此可见,通过调节,直流侧电容电压的控制形成了负反馈,达到直流侧电容电压始终在某一固定值附近流动的目标。

损耗电流的计算

由下式可得损耗电流等效幅值Ipa的计算公式:

通过上式可得,变流器直流侧电容电压上的变化可以反映损耗电流的大小。通过比例积分环节将采样的电压比较值修正后可以得到损耗电流的幅值大小。损耗电流与系统电压同电位,基于二者可以得到系统的损耗电流。

由于损耗电流的存在,电容电压值会在某一个固定值附近,稳态时系统结构确定,C Um T都是已知参数,因此损耗电流的变化与Udc和Udc的大小变化有关,故可以由式(9)确定损耗电流的大小并进行相应的补偿,准确地表示这种变化可以控制直流侧电压的稳定值变化。

无功电流的计算

利用三角函数系的正交性,将系统电压采样后延迟1/4周期,得到其相应的弦值us′(t)=UsMcosω(t),与采样得到的负荷电流相乘,在一个周期积

分内平均以提取基波无功电流分量。下面介绍周期平均无功电流的计算。

首先计算无功功率周期平均值,用符号q表示。在任意一个周期内,计算公式如下:

由上式可以得到无功电流幅值为Iq=ILsinθ=2q/UsM。实际中,系统电压经过PLL锁相环后,由检测到的相位可得到us′(t)=cosωt,其相位和系统电压相位相差90°,幅值为1。使用u′t代替u′s(t)可得到更简洁的结果Iq=2q,从而避免了计算系统电压的幅值,减小计算量,同时避免系统电压突变等情况的影响。无功电流的计算框图如上所示。

由上式可以看出,该算法仅仅用了一个延时器,一个乘法器和一个周期平均环节就可以得到系统的无功电流分量,结构简单。

数值仿真与动态模拟实验结果

在0.08s时投入无功补偿装置,得到仿真结果。在0.08s前为补偿前系统电压和电流,此时,电流相位超前电压约60度。投入时经过一个小时扰动后,系统电流与电压波形相位重合无功补偿装置投入的时间直接影响其动态过程,如选择在系统电压过零点处投入,可使动态过程缩短。

0.08s 投入补偿时系统的电压和电流

采用该算法的样机装置投入时的实验波形如下图所示。其中录波器横坐标为t单位为S。

上一波形为系统电压波形,录波器下一波形为系统电流波形。

图9(a)采用了软启动直流电容充电方式,从图9(a)可以得到,装置未投入运行时,系统电压的过零时超前系统电流0.003s,装换成电角度为

从图9(b)可以得到,当装置稳定运行时,系统电压几乎与系统电流同相,通过实际检测,此时cosφ=0.992,无功补偿效果良好。

动态模拟实验结果与仿真结果一致,表明算法的设计具有使用价值。

结论

通过以上分析,就本问所研究的新型动态无功补偿算法可以得到以下4点结论:

1.以不唱歌装置实际输出的补偿电流为比较电流,补偿效果只与负荷电流有关,避免了系统电流的变化对补偿性能的影响。补偿原理直观,控制直接,稳定性好。

2.避开了检测有功与无功电流分量的繁琐过程,似的检测过程十分简单,计算量大幅度减小,整个算法实现简单。

3.载系统基波无功很大,功率因数较低的情况下,补偿效果良好,且动态无功补偿的能力和范围极大地提高,几乎可以全范围地补偿系统的任意性质的无功电流分量。

4.通过对采用本算法实现的动态装置进行动态模拟实验,结果证实了算法有较强的实用性。

参考文献:

[1]赫海涛,刘念等电力系统间谐波分析[J] 电力自动化设备2004.24(12):36-39

[2]钱照明,叶忠明董伯藩.谐波抑制技术[J] 电力自动化1997,21(10):48-54

[3]钱照明,叶忠明董伯藩.谐波电流的提取方法比较[J] 电力系统自动化1997,21(10):48-54

[4]王伟,周林,徐明有源电力滤波器控制方法综述[J] 继电器2006,34(20):81-86

[5]钱挺,吕征宇,胡进等基于单周控制的有源滤波器双环控制策略[J] 中国电机工程学报2003,23(3):34-37

[6]吴非,解大,张延迟新型电力有源滤波器补偿特性研究[J] 电力自动化设备2007,23(1):36-38

作者简介:

名字:

学号:

学校:

学院:

专业:

邮编:

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿控制器

无功补偿控制器 产品概述 JKWZ-200无功补偿与配电监测控制器(以下简称控制器) ,具有无功补偿、数据采集、通讯等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制,以达到最大限度的节能降耗、提高电网质量的目的,该产品经过十多年的持续改进应用,有近万只的连续运行,产品稳定可靠。 1. 数以电压、功率因数、无功功率等综合判定条件投切电容,无投切振荡,无投切呆区,具有控制精度高,装置补偿效果好。 JKWZ无功补偿控制器 2. 多种投切模式,共补、分补、混合补偿多达12路6种组合。 3. 支持短信模式,短信息和手机兼容,可以使用手机直接查看或设置参数。

