无线电能传输开题报告

无线电能传输开题报告
无线电能传输开题报告

本科毕业设计论文

开题报告

题目:电能无线传输装置的硬件设计

作者

指导教师

专业班级

学院信息工程学院

提交日期

电能无线传输装置的硬件设计

:专业班级:

1 课题研究背景及意义

人类社会自第二次工业革命以来,便进入了电气化时代。大至遍布世界各地的高压线、电网,小至各种各样的家用电气设备,传统的电能传输主要通过金属导线点对点,属于直接接触传输。这种传输方式使用电缆线作为媒介,在电能传输的过程中将不可避免的产生一些问题。例如尖端放电、线路老化等因素导致的电火花,不仅会使线路损耗增大,还会大大降低供电的可靠性和安全性[1],且会缩短设备的寿命。在油田、钻采矿井等场合,用传统的输电方式容易由于摩擦而产生微小电火花,严重时甚至引起爆炸,造成重大的事故。在水下,导线直接接触供电还有电击的危险[2-4]。这一系列的问题都在呼唤着一种摆脱金属电缆的电能传输方式,即无线电能传输。无线电能传输(WPT)是一种有效的新型电能传输方法,通过无线电能传输,不需要使用电缆或其他实物就能进行电能的传输,电能可以通过短距离耦合,中等围的谐振感应和电磁波感应传输,在很难使用传统电缆的地方也可以实现电能传输[5]。实现无线电能传输,将使人类在电能方面的应用更加宽广和灵活。电能的无线传输技术将开辟人类能源的另一个新时代,给大众带来非同凡响的意义和影响根据传输原理的不同。

无线电能传输方式按传输原理的不同可分为电磁感应式、电磁共振式以及电磁波辐射式三种。作为无线电能传输的三种主流方式,它们都有各自的优势与不足。一般来说,电磁感应技术比较具有实现性,且已应用于当前各种电子产品,它的优点是能量的传输效率较高,但存在传输距离短,发热大,线圈对准困难等问题;电磁波传输能够实现远距离传输,但是现阶段效率过低,另一方面传输过程中的介质也会对电磁波产生影响;磁耦合谐振无线电能传输中和了上述两种传输方式,具有中中等距离传输和较高效率的特点,因而受到的关注较多。

2 无线电能传输研究发展

2.1 无线电能传输国外研究发展

19世纪30年代,迈克尔·法拉第提出电磁感应定律,即穿过闭合电路的磁通量发生变化,闭合电路中会有电流产生。19世纪90年代,被称为无线电能传输之父的尼古拉·特斯拉第一次提出无线电能传输的构想,并于1899年演示了无导线的高频电流电动机,但出于效率与安全的考虑,这一技术就此搁置[6]。20世纪20年代,日本的H.Yagi和S.Uda发明了八本·宇田天线,可用于无线电能传输的定向。20世纪60年代,雷声公司(Raythheon)的布朗(W.C.Browm)设计了一种半波电偶极子半导体二极管整流天线,此天线效率高且结构简单,由此完成了32.45GHz微电波驱动直升机的实验[7-8]。后来,他又进行了室微波能量传输实验,实现了90%的微波-直流能量转换效率。

自Brown的实验成功以后,无线电能传输技术引起了广泛的关注。1968

年,Peter Glaster提出通过构建太空太阳能为地球无线传输能源的设想。1975年,在美国宇航员的支持下,开始了无线电能传输地面实验的5a计划。近几年,无线电能传输技术的发展更为迅猛。2007年,美国麻省理工学院的马林·索尔贾西克(Marin Soljacic)等人在无线电能传输方面取得新进展,他们用两米外的一个电源,“隔空”点亮了一盏60w的灯泡[7-8]。2009年,TI和Fulton (eCoupled技术)公司合作开发用于控制非接触式充电的电源芯片。2011年,在东京举行的安防用品会展上,松下集团推出了一款无线充电的太阳能电池板。2012年,Lockheed Martin公司研发出激光无线充电系统。

2.2 无线电能传输国研究发展

无线能量传输技术在国的起步较晚。1994年,电子科技大学的林为干院士第一次将微波输能技术引入到国。之后,中科院电工所进行了相关的理论研究。1998年,大学利用微波输能实现了对管道机器人的供能。2001年,石油学院的宏发表了第一篇关于感应电能传输技术在感应电机机车上应用的可行性的文章。同年,大学跃教授开始对无线电能传输技术的研究,且大学与新西兰奥克大学展开了合作,进行更深层次的学术交流。2003年,大学小林、皮喜田等对无线电能传输用于体诊疗装置进行了研究。2007年,跃教授研制出了感应耦合无线输电装置,可同时向多个设备实现600到1000W的电能传输,效率高达70%。2009年大学使用平面天线和接收整流阵列,实现200m的长距离无线电能输送实验[9]。2013年3月中科院微系统所实现了0.6m距离的磁共振耦合能量传输,效率达50%。随着技术的成熟与进步,越来越多的科研机构及高校开始了关于无线电能传输技术的研究。研究进一步深入,研究领域也逐渐扩大。