4. 中文液晶显示,界面友好。可分相分级对三相不平衡的配电系统无功进行精确补偿。 5. 具有过压、欠压,并能故障闭锁,保护补偿装置;控制器数据可通过485通讯上传至主控室,便于管理。 6. 控制器对外联系的部分均采用多种信号隔离措施---如电磁隔离、光电隔离等,以提高控制器的抗干扰能力。 7. 自适应频率算法,输入信号在45-55Hz之间变化,均可实现正常数据采集功能。相位自动识别,接线简单。 8. 器具有功耗低、安装方便、匹配方式灵活多样、适应多种运行环境等特点。 9. 路板采用多层表面贴装技术,减少了电路体积,减少发热,提高了控制器的可靠性。 10. 控制器采用整体面板、封闭机箱,强弱电严格分开,同时在软件设计上也采取相应的抗干扰措施,控制器的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。 11. 在采样回路中,选用高精度、高稳定的16位AD模数转换器件,保证正常运行的高精度,避免因环境改变或长期运行而造成采样误差增大。

低压无功补偿控制器设计开题报告

毕业设计(论文) 开题报告 课题名称低压无功补偿控制器设计 系别 专业班 姓名 评分 导师(签名) 2011年5月6日 中国石油大学胜利学院

低压无功补偿控制器设计 开题报告 1国内外研究现状 早期的无功补偿装置为同步调相机和并联电容器。同步调相机可理解为专门用来产生无功功率的同步电机,可根据需要控制同步电机的励磁,使其工作在过励磁或欠励磁的状态下,从而发出大小不同的容性或感性无功功率,因此同步调相机可对系统无功进行动态补偿。但是它属于旋转设备,运行中的损耗和噪声都比较大,运行维护复杂,成本高,且响应速度慢,难以满足快速动态补偿的要求。并联电容器简单经济,灵活方便,但其阻抗固定,不能跟踪负荷无功需求的变化即不能实现对无功功率的动态补偿。 随着电力电子技术的发展,近几年出现了多种电力系统无功补偿新技术。电力电子技术是无功补偿技术的基础,电力电子器件向快速、高电压、大功率发展,使采用电力电子器件的无功补偿从根本上改变了交流输电网过去基本只依靠机械型、慢速、间断及不精确的控制的局面,从而为交流输电网提供了空前快速、连续和精确的控制以及优化潮流功率的能力。随着电力电子器件的发展,无功补偿控制器在其性能和功能上也出现不同的发展阶段。无功补偿控制器己由基于SCR的静止无功补偿器(Static Var Compensator-SVC)、晶闸管控制串联电容补偿器(Thyristor Controlled Series Compensator-TCSC)发展到基于GTO的静止无功发生器(Static Var Generator-SVG)、静止同步串联补偿器(StaticSynchoronous Series Compensator-SSSC)、统一潮流控制器(Unified Power FlowController-UPFC)、可转换静止补偿器(Convertible Static Compensator-CSC)等。 (1)静止无功补偿器(SVC) 早期的静止无功补偿装置是饱和电抗器(Saturated Reactor-SC)型,1967年英国GEC公司制成了全世界上第一批饱和电抗器型SVC。饱和电抗器与同步调相机相比,具有静止型的优点,响应速度快,但因其铁心需磁化到饱和状态,因而损耗和噪声都很大,而且存在非线性电路的一些特殊问题,所以未能占据静止无功补偿装置的主流。由于使用晶闸管的SVC具有优良的性能,所以十多年来占据了静止无功补偿装置的主导地位。因此,SVC一般专指使用晶闸管的静补装置。

无功补偿控制器说明书

目录 1产品功能简介 (1) 2产品型号及含义 (3) 3使用条件 (3) 4技术参数 (4) 5面板图示 (6) 6投切判定 (8) 7基本操作 (9) 7.1初始运行 (10) 7.2自动运行 (11) 7.3参数设置 (15) 7.4手动投切 (24) 7.5其它 (25) 8超限及警报信息 (26) 9设备通讯 (27) 10注意事项 (28) 11接线图示 (29)

12外形及开孔尺寸 (30) 1产品功能简介 JKW-18J无功补偿与配电监测控制器,是依据JB/T9663—1999标准及城乡电网改造的技术条件而设计开发的一种新型控制器,具有无功补偿、数据采集、通讯、电网参数分析等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制。 本产品具有以下功能: (1)数据采集 ●电压;电流;功率因数 ●有功功率;无功功率 ●有功电度;无功电度 ●频率;电压谐波;电流谐波 ●日电压、电流最大值、最小值; ●有关数据存储多达60天 (2)数据通讯 具有RS232通讯接口,通讯方式可采用现场采集或远程采集,配备无线转接模块可近距离(50米以内)无线抄收数据。

(3) 数据管理 基于WINDOWS2000/XP 操作平台,通讯数据自动生成各种报表、曲线及棒图。 (4) 无功补偿 ● 取样物理量为无功功率,无投切振荡、无补偿呆区; ● 输出多达18路; ● 电容器投切执行元件采用固态继电器。 (5) 运行保护 ● 两相失电时,不影响数据的采集、存储、通讯。 ● 对过压、欠压、缺相及谐波、零序进行报警并做出相应动作。 (6) 显 示 ● 采用128×64背光液晶显示器 ● 全中文人机对话界面 ● 实时显示电网有关参数 ● 直观显示预置参数 2产品型号及含义 3使用条件 板前接线型 JK W —18 J Q