3 主要研究容

本课题主要对基于磁耦合谐振的无线电能传输系统展开研究。首先完成此系统的设计,制作硬件电路,再分析影响传输距离与效率的因素,并通过改进与调试,实现传输距离与传输效率的最优化。

3.1 磁耦合谐振无线电能传输机理

3.1.1 磁耦合

一个线圈的电流变化在相邻的线圈产生感应电动势,它们在电的方面彼此独立,之间的相互影响是靠磁场将其联系起来的,这种现象称为磁耦合。能量传输的效率和传输的距离主要取决于耦合的效率。自感磁通链和互感磁通链两部分相加即是耦合线圈中的磁通链,耦合线圈的磁通链与施感电流呈线性关系,是各施感电流的磁通链叠加得到的结果。若两个耦合电感,L1和L2中有变动电流,各电感中的磁通链将会随着电流变化而变化[10]。设耦合电感L1和L2的电压和电流,

M,则两个耦合电感的电压、电流的关系为:

(3-1)

耦合系数定量地描述了两个耦合线圈的耦合紧疏程度,用k表示,有

(3-2) k 的大小,两个线圈的相互位置、结构以及周围的磁介质有关系。调整或改变

他们的相互位置,可以改变耦合因数的大小;当L1和L2一定,也就相应改变了互感M的大小。

3.1.2 传输系统原理

下图3.1为磁耦合谐振式无线电能传输系统的框图。该系统主要是由能量发射端及能量接收端组成。能量发射端以直流作为功率输入,经过逆变后形成了高频激励源,使与之直接相连的源线圈产生谐振,且在源线圈的周围形成了交变磁场。发射线圈通过感应源线圈的交变磁场与之形成共振。这样,能量就通过源线圈传送到发射线圈,再经发射线圈传递出去[11]。能量接收端有两个线圈,分别是接收线圈和负载线圈。接收线圈在收到发射线圈传递过来的能量后,再传送

图3.1 磁耦合谐振式无线传能系统框图

给负载线圈。负载线圈之后连接能量变换电路,使高频交流功率转换成直流功率,供给后面的用电负载使用[12]。

3.2 系统方案初步设计

3.2.1 系统整体设计

系统由发射装置电路、接收装置电路、单片机控制部分、驱动电路、辅助电源电路和整流电路组成,如图3.2所示。主电路输入直流电压,电能通过发射装置发射出去,接收装置接收后通过整流电路将电能提供给负载。控制电路由单片机控制系统组成,单片机产生PFM 和PWM信号,控制开关管的导通和截止,产生方波信号,单片机通过A/D对输入电压进行采样并通过液晶屏显示出来。

浅谈无线电力传输

浅谈无线电力传输 张业邹代宇陈昊 内容摘要:无线电力传输技术是一项新兴的科技,这项技术未来将很大程度的造福人类。本文将对无线电力传输技术的历史,基本原理,研究现状以及未来前景进行介绍,让人们更好地认识这门新兴技术。 关键词:无线电力传输,电磁感应,耦合,共振,无线充电,改变世界。 一、无线电能传输的发展历史 1820年:安培,安培定理表明电流可以产生磁场。1831年:法拉第,法拉第电磁感应定律是电磁学的一个重要的基本规律。1864年:麦克斯韦建立了统一的电磁场方程,用数学的方法描述电磁辐射。1864年:赫兹证实了电磁辐射的存在。赫兹产生电磁波的设备是VHF和UHF 波段的放电发射机。1891年:特斯拉(NikolaTesla)改善了赫兹的微波发射器的射频功率供应,并申请专利。1893年:特斯拉在芝加哥的哥伦比亚世界博览会展示了他的无线传输的荧光照明灯。1894年:勒布朗(Hutin&LeBlanc)相信可以感应传输电能,并申请了关于一个能传输3KHz电能的系统的美国专利。1894年:特斯拉分别在纽约的第五大道南35号的实验室和休斯敦街46号的实验室通过无线方式点亮了一个单极白炽灯,实验手段用到电力感应、无线共振感应耦合等技术。1894年:钱德拉玻(JagdishChandraBose)使用电磁波信号远距离点燃火药和

触响铃铛,表明不用电线也能传递能量。1895年:钱德拉玻无线传输信号将近一英里远的距离。1896年:特斯拉发射了约48公里(30英里)距离的信号。1897年:马可尼(GuglielmoMarconi)使用超低频无线电发射器传送6公里的摩尔斯电码信号。1897年:特斯拉申请了无线传输的专利。自此,无线电力传输技术真正走上了历史的舞台。 一、无线电能传输的基本原理 无线输电技术根据其应用场合的变化有不同的原理,技术方案也不尽相同。 1.电磁感应原理 此原理与电力系统中常用的变压器原理类似。在变压器的原边通入交变电流,副边会由于电磁感应原理感应出电动势,若副边电路连通,即可出现感应电流,其方向的确定遵从楞次定律,大小可由麦克斯韦电磁理论解出。电力系统中的电压、电流互感器也是采用了类似的原理。相对于无线输电而言,变压器的原边相当于电能发射线圈,副边相当于电能接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。虽然电磁感应原理在电力系统中应用的初衷并不侧重于电能的传输,而是利用能量的转化改变电压、电流的数量级,但其对无线输电确实产生了一定的启发作用, 尤其是电能的小功率、短距离传送。目前使用电磁感应传递电能的主要有电动牙刷, 以及手机、相机、MP3等小型便携式电子设备,由充电底座对其进行无线充电。电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。这种原理的无

基于无线通信的点菜系统软件设计【文献综述】

毕业设计开题报告 电子信息工程 基于无线通信的点菜系统软件设计 1、前言部分 人类利用无线通信方法的历史已经有几千年了,古时候用的烽火就是最原始无线通信的影子。但那时候的无线通信技术还只是处于萌芽阶段,只有到19世纪末意大利人马可尼发明无线电报开始,人类才开始真正大规模使用无线通信技术[1]。近数十年来随着计算机技术和电子通信技术的发展,无线通信技术更是以日新月异的速度向前发展,它也成为了通信领域的重点研究方向之一。 现代的无线通信技术是建立在硬件电路基础上的,因此微电子技术的发展就直接制约着无线通信技术的发展。回顾集成电路的发展历程,我们可以发现,自发明集成电路至今40多年以来,“从电路集成到系统集成”这句话是对IC产品特大规模集成电路发展过程的最好总结,即整个集成电路产品的发展经历了从传统的板上系统(System-on-board)到片上系统(System-on-a-chip)的过程[2-5]。随着集成程度的不断提高,芯片的体积能耗和成本在逐步的降低。这也促使电子产品向便携式和低端市场发展。 虽然微电子的发展历史已经有半个多世纪,但是射频芯片的发展却是近几年的事。从分类上来看,射频芯片属于专用集成电路。目前国际上有很多专门生产射频芯片的公司,例如Nordic公司和Chipcon公司。这些芯片一般工作在免费频段,采用专门的调制解调技术,内部集成了很多的电路[6-9]。例如Nordic公司的NRF2401芯片,它是单片射频收发芯片,工作于2.4~2.5GHz ISM(Industry Science medicine,工业、科学、医学)频段,芯片内置了频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。芯片能耗非常低,以-5dBm的功率发射时,工作电流只有10.5mA,接收时工作电流只有18mA,有多种低功率工作模式使节能设计更为方便。 无线电子点菜系统是无线通信技术的一个典型的应用。近些年来,随着人民生活水平的不断提高和生活方式的转变,餐饮业具有巨大的投资市场,被称为中国的黄金产业之一。如今人们在消费过程中对服务质量产生了更高的要求,同时

一文读懂无线通信技术分类

一文读懂无线通信技术分类 无线技术正在迅速发展,并在人们的生活中发挥越来越大的作用。而随着无线应用的增长,各种技术和设备也会越来越多,也越来越依赖于无线通信技术。本文盘点下物联网中无线通信主要的技术。 无线通信技术分类美国通信委员会(FCC)分类 2015年,美国通信委员会(FCC,Federal Communications Commission)技术咨询委员会(TAC,Technological Advisory Council)网络安全工作组在一份白皮书中提到了将物联网通信技术分成了以下四类: Mobile/WAN,Wide Area Network - 移动广域网络,覆盖范围大 WAN,Wide Area Network - 广域网,覆盖范围大,非移动技术 LAN,Local Area Network - 局域网,覆盖范围相对较小,如住宅、建筑或园区 PAN,Personal Area Network - 个域网,覆盖范围从几厘米到几米不等主要的无线技术及分类如下表所示: 不知为何,FCC TAC将Sigfox归入了LAN,而LoRaWAN归入了WAN。Sigfox与LoRaWAN 都同属于LPWAN领域中的窄带技术,都是可以广域覆盖。Weightless SIG在LPWAN领域中主推的将会是Weightless-P。NB-IoT也没有列入其中。新的技术在不断出现,也在不断地重塑物联网市场的格局。 KEYSIGHT分类 在KEYSIGHT的一份PPT中《Low Power Wide Area Networks,NB-IoT and the Internet of Things》,将IoT无线技术做了比较详细的划分,如下图所示: 相关术语如下: NFC,Near Field CommunicaTIon - 近场通信