无功补偿装置的设计要求

无功补偿装置的设计要求 对于电压为lOkV及以下、单组容量为1000kvar及以下的无功补偿电容装置的设计要求如下。 ①电容器装置载流部分(开关设备及导体等)的长期允许电流,G 1214T1UF高压不应小于电容器额定电流的1. 35倍,低压不应小于电容器额定电流的1.5倍。 ②电容器组应装设放电装置,使电容器组两端的电压从峰值(2倍额定电压)降至50V所需的时间,对高压电容器最长为5min,对低压电容器最长为1min。 ③高压电容器组宜接成中性点不接地星形,容量较小时也可接成三角形;低压电容器组应接成三角形。 ④高压电容器组应直接与放电装置连接,中间不应设置开关设备或熔断器。低压电容器组和放电设备之间,可设自动接通的接点。 ⑤电容器组应装设单独的控制和保护装置,但为提高单台用电设备功率因数用的电容器组,可与该设备共用控制和保护装置。 ⑥单台电容器应设置专用熔断器作为电容器内部故障保护,熔丝额定电流为电容器额定电流的1.5~2倍。 ⑦当装设电容器装置附近高次谐波含量超过规定允许值时,应在回路中设置抑制谐波的串联电抗器,串联电抗器也可兼作限制合闸涌流的电抗器。 ⑧电容器的额定电压与电力网的标称电压相同时,应将电容器的

外壳和支架接地。 当电容器的额定电压低于电力网的标称电压时,应将每相电容器的支架绝缘,其绝缘等级应和电力网的标称电压相配合。 ⑨装配式高压电容器组在室内安装时,下层电容器的底部距离地面不应小于0. 20m,上层电容器的底部距离地面不宜大于2. 50m,电容器装置顶部至屋顶净距不应小于1m,电容器布置不宜超过三层。 装配式电容器组当单列布置时,网门与墙距离不应小于1.30m;当双列布置时,网门之间距离不应小于1.50m。 ⑩电容器外壳之间(宽面)的净距不宜小于0.lOm,但成套电容器装置除外。 ⑩设置在民用主体建筑中的低压电容器应采用非可燃性油浸式电容器或干式电容器。

正泰nwkG无功补偿控制器说明书

NWK-G系列 智能型无功补偿控制器 使用说明书 一、简介 NWK-G系列智能型无功功率自动补偿控制器是低压配电系统补偿无功功率专用仪器,可与各型号低压静电电容屏配套使用。NWK1-G型(开孔尺寸为本113×113mm),NWK2-G型(开孔尺寸为162×102),输出路数各有4、6、8、10路四种规格。本机博采国内外先进技术,采用进口单片机控制,具有体积小、重量轻、功能完善、操作简单、抗干扰能力强、运行稳定可靠、补偿精确等突出优点。依据JB/T9663-1999国家最新专业标准设计,一次性通过机械工业部天津电气传动研究所发配电及电控设备检测所的型式试验,主要性能指标达到国内先进水平,是低压电容屏厂家首选产品。 二、功能特点 1、采用国外先进芯片,增加了断电记忆功能。即在系统断电及控制器复位时,参数及程序自动记忆,不丢失;供电恢复后控制器仍按断电前所设定的参数进入自动运行状态,实现无人操作化。 2、LED数字显示电网功率因素,显示范围:滞后(0.00~0.99),超前(0.00~0.99)。 3、通过面板三个功能键能完成数字显示COSφ设定值,延时设定值,过压设定值的设定。简明的人机对话,使操作极为方便。 4、当电网电压超过本机过压设定值时,COSφ表自动转换显示为电网当前的电压值,同时自动快速逐级切除已投入的电容组。 5、判别取样电流极性(自动识别极性),并自动转换。给安装调试使用带来极大方便。 6、当取样讯号线开路或无输入取样电流信号时,本机数字COSφ自动显示https://www.360docs.net/doc/908660437.html,。 7、输出动作程序为先接通先分断,先分断先接通的循环工作方式及适应于就地补偿装置动作程序要求的1、2、2、2、2、1编码工作方式。 8、具有手动/自动转换,置自动时,本机自动跟踪电网功率因素及无功电流,控制电容器自动投入或切除,置手动时在本机上能实现手投或手切。 9、有超前、滞后、过压、欠流LED指示灯指示。LED提示编程输入。 10、抗干扰能力强,能抵御从电网直接输入的幅值2000V的干扰脉冲,高于国家专业标准。 三、使用条件 1、海拔高度不超过1000米。 2、环境温度不高于+40℃,24小时内平均温度不超过+35℃,最低环境温度不低于-10℃。 3、空气相对湿度不大于85%(在25℃时)。 4、周围环境,无易燃易爆的介质存在,无导电尘埃及腐蚀性气体存在。 5、电网电压波动范围不大于本机额定电压±10%。 五、安装方式 NWK1-G外型采用42L6系列仪表结构,外形尺寸120×120×80mm,安装开孔113×113mm,嵌入深度为80mm,侧面设安装孔,紧固附件的挂钩插入孔内,旋附件上的螺丝即把控制器固定在屏上。 六、接线方法 1、控制器电压U1、U3接B相、C1、图2) 2、取样电流端I1、I2必须取自总负荷(总柜)A相电流互感器次级,不得取自电容屏。 开孔 3、COM为控制器输出端1~10组内部继电器的公共源,交流接触器J线圈电压220V。 NWK1-G型接线图(图1)略 (如果接触器线圈电压为380V,公共端接火线) 控制固态继电器接线图(图2)略