无线充电技术综述

无线电能技术综述 微航磁电技术有限公司 简要:叙述了无线电能传输的概念和发展历程,着重对电磁感应式、电磁共振式和电磁辐射式三种无线电能传输进行了详细分析;电磁感应式传输距离近、效率低且需要补偿;电磁共振式是对感应式的突破。可以在几米的范围内传输中等,其研究前景较好;电磁辐射式传输距离远,功率较大,但传输较远距离时需要高效整流天线和高方向性天线,其研制难度较大。关键词:无线电能传输;电磁感应;磁谐振;微波 所谓无线电能传输(Wirelss Power Transmission——wPT)就是借助于电磁场或电磁波进行能量传递的一种技术。无线输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开采中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在无线输电方面,我国的研究才刚刚起步,较欧美落后。在此旨在阐述当前的技术进展,分析无线输电原理,为我国在无线输电方面的深入研究提供参考。 1 无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉·特斯拉(Nikola Tesla),因而有人称之为无线电能传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现.2 J。其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,又称为八木一宇田天线。20世纪60年代初期雷声公司(Raytheon)的布朗(w.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实J。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微波能量转换为了直流电。1977年在实验中使用GaAs—Pt肖特基势垒二极管,用铝条构造半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波——直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%。自从Brown 实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 a计划 ]。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波——直流的转换效率达83%。1991年,华盛顿ARCO电力技术公司使用频率35 GHz的毫米波,整流天线的转换效率为72%。1998年,5.8 GHz印刷电偶极子整流天线阵转换效率为82%。前苏联在无线电能传输方面也进行了大量的研究。莫斯科大学与微波公司合作,研制出了一系列无线电能传输器件,其中包括无线电能传输的关键器件——快回旋电子束波微波整流器。近几年,无线电能传输发展更是迅速。Wildcharge、Powercast、SplashPower、东京大学,相继开发出非接触式充电器。MIT在2007年6月宣布,利用电磁共振成功地点亮了一个离电源约2 m远的60 w电灯泡,这项技术被称为WiTricity。该研究小组在实验中使用了两个直径为50 cm的铜线圈,通过调整发射频率使两个线圈在10 MHz产生共振,从而成功点亮了距离电力发射端

基于单片机的无线遥控小车设计【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于单片机的无线遥控小车设计 1、国内外研究现状 无线电遥控是利用无线电信号来对远方的各种机构进行控制的技术,这些信号被远方的接收设备接收后,可以指令或驱动其它各种相应的机械,去完成各种操作,已经广泛运用于机械领域,不但提高机械的自动化程度和操作性,还改善了操作人员的工作环境啊。并且与我们的生活也越来越接近,比如遥控门窗,遥控风扇、遥控座椅、遥控小车等都是无线电技术的成功应用于生活的例子。 2、研究主要成果 智能小车,也称轮式机器人,是一种以汽车电子为背景,涵盖控制、模式识别、传感技术、电子、电气、计算机、机械等多学科的科技创意性设计。从普通的玩具遥控车到无限工业控制车辆,从短程控制到外太空探险小车的控制,可以预见今后无线智能遥控小车的应用将更加广泛。在最近几年,随科学技术的进步,智能化和自动化技术的普及,各种高科技广泛应用于玩具制造领域,使其娱乐性和互动性不断提高。根据美国玩具协会的调查统计,近年来全球玩具销量增幅与全球平均GDP增幅大致相当。而全球玩具市场的内在结构比重却发生了重大变化:传统玩具的市场比重在逐步缩水,高科技含量的电子玩具则蒸蒸日上。美国玩具市场的高科技电子玩具的年销售额2004年较2003年增长52%,而传统玩具的年销售额仅增长3%。英国玩具零售商协会选出的2001年圣诞最受欢迎的十大玩具中,在七款玩具配有电子元件。从这些数字可以看出,高科技含量的电子互动式玩具已经成为玩具行业发展的主流。普通的无线遥控车大家都很熟悉,市场里有很多提供小孩子玩玩的遥控小车,还有神奇的天堂电玩WII。 3、发展趋势 无论是简单的还是难的,熟悉的还是不熟悉的,智能无线遥控小车最基本的功能就是无线控制和启动两方面,在这个基础上,可以再加上更多的复杂功能,比如: ①测速:由单片机定时器根据高低电平计数脉冲与车轮周长通过算法得出车速,再根据车速和行驶时间得出行驶里程。 ②红外避障:红外发射管通过三极管和电阻接到一从单片机的PB口,红外接受管的数据口接到它的PC口,当检测到有障碍物时,接受管的数据口输出为低电平并送