高低压无功补偿装置设计选型结构

高低压无功补偿装置设计选型结构 1、装置主要由并联电容器、电容器专用熔断器、串联电抗器、放电线圈、氧化锌避雷器、隔离接地开关、支柱绝缘子、连接母线和电容器构架等设备组成。若采用双星形接线中性点不平衡电流保护或单星形接线桥差保护,应有电流互感器。 2、串联电抗器串接在电容器组的回路中,用于抵制高次谐波和限制合闸涌流。 用于抵制5次用以上谐波时,电抗器可按Xl/Xc=4.5%-6%配置。 用于抵制3次用以上谐波时,电抗器可按Xl/ Xc=12%-13%配置。 仅用于限制涌流时,电抗器可按Xl/ Xc=0.5%-1%配置。 3、氧化锌避雷器并接在电容器组线路上,以限制投切电容器所引起的操作过电压。 4、放电线圈并接于电容器组的两端,当电容器组继开电源时,能将电容器两端剩余电压在5秒~20秒内自电压峰值降至0.1倍额定电压或50V以下。 5、根据装置所装置设备(电容器、电抗器等)的布置可分为片架式、柜式、围栏式、模块式、集合式和户外箱式等形式。 片架式 结构即以片架(包括直梁、横梁和横档等)为计量单位的零部件,通过螺栓等系列标准件连接而成电容器组构架,其四周为网门。装置具有价格低、运输方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 柜式 结构即将所配置的元器件均装在类似高压开关柜的构架上,柜门用钢板网或镀锌钢板网制成。装置由电抗器柜、放电柜和电容器柜等三部分组成。装置具有外观整齐,方便安装等特点。6kV和10kV等电压等级容量在300kvar~3000kvar 的装置适宜采用该结构形式。 模块式 结构即将设备安装在用型材制成的单元模块上,安装时只需层层或行行拼接即可。该结构又分立式电容器安装和卧式电容器安装两种形式,且单元电容器宜采用内熔丝电容器,具有外形整齐、安装方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 集合式 结构即由密集型电容器等设备组成的电容器组。具有占地面积小、安装维护方便等特点。6kV、10kV和35kV等电压等级的装置适宜采用该结构形式。 围栏式 结构即将可拆式网门护栏在电容器组和电抗器等设备的四周,围栏和设备间留有检修通道。35kV等电压等级的装置适且采用该结构形式。 户外箱式

JKWNA-9低压无功补偿控制器使用说明书(2015总线版、.

JKWNA-9 低压无功补偿控制器 使用说明书江苏南自通华电力自动化有限公司 1产品简介 1.1概述 JKWNA-9低压无功补偿控制器和NA系列智能集成式电力电容补偿装置配套使用,具备采集并显示电测量数据,监测和显示智能电容器运行工况、投切状态,以及根据无功功率与目标功率因数自动控制投切电容器等功能。 1.2产品特点 JKWNA-9低压无功补偿控制器通过通信总线连接NA系列智能集成式电力电容补偿装置;控制器采集电网电测数据,在显示智能电容器组运行情况的同时,可以直接根据当前的电测数据,对电容器组进行智能投切控制,以达到无功补偿的效果。 1.3外观尺寸 2技术参数

显示分辨率128×64,显示12点阵汉字输入测量RJ45方式接入智能电容器网络 电源 工作范围AC380V±30% 功耗≤2W 工作条件 -10~55℃,相对湿度≤93% 无腐蚀气体场所,海拔≤2000m 隔离耐压电源>2500V 绝缘电阻≥2MΩ 尺寸 面框尺寸:120mm×120mm 开孔尺寸: 3使用说明 JKWNA-9低压无功补偿控制器面板由产品名称及公司信息、液晶显示屏、操作按键组成。下面对液晶显示屏显示内容和主要功能作简单说明: 3.1主菜单 液晶屏第1行从左到右依次显示:联网电容器数量、当前投切控制方式(自控/手控和软件版本号;

当前所有联网电容器的投切状态以图形的方式直观显示在液晶屏上,同时显示投入到电网中总的补偿容量,显示界面如下: 注:表示分补表示共补表示投入表示切除 当前电容柜补偿电流界面如下: 3.2运行工况 显示开关故障、过压保护、过流保护、过温保护、过谐波保护的电容器信息。 使用和切换界面查看各种保护与故障,按 键返回主菜单。 3.3设置参数 设置参数 CT变比(比值:0000 目标功率因数:0.99 无功算法时间:040 设置现场的电流互感器变比,无功控制的目标功率因数和无功算法时间。

正泰nwkl1无功补偿控制器说明书详解

1.概述 NWKL1智能型无功补偿控制器(以下简称控制器)是低压配电系统补偿无功功率的专用控制器,依据机械工业标准JB/T9663-1999及电力行业标准DL/T597-1996设计,其取样物理量为无功电流,有二种规格(最大6回路和最大10回路)。可与各型号的低压电容柜、屏配套使用,具有功能完善,抗干扰能力强,运行稳定可靠,补偿精确,无投切振荡及补偿呆区,是低压配电系统平衡无功功率的理想产品。 型号及其含义: 输出回路规格 产品设计序号 控制物理量L—无功电流 智能型低压无功补偿控制器 正泰集团企业代号 2.功能特点 2.1实时显示配电系统状况,包括测量和显示(感性或容性)功率 因数,无功电流。实时显示电容屏工作状态,如过电压保护状 态,电容屏各回路投入或切除状态。

2.2自动识别取样信号极性,无极性接错之虑。 2.3用户的设定参数在系统停电及控制器复位时不会丢失,复电后 控制器采用停电前所设定的参数延时进入自动运行状态。2.4具备过压反时限功能,即自动运行中当电压超过第一门限值 (参数显示代号E)时,将闭锁回路不再投入电容器组,当电压超过第二门限值(E+10V)时,将以5秒/组的速度切除已投入的电容器组,当电压超过第三门限值(E+20V)时,将以2秒/组的速度切除已投入的电容器组。 2.5确保电容器完全放电功能。即切除后再投入同一组电容器需要 延时180秒后再执行,先投先切,后投后切,循环控制,保证了电容器的充分放电和电容器组运行的均匀性。 2.6具备配电系统负荷超低判别和封锁功能,防止投切振荡。2.7延时调节功能,20-60秒的延时时间调节范围(另有供调试或 手动时用的2秒延时)。 2.8取样电流互感器变比设定功能:设定范围100/5~4000/5 2.9投入门限:无功电流,设定范围为3~90A,当配电系统感性无 功电流大于设定值时控制器自动投入一组电容器。 切除门限:功率因数,设定范围为0.98~1.00,当配电系统功率因数超前于设定值则控制器自动切除一组电容器。 2.10过电压门限设定功能:设定范围400V~450V,以10V整 数连续可调。 2.11有自动循环投切,手动运行二种工作模式。

无功补偿装置SVG简介

高压SVG培训 我是思源清能电气电子有限公司,服务工程师,张治福,我的手机号是: 第一章装置电气原理与构成 1.1电气原理 SVG装置的主电路采用链式逆变器拓扑结构,Y形连接,10kV装置每相由12个功率单元串联组成,6kV装置每相由8个功率单元串联组成,运行方式为N+1模式。下图所示为SVG装置的连接原理图。

图1-1 10kV装置的连接原理图 图1-2 6kV装置的连接原理图 10kV装置的电气原理如下图。 图1-3 10kV装置的电气原理图 1.2装置构成 SVG装置主要由五个部分组成:控制柜、功率柜、启动柜、连接电抗器和冷却系统。这里采用风冷。

1.2.1控制柜 控制柜由控制器、显示操作面板、控制电源、继电器、空气开关等部分组成。 控制电源提供了DC24V和DC5V电源系统,为控制器和继电器操作供电。 操作面板包括了液晶屏显示、信号指示灯。操作部分包括启机按钮、停机按钮和复位按钮。 空气开关的功能如下表所示。 表2-1 空气开关功能表

第二章装置的控制面板说明 2.1 装置的运行状态 SVG装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。各状态说明和转换关系如下: 1)待机状态 装置上电后立即进入待机状态,然后进行自检。若无任何故障且状态正常,装置复位后,则点亮就绪灯。若在就绪情况下收到用户启机命令,则闭合主断路器。主断路器闭合后即转入充电状态。 2)充电状态 表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已经进入了充电状态。若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合启动开关以短路充电电阻,启动开关闭合后延时10s自动转入并网运行状态。 3)运行状态 表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无功、负序或谐波的效果。若在此过程中出现报警,报警指示灯亮,不影响装置正常运行;若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发跳闸命令,并转到跳闸状态。 4)跳闸状态 表示装置正在执行跳闸指令。一进入跳闸状态,装置就立刻发跳闸命令。检测到主断路器断开后进入放电状态。 5)放电状态 表示装置正在放电。主断路器断开后,直流电容将缓慢下降直至为0。该状态时持续10s后装置自动转入待机状态。 2.2 控制柜屏面说明 装置提供了液晶操作面板、控制按钮和远程后台三种方式对装置进行操作。