ZigBee无线传输技术综述

ZigBee无线传输技术综述 0 引言 ZigBee的基础是IEEES02.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEES02.15.4(ZigBee)技术标准。ZigBee协议由五家公司共同提出:Honeywell、Invensys、三菱电气、摩托罗拉和飞利浦。IEEF802.15.4工作组为ZigBee定义了三个免受权频段:2.4GHz(全球应用),915MHz(美国)和868 MHz(欧洲)。 ZigBee采用DSSS技术,与蓝牙等无线通讯技术相比,它具有如下特点: (1)功耗更低:ZigBee Alliance网站公布,以一般电池电力而言,ZigBee产品可使用数月至数年之久。它非常适用于那些需要一年甚至更长时间才需更换电池的设备(如典型的监控设备)。 (2)接入设备多:ZigBee的解决方案支持每个网络协调器带有255个激活节点,多个网络协调器可以联接大型网络。2.4GHz频段可容纳16个通道,每个网络协调器带有255个激活节点(蓝牙只有8个),ZigBee技术允许在一个网络中包含4千多个节点。 (3)成本更低:ZigBee只需要80C51之类的低档处理器以及少量的软件即可实现,无需主机平台。从天线到应用实现只需1块芯片即可。蓝牙需依靠较强大的主处理器(如ARM7),芯片构架也比较复杂。 (4)传输速率更低:ZigBee的低功率导致了低传输速率,其原始数据吞吐速率在2.4GHz(10channels)频段为250kbps,在915MHz(6cha-nnels)频段为40 kbps,在868MHz(1channel)频段为20kbps。传输距离为10~20m。 1 ZigBee协议栈 ZigBee标准采用分层结构,根据开放式通信系统互联模型,从上往下具有物理层、数据链路层、网络层、应用支持子层和应用层。从网络层以上的协议有ZigBee联盟制定,IEEES02.15.4标准定义物理层和数据链路层。 1.1 物理层(PHY) 物理层是协议层的最底层,主要工作是要启动与关闭无线传输接收器、传输与接收数据、使用频道的选择、在目前频道上做讯号能量侦测、数据调变传输与接收解调、空闲频道评估(CCA)和针对接收的封包执行链路品质指示(LQI)。 IEEE802.15.4定义了两个物理层标准,分别是2.4GHz和868/915MHz物理层。2.4GHz 的物理层通过采用16相调制技术,能够提供250 kbps的传输速率。868 MHz的传输速率为20 kbps,916 MHz上的传输速率则是40 kbps。 物理层提供两个服务:数据服务和管理服务。数据服务:在物理无线信道上接受和发送物理协议数据单元。管理服务:维护一个由物理层相关数据组成的数据库。 物理层负责下面的任务: (1)无线收发信机的激活和去激活。 (2)在当前信道上的能量检测。 (3)链路质量指示,用在接受的数据包上。 (4)清除信道估计算法用在CSMA/CA技术中。 (5)信道频率选择。 (6)信道数据的接受。 1.2 数据链路层(MAC) 物理层之上的数据链路层基于物理层所提供的服务,负责设备间无线数据链路的建立,维护和结束,确认模式的帧传送与接受,信道接入控制,帧校验,预留时隙管理和广播信息管理。IEEE802.15.4的MAC层可足够灵活地来处理这些数据通信。MAC层有两种信道访问

5G无线通信网络中关键技术及发展趋势

5G无线通信网络中关键技术及发展趋势 【摘要】第五代移动通信(5G)已成为全球通信领域研发的热点。随着5G通信技术的不断完善,也必将给人们带更好的通信网络体验。因此,需对5G主要关键技术及其发展趋势做进一步探讨。 【关键词】5G 无线通信网络技术趋势 随着4G进入规模商用阶段,面向2020年及未来的第五代移动通信(5G)已成为全球研发的热点。5G时代无线通信也将会进一步的完善,从稳定性、传输速度等方面向有线通信看齐,甚至会超越有线通信。分析归纳5G主要关键技术,对其发展趋势的进一步探讨,对于5G通信技术的不断完善有着积极的意义。 一、5G无线通信技术的特点 (1)大幅提高了数据的传输速率。在5G技术中,通过技术创新,其数据传输的速度可以高达每秒几十GB。以 28GHz…波段为例,4G技术无线传输速率是75Mbps,而5G 技术无线传输速度已经可达到1Gbps,并且有高于2Mb/s的非对称数据传输能力。(2)兼容性更强。5G技术涉及到Wi-Fi、NFC以及BLUETOOTH等的无线技术,并且包含是集多种无线通信技术的全通信系统,其对其他技术和设备的兼容性

更强,在网络支付的时代,对手机支付的安全性也有了很大的提升。(3)低功耗。无线网络通信技术在应用过程,应用程度的持续运行需要较多的小任务来支持,比如电子邮件程序,为了保证电子邮件能够实时更新,会向服务器发持续发送请求。在5G技术中,会对浪费电量的应用进行快速、自动的审核,对无用应用发出的请求进行阻止,从而减少对电量的浪费,延长电池的使用寿命。 二、5G无线通信关键技术 1、大规模天线阵列技术。5G无线通信采用大规模天线阵列,从而实现在当前多天线技术的基础上,通过天线数量的增加,达到对数十个独立空间数据流的支持,对多用户系统的频谱效率大幅提升,也为5G系统速率需求和容量需求提供了支持。在大规模天线阵列对5G通信技术中信道测量与反馈、天线阵列设计、参考信号设计、低成本实现等关键问题的解决提供了技术支持。 2、超密集组网技术。为了实现无线通信频率资源的利用效率,超密集组网技术可以提高基站部署密度,从而对频率复用效率实现巨大提升。但在此技术的应用方面,因部署成本、站址资源、频率干扰等因素影响,超密集组网技术在无线通信网络局部热点区域应用,可以达到通信容量百倍级的提高。在超密集组网技术的研发过程中,其重点研究方向应体现小区虚拟化技术、干扰管理与抑制、回传与接回联合设计等方面,从而更好促进超密集

无线通信技术应用及发展

龙源期刊网 https://www.360docs.net/doc/908684268.html, 无线通信技术应用及发展 作者:郭永刚路彬 来源:《电子技术与软件工程》2018年第19期 摘要 无线通信技术作为推动我国经济不断向前发展的重要力量,不仅促使我国生产力水平不断得到提升,而且还有效改善了人民的日常生活质量,并在电力系统之中得到了广泛的应用与发展,特别是在电力通信方面起着关键的作用,为我国电网建设提供了全面的技术保障。安全有效的电力系统可以在各个方面合理地分配电能,遇到电力系统事故可以予以及时的解决。电力通信系统作为电力系统的重要组成成分,能够促使电网调度工作达到自动化以及现代化的目的,并且从根本上保证电网的安全性以及经济性。 【关键词】无线通信技术应用发展 随着我国经济发展水平的不断提升,科学技术的不断进步,促使现代通信技术变得更加科学化以及数字化。由于当前信息知识更新速度较快,而且经济发展速度呈现高度上升趋势,使得人们在信息获取方面提出了更高的要求。为有效解决无线通信技术在使用过程中出现的问题与矛盾,必须要全面秉持创新理念,综合运用与之相关的技术手段来予以解决,从而在最大程度上满足人们在信息获取方面所提出的各项需求,并为其不断提供多方面的信息资源,为科学规划工作的顺利开展奠定良好基础,推动无线通信技术蓬勃发展。 1 无线通信技术的发展 1.1 无线通信技术的联合化与集成化 全面结合我国当前资金状况、技术水平以及市场需求等相关方面的内容,将会采用融合方式来对目前的无线网络开展异构网络的联合工作,从而促使通信网络的形成,并成为无线通信技术发展内容之一。现阶段,我国网络融合形式包括:接入网、核心网融合以及业务融合等,对于选择不同的网络来实现接入工作时,需要先对其开展协同工作,从而促使无线网络的使用者达到无线漫游的目的。在构建未来通信终端时,需要为其添加配置能力,并不断提升该项能力,便于计算机与通信技术进行全面的融合,而且在该种技术下通信终端便不会接收到用户的干预内容,同时还可以为用户提供丰富多样的网络接入方式,便于其随时展开网络监控工作,及时更新升级与之相关的软件。除此之外,由于时代不断进步,人们需求水平不断提升,因此未来无线通信技术的构建要全面符合时代发展特征以及全方位满足用户提出的各项需求,而且无线通信技术要保证能够实现多种功能集成的目的,例如语音、数据以及图像业务的综合、无线传输模块的综合等。 1.2 无线网络通信技术的有效融合

WIFI文献综述

WIFI技术的应用 由于互联网在全球的快速普及与发展.人们的工作与生活越来越依赖互联网。人们随时随地都有可能需要上网,产生了大量的WLAN 服务需求。随着智能天线技术的发展,笔记本电脑、手机、掌上电脑等支持WI兀的移动终端越来越普及。进一步增加了人们对WLAN 服务的需求。 基于WIFI标准的WLAN网络是目前最为普及的无线网络形式。由于WIFI技术无线接入和高速传输的技术优势,在一定条件下可以作为对3G网络的补充。而且基于WIFl标准的WLAN网络相对基于3G 标准的3G网络成本低廉。对于正在抢占3G市场的中国各大电信运营商来说.WIFI技术无疑是具有强大吸引力的。 1、WIFI及其技术特点 WIFI全称Wireless Fidelity。实质上是一种商业认证,具有此认证的产品符合IEEE802.11系列无线网络协议。该系列协议属于短距离无线传输技术,该技术使用2.4GHz或5GHz附近频段。 WIFI网络是由AP(Access Point)和无线网卡组成的无线网络。AP 一般称为网络桥接器或接入点,它是当作传统的有线局域网络与无线局域网络之间的桥梁,因此任何一台装有无线网卡的PC均可透过AP去分享有线局域网络甚至广域网络的资源,其工作原理相当于一个内置无线发射器的HUB或者是路由,而无线网卡则是负责接收由AP所发射信号的CLIENT端设备。 WIFI(Wireless Fidelity)技术即IEEE802.11协议.无线接入和高速传输是WIFI的主要技术优点.其中IEEE802.11b最高速度为11Mbps,IEEE802.11a与IEEE802.119的最高速度为54Mbps。现在多用的IEEE802.11b与IEEE802.11g设备使用的频段为2.4~2.4835GHz的免许可频段。在频率资源上不存在限制,因此使用成本低廉也成为了WIFI技术的又一大优势。WIFI无线网络是由 AP(Access Point)和无线网卡组成的无线网络。组网方式较为简单。我们通常将AP称为网络桥接器或接入点,将能搜索到WIFI网络的地方称为热点区域。任何一个装有无线网卡的终端(现在主要的终端是笔记本电脑和带WIFI功能的智能手机)进入WI兀覆盖区域均可以通过AP来无线高速接入英特网。另外IEEE802.11规定的发射功率不超过100毫瓦,实际发射功率大约为60-70毫瓦。而手机的