智能无功补偿器的设计和实现

修改稿收到日期:2010-03-22。 第一作者董鹏飞,男,1984年生,现为郑州大学自动化专业在读硕士研究生;主要研究方向为模式识别与智能系统。 智能无功补偿器的设计和实现 Desi g n and I m p l e mentati o n o f I ntelli g ent Co mpensator for Reacti v e Power 董鹏飞 李建华 李 盛 (郑州大学电气工程学院,河南郑州 450001) 摘 要:针对电力系统中无功补偿装置的发展现状,通过对无功补偿原理和方式的分析研究,设计了基于P I C18F4520单片机的智能无功功率补偿控制仪。该控制仪以九域图原理作为投切电容器的依据,并通过RS 232/485串行口与GPRS 模块连接,实现与主控中心进行实时数据的传输和交换。实测应用证明,该系统避免了复杂的参数计算,简化了系统结构,且价格低廉、软件编程简单、抗干扰能力强。 关键词:无功补偿 控制器 功率因数 串口通信 GPRS 中图分类号:T M 46 文献标志码:A Abstract :In accordance w it h t he current stat us o f reacti ve po w er compensati on i n electric po w er syste m,t hrough anal y sis and research on the co mpensation pri nci ple and mode ,t he compensati on controll er based on P I C18F4520si ng l e chi p co mputer has been desi gned .The contro ll er a dopts t he ni ne zone graphic t heory as t he criteria o f connecti ng or disconnecti ng the capac i tor ,and t hrough RS 232/485serial port to connect w ith GPRS modul e t o m i ple ment rea l tm i e dat a trans m i ssi on and exchange w ith ma i n contro l center .T he rea l t est verifi es t ha t t he complicated ca l cu l ati on of the parameters is avo i ded by the syste m ;and t he s yste mati c structure is sm i p lified .The syste m features l o w cos,t ease program m i ng and off ers h i gh anti i nterf erence capability . K ey words :Compensati on for reactive power Controller Power fact or Seri a l co mmunica ti on GPRS 0 引言 随着国民经济的发展,工厂自动化和办公自动化程度的不断提高,电子设备对供电电源的供电质量要求也越来越高。工厂内碳硅炉的整流设备、电焊机和电子设备等会产生大量的无功功率及高次谐波,这将会严重污染电网,降低电网的运载能力和电能损耗,影响电子设备的正常运行 [1] 。为提高用户的用电质量、 净化电网、提高电网的运载能力、降低电能损耗,避免随之引起的危害和损失,应对无功功率进行治理,而电力网络性能要求的提高增加了无功补偿控制装置的成本。为了解决成本与性能之间的矛盾,设计了以P I C18F4520单片机为核心的智能无功功率补偿装置,系统在降低网损的同时,也有效地提高了配电系统的电压质量。 1 系统的总体结构设计 在电力系统中,由于各用电器的参变量基本相同,通过对这些参变量的数据分析,基本上可以实现对线 路中的设施进行自动控制的目的。无功补偿方式一般采用三相固定补偿、三相动态补偿和单相动态补偿相结合的方式。系统框架如图1所示。 图1 系统架构图F i g .1 Structure of t he sy stem 系统一般在强交电磁场环境中工作,为防止干扰信 号所造成的开关误动作,系统必须具有较强的抗干扰能力。因此,控制器的数据处理部分选用抗干扰能力和计算能力强的PI C18F4520单片机,输入端信号采用双光耦合的线性耦合器件进行隔离。同时,为保证提供的变量以及参变量数据的精度,前级采样互感器采用精度为 5%的互感器,运放采用失真较小的L M 134系列,A /D 转换部分采用AD7656。此外,系统选用20MH z 晶振, 智能无功补偿器的设计和实现 董鹏飞,等

JKF8说明书(补偿控制器)

1.概述 JKF8智能型低压无功功率自动补偿控制器(以下简称控制器)是低压配电系统补偿无 功功率的专用控制器,依据机械工业标准JB/T9663-1999及电力行业标准DL/T597-1996设 计,其控制物理量为无功功率和功率因数,有二种规格(最大6回路、最大12回路)。控制 器采用国际上最先进的微处理器进行智能测量与控制,可与各种型号的低压电容柜、屏配 套使用,具有功能完善,抗干扰能力强,运行稳定可靠,并在有谐波的场合下能正确显示 电网功率因数等特点,具有全自动模式,“傻瓜”式设计,是目前国内无功补偿控制器性价 比最好的产品之一。 型号及其含义: 输出回路规格 产品设计序号 控制物理量—复合型 低压无功补偿控制器 2.功能特点 2.1 采用无功功率、功率因数复合控制,确保低负荷时可靠投入,避免投切振荡。 2.2 实时显示网络状况,包括功率因数、电压、电流、有功功率、无功功率等五种参数。 2.3 自动识别取样信号极性,无极性接错之虑。 2.4 电网电压低于300V或超过设定值时自动快速(5秒)逐级切除已投入的电容器组,并 显示电压值。 2.5 当电流互感器次级信号小于150mA时,封锁电容器的投入,同时自动快速(5秒)逐级切除已投入的电容器组。 2.6 同组电容器切投封锁时间为3分钟。(电容放电时间) 2.7 有循环自检功能,便于电容屏出厂试验用。 3.使用条件 3.1环境温度:-10℃~+40℃ 3.2相对湿度:40℃≤50%,20℃≤90% 3.3海拔高度:≤2000m 3.4环境条件:无有害气体和蒸气,无导电性或爆炸性尘埃,无剧烈的机械振动 3.5工作电压:380V±20% 4.技术参数

简析变电设计中无功补偿装置的设计方式

简析变电设计中无功补偿装置的设计方式 发表时间:2018-02-08T15:52:08.367Z 来源:《防护工程》2017年第29期作者:孙超 [导读] 随着社会经济发展水平的不断提高,电网建设规模逐渐扩大,但是我国的国情决定了变电站分布不均的现实情况。 国网冀北电力有限公司秦皇岛供电公司河北省秦皇岛市 066000 摘要:随着社会经济发展水平的不断提高,电网建设规模逐渐扩大,但是我国的国情决定了变电站分布不均的现实情况。无功补偿装置,能够有效提高电网电能的传送质量,对于减少电网运行过程中的线路损耗问题起到良好的促进作用。在变电设计工作中做好无功补偿装置的设计工作,能够有效维持电网运行的安全性和稳定性,同时在很大程度上还能够促进社会经济的发展,保障人们的生产生活。本文就变电设计中无功补偿装置的设计方式进行分析。 关键词:变电设计;无功补偿装置;设计方式 在经济建设快速发展过程中,电网建设与电网普及覆盖面不断扩大,但是由于我国电网建设起步较晚,易出现供电不良、供电分布不均等现象,这对城市用电造成了一定的影响,而无功传输可以减少电网电压输送损耗,因此为了能够更好的提高电网电能输送量,为居民用电量提供有效保障,加强变电设计中无功补偿装置设计方式研究就显得越发重要。 1 变电设计中进行无功补偿的必要性 电力传输系统中最常见的用电设备有变压器、异步电动机、输电线路等,大部分设备都是属于感性负荷性质的元件,在运行的过程中应该要向这些设备提供相应的无功功率,无功电源主要有发电机、静电电容器、静止补偿器等,无功功率的产生一般不会产生太多的能耗,但是无功功率在传输的过程中会产生电压以及功率的损耗。如果是由发电企业直接向用户提供无功功率,则会导致输电线路以及变压器因为输送大量的无功功率造成能量损耗,对经济效益是一种损耗。因此在电能的传输过程中,为了最大限度地减少无功功率在传输过程中的损耗,提高输电、配电设备的功率,应该要加强无功补偿设备的配置,按照分级补偿和就地平衡的原则进行合理的布局。合理地布置无功功率的补偿容量,改变电力网的无功潮流分布,可以减少电能传输网络中的有功功率的损耗以及电压的损耗。从而对用户端使用的电能的质量进行改进。在进行无功补偿装置的设置过程中,应该要根据电网的电压、系统的稳定性、无功平衡等多方面的要素,对补偿装置的设置地点、补偿装置的容量、种类形式等进行确认。电气的安装过程中,应该要从安装地点的自然环境、各种装置的接线方式、布置形式等方面出发,避免装置引起的操作过电压和谐振过电压对电能产生影响。 2 无功补偿的概念和原理 在供电系统中,所谓的无功补偿是对无功功率补偿的简称,主要功能是提高供电效率,降低输电线路损耗以及供电变压器,提高电网的功率因数,改善供电环境。所以,无功补偿在电力系统中占据着不可缺少的地位。对无功补偿装置进行合理的配置,可以提高供电质量,减少电网损失,假如选择不合适的电网,就可能导致电压不断波动,谐波不断增大等诸多问题。在电网输出的功率中,包括了无功功率和有功功率两部分,无功功率不可以直接消耗电能,把电能转化成另一种形式的能,而这种能是电气设备做功不可缺少的条件,与此同时,它还可以实现和电能的周期性转换;有功功率主要是直接消耗电能,把它转化成其他形式的能,比如化学能、热能等,并且利用这些能做功。 所说的无功补偿的原理指的是,把具有感性功率负荷的装置和具有容性功率负荷的装置在同一个电路上实现并联,使能量可以在两种负荷之间可以相互流通,进而利用容性负荷输出的无功功率,对感性负荷所需要的无功功率进行补偿。从实质方面分析,就是用交流电容器代替原来的变压器或者电网,进而提供相应的无功功率。 3 变电设计中无功补偿装置的设计方式 3.1 调相机设计 在进行变电设计无功补偿装置设计时,调相机设计是以往最常使用的一种设计方式,具体而言,调相机无功补偿设计方式应用过程中,主要是利用了同步调相机这一装置设备,此种装置设备与发电机的原理大致相同,是通过励磁运行作用让电力系统中接收到无功功率,而当欠励磁运行时,电力系统又可以将感性电磁再次传输出去,这样就实现最佳的无功负荷运行效果。因此在进行调相机无功补偿设计时,重要的就是对励磁运行装置进行调节控制,从而实现同步调相机对装置中无功功率电压的吸收或者输出,为电力系统的安全运行提供最大限度的保障。但是值得注意的是,在进行调相机无功补偿设计时,由于同步调相机属于旋转式机械,在运用的过程中有功损耗比较大,因此若是使用的同步调相机容量比较小,易造成成本方面的浪费,因此在电网系统运行需求量不断增加的今天,利用调相机进行无功补偿设计还应不断进行改进。 3.2 电容器设计 电容器设计也是变电设计中无功补偿装置设计的一种常见方式,电容器无功补偿设计,就是在电网中并联电容器,从而实现容性负载提升,这样电网系统在进行容性功率吸收或者输出时,就可以更好的实现线路中感性负荷方面的无功要求,进而实现最佳的无功补偿效果。同时利用电容器进行无功补偿设计,投资费用比较少,并且调试方便,既可以集中式的进行使用,也可以分散性的进行设置,因此此种设计当时的灵活性是比较好的。由于电容器无功补偿设计具有如此多的优势,因此有数据调查显示,在我国已经有90%的电网系统利用电容器设计进行无功补偿。但是在利用电容器进行无功补偿时,必须要保障无功功率与节点电压数值之间呈现一种正比例关系,这样才能减少电力系统之中电压的损耗,若是在进行电容器无功补偿设计时,无法满足这一要求,实际补偿效果也会受到一定的影响,这是现下应用电容器无功补偿设计方式的一大难点,为此还需不断的加强电容器无功补偿设计方式方面的研究。 3.3 无功补偿器(SVC)设计 无功补偿器是第二代无功补偿装置,通常而言是指静止无功补偿器,其应用范围有输电系统的负载无功补偿以及波阻补偿。具有代表性的有晶闸管投切电抗器(TCR)、晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)。实现无功补偿的原理就是通过控制晶闸管触发角,来改变接入系统的等效电纳,从而实现调节系统中无功功率的输出的目的。但是该种装置尚存在问题:由于晶管具备班控的特点,一旦被触发导通,则只有等到流经它的电流不超过维持电流之后才能够关断,因此在半个电源周期时间范围内,反并联