无线加速度传感器文献综述

无线加速度传感器文献综述 一、研究现状 无线加速度传感器是传感器技术、MEMS技术、微处理器和无线通信技术相结合的产物,由加速度传感器、微处理器、射频收发芯片及电源构成。目前,国内外无线加速度传感器,包括其他类型的无线传感器,按体系结构可分为三大类: (1)COTS( Commercial Off The Shelf)节点,该类节点中的传感器、微处理器、通信模块等使用的都是现成的商用产品。典型代表有美国伯克利大学加州分校(UCB)的MICATelos节点,欧洲传感器研究项目小组开发的EyesIFX节点,中科院研究的GAIN系列也属于该类节点。这种节点除了无线传感器的共同特点外还具有低成本、短周期、技术门槛相对较低等优势,被各高校和研究机构广泛采纳,所以该类型的节点是最多的。 (2)SOC(System On Chip)节点,该类节点只使用一个芯片,就可实现节点的数据采集、控制和通信功能。SOC节点通常都为特定的应用而开发,由于需要芯片设计能力,因此开发门槛较高,成果相对较少。典型代表有Rockwell科学实验室的WINS节点、麻省理工开发的uAMPS-III等。 (3)Smart Dust节点,又称微型节点或尘埃节点。该类节点使用了业界最尖端的技术,体积只有几个平方毫米,通常为军事应用而开发,微型节点的代表为Smart Dust节点和SPEC节点,都由UCB研制。内嵌微处理器是无线加速度传感相比于传统传感器的又一特点,微处理器负责控制传感器进行数据的采集、处理和收发。 二、无线加速度传感器的工作原理 无线加速度传感器实际上就是将以加速度传感器为核心的数据采集模块、微处理器为核心的数据预处理模块、射频芯片为核心的无线传输模块,以及以微电池能量模块集成并封装在一个外壳内的系统。无线加速度传感器工作时,加速度传感器检测加速度信号(模拟信号),然后送入A/D转换器使其转换为数字信号,在作A/D转换之前,一般会设置信号调理电路,用来放大和滤波(如对建筑结构的检测,由于大跨度桥梁等大型建筑结构的自振频率较低,而桥面振动、桥梁负荷冲击等对振动信号的影响又相对较大,因此,在A/D采样之前需对模拟信号作抗混滤波处理,以滤除或降低高频干扰)。A/D的输出传送给微处理器进行预处理并存储数据,得到的预处理加速度数据将送给无线收发模块进行无线传输。最后,接受装置接收并数据传输给PC机作进一步的分析处理与显示。典型的无线加速度传感器节点结构由以下几个部分组成: (1)数据采集模块:用于对检测区域进行数据采集与信号调理。 (2)数据处理模块:微处理器对整个传感器节点的操作进行控制,对数据进行预处理并存储。 (3)无线传输模块:以射频芯片为核心,根据IEEE802.15.4协议进行无线通信,传输控制信息并首发数据信息。 (4)能量模块:为另三大模块提供电源,一般为微电池 三、无线加速度传感器存在的问题

G无线通信网络蜂窝结构体系和关键技术

5G 无线通信系统:前景和挑战 5G 无线通信网络 蜂窝结构体系和关键技术 演讲人:蓝之远 小组成员:蓝之远、孔胜、黄栋、刘威阳、 刘冰、徐迪、徐明月、赵晓通 2014年10月

目录

一、摘要 第4代无线通信系统已经部署或即将被部署在许多国家。然而,随着无线移动设备和服务爆炸式的发展,它们仍然面临着甚至4G不能调解的一些挑战,例如,频谱危机和高能耗。无线系统设计人员面临着不断增长的高数据率和移动性要求的需求的新的无线应用。因此,已经开始研究第五代无线系统,预计将在2020年部署。在本文中,我们提出一个潜在的蜂窝体系结构,分室内场景和室外场景,并讨论5G无线通信系统各种有前途的技术,比如,大规模MIMO,节能高效通信,认知无线电网络和可见光通信。还讨论了未来面对这些潜在的技术的挑战。 二、介绍 创新和有效的利用信息和通信技术(ICT)已在提高世界经济中变得越来越重要。无线通信网络在全球ICT战略中可能是最关键的因素,是许多其他工业的支柱。它是世界上发展最快、最具活力的行业之一。欧洲移动天文台报道称:移动通信业在2010年有总计1740亿欧元收入。一举超过了航空工业和制药业。无线技术的发展大大提高了人们的沟通能力、在商业活动和社交活动中的生活。 无线移动通信显着的成就反映技术更新快速步调。从第2代移动通信系统(2G)在1991年的初次露面到3G系统在2001年首次着手进行,无线移动系统从一个单纯的电话系统已经变换成一个能传输丰富多媒体内容的网络。4G无线系统设计满足高级国际移动通信(IMT-A)的需求,利用IP协议提供所有服务。在4G系统,采用一种高级无线电接口,是利用正交频分复用(OFDM),多输入多输出(MIMO)和链路适配(或自适应)技术。4G无线网络可以支持在低速移动中1 Gb/s速率,例如漫游/本地无线接入;在高速移动中最高100Mb/s,例如移动接入。长期演进(LTE)和它的延伸,先进的长期演进系统,作用可实现的4G系统,最近已部署或很快将在全球部署。 然而,订制移动宽带系统的用户数量每年都在以引人关注的增加。越来越多的人渴望更快的移动互联网接入服务,时尚的手机,总的来说,与他人或获取信息的即时通信。当今更强大的智能手机和便携式电脑越来越受欢迎,它追求先进的多媒体功能。这导致了无线移动设备和服务的爆发。EMO指出,从2006年以来移动宽带每年以92%的速度增长。它已被无线世界研究论坛的预测(WWRF)到2017年时有7万亿无线设备服务于7亿人口;换句话说,连接网络的无线设备将达到世界人口的1000倍。随着越来越多的设备无线上网,很多研究需要面临解决的挑战。 最关键性的挑战之一是物理上为蜂窝通信分配的射频(RF)频谱十分稀缺。蜂窝频率使用超高频段的手机,通常范围从几百MHz到几GHz。这些频谱大量被使用,使运营商获得更多的频谱很困难。另一个挑战是,先进的无线技术的部署是以高能耗为代价。在无线通信系统中的能量消耗的增加会间接的导致二氧化碳排放增加,目前被认为是对环境的一大威胁。此外,它已被报道,蜂窝运营商基站(BSS)的能耗占他们的电费账单70%。事实上,节能高效的通信不在4G无线系统的初始条件之一,但它是后一阶段的问题。其他挑战,例如,平均频谱效率,高速率和高移动性,无缝覆盖,不同的服务质量(QoS)要求,和分散的用户体验(不同的无线设备/接口和异构网络不兼容性),仅举几例。 所有上述问题给蜂窝服务供应商施加更多压力,他们正面临着不断增加更高的数据传输速率,更大的网络容量,更高的频谱效率,更高的能源效率,高流动性的新的无线应用所需