动态无功补偿装置

动态无功补偿装置 随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1并联无功补偿 1.1同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器(TSC),另一种是晶闸管控制电抗器(TCR)。TSC与普通电容器不同之处,在于用晶闸管代替了断路器作电容器组的投切。TCR则连续调节电抗器电流大小,使无功按要求变化,下面分别说明其特点。 1.2.1晶闸管投切电容器(TSC)

动态无功补偿装置

随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1 并联无功补偿 1.1 同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2 静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器

低压无功补偿系统硬件设计

摘要 本文主要介绍低压无功补偿装置的基本原理、控制方案以及硬件方面的选型和设计。 该补偿系统采用TI公司的定点TMS320LF2812系列DSP和MCU的双控制器进行控制,TMS320LF2812为补偿装置的总控制器,具有自动采样计算、无功自动调节、故障保护、数据存储等功能。同时具备指令运算速度快(约100MIP)、运算量大的优点,同时MCU与外部设备进行通讯,互不干扰,更好的满足了实时性和精确性的要求。采用晶闸管控制投切电容器、数字液晶实时显示系统补偿情况,可以实现快速、无弧、无冲击的电容器投切。为了更详细的介绍该系统,在论文第四章设计了比较完整的各功能模块的硬件电路图,其中包括电源模块、信号变换及调理模块、AD采样模块、锁相同步采样模块、通讯模块等。 关键字:低压无功补偿;晶闸管投切电容器;DSP

Abstract This paper mainly introduces the basic principle of low-voltage reactive power compensation device, control scheme and hardware selection and design. The compensation system by TI company's fixed-point tms320lf2812 series DSP and MCU dual controller control, tms320lf2812 compensation device controller with automatic sample calculation, automatic reactive power regulation, fault protection, data storage and other functions. At the same time with the instruction operation speed (about 100MIP), the advantages of large amount of computation. At the same time, MCU and peripheral equipment

xyJKFG智能无功补偿控制器使用说明书

xyJKFG智能无功补偿控制器使用说明书 您的位置:首页>> 产品展示>> 详细介绍 产品编号:产品名称:规格:产品备注: xyJKFG智能无功补偿控制器 台 xyJKG智能无功补偿控制器 产品类别: 低压产品 产品说明 成都星宇节能技术股份有限公司 非常感您选择了我们的产品! 使用之前请仔细阅读并妥善保管本说明书 目录一简述1 二技术指标1 三型号说明2 四面板功能及显示说明2 五操作说明3 六接线说明7 七调试说明9 八安装说明9 九产品目录10 注意事项10 一简述 xyJK系列智能无功补偿控制器是将人工智能成功运用于低压配电设备控制系统中,于是无功型的控制器,其控制功能的完备,使补偿效果达到了最佳的状态。当控制物理量

为无功功率(Q)时能兼顾功率因数,较完善的解决了功率因数型控制器的缺陷,在运行中既能保证线路系统稳定、无振荡现象出现,又能兼顾补偿效果,将补偿装置的效果发挥得淋漓尽致;当线路在重负荷时,如果cosφ已达到,只要再投一组电容器不发生过补,也还会再投入一组电容器。当线路无电流互感器时,控制物理量转为电压(U),此时能根据当地的电压高低自动调节电压。 二技术指标 2.1 产品引用标准 GB/T15576-1995 低压无功功率静态补偿装置总技术条件 DL/T597-1996 低压无功补偿控制器订货技术条件JB/T9663-1999 低压无功功率自动补偿控制器 2.2 环境条件 环境温度:工作时-25℃~70℃;极限、运输、储存时-40℃~80℃ 相对湿度:40℃时20%~90%;50℃时90% 大气压力:kPa~ 2.3 电源工作电压:220V±20%;频率50Hz±5%;正弦波形总畸变率≤5% 2.4 电压输入模拟量:380V 2.5 测量精度

相关文档
最新文档