无线能量传输研究现状文献综述

无限能量传输研究现状文献综述 摘要:无线能量传输技术近年来得到了极大的发展,在诸多领域得到了广泛的应用。该技术不依赖于有线的传输媒介,对于有线供电部署困难的场景尤其是人体内部医用装置的供电具有重要的意义。本文将重点介绍无线能量传输技术的发展,传输方式,传输中遇到的问题以及国内外的研究现状。 关键词:无线能量传输;无线供电;电磁耦合;磁场共振 Abstract: In recent years ,wireless energy transmission technology has been a great deal of development, has been widely used in many fields. This technique does not rely on a wired transmission medium, for wired powered deployment difficulties scene especially the power supply of the medical device inside the human body, has important significance. This article will focus on the development of wireless energy transmission technology, transmission mode, the problems encountered in the transmission as well as the research status of the domestic and foreign. Key words: wireless energy transfer, wireless power supply, Electromagnetic coupling,magnetic field resonance. 1.前言 1.1背景简介及其应用 无线能量传输是指通过无线的方式来实现能量从能量源传输到负载的一个过程。事实上,无线能量传输并不是什么新概念,早在1891年,尼古拉〃特斯拉就证实了无线能量传输,2001 年5 月,法国国家科学研究中心的皮格努莱特(G.Pignolet),利用微波无线传输电能点亮40m 外一个200W 的灯泡。2006 年末,物理学教授马林〃索尔贾希克为首的研究团队试制出的无线供电装置,可以点亮相隔7 英尺(约2.1m) 远的60W 电灯泡,能量效率可达到40%。2007年,美国麻省理工学院朝着无线能量传输迈出了革命性的一步,展示了一种能够替代现有笔记本、手机充电的方式,MIT的研究小组将这一概念称之为非辐射电磁场。2008 年8 月的英特尔信息技术峰会(IDF:Intel Developer Forum)上演示了无线供电方式点亮一枚60W 电灯泡,可以在1m距离内隔空给60W 灯泡提供电力,效

文无线电能传输文献综述

本科毕业设计论文 文献综述 题目:电能无线传输装置的硬件设计 作者姓名 指导教师 专业班级 学院信息工程学院 提交日期2016年3月7日

电能无线传输装置的硬件设计 姓名:专业班级: 摘要:无线电能传输技术是通过电磁感应、电磁共振、电磁辐射等多种形式实现非接触式的新型电能传输,能帮助使我们摆脱传统的电能传输方式的各种缺点。文章阐述了无线电能传输技术的研究背景,介绍了该传输方式的各种优点,以及在国内外的研究发展历程。之后叙述了现有理论框架下的三种无线电能传输技术,并比较了四种技术的特点。文章的最后,阐述了无线电能传输技术的应用前景和领域。 关键词:无线电能传输;电磁感应;电磁共振;电磁辐射;传输效率 1 研究背景及意义 人类社会自第二次工业革命以来,便进入了电气化时代。大至遍布世界各地的高压线、电网,小至各种各样的家用电气设备,传统的电能传输主要通过金属导线点对点,属于直接接触传输。这种传输方式使用电缆线作为媒介,在电能传输的过程中将不可避免的产生一些问题。例如尖端放电、线路老化等因素导致的电火花,不仅会使线路损耗增大,还会大大降低供电的可靠性和安全性[1],且会缩短设备的寿命。在油田、钻采矿井等场合,用传统的输电方式容易由于摩擦而产生微小电火花,严重时甚至引起爆炸,造成重大的事故。在水下,导线直接接触供电还有电击的危险[2-4]。这一系列的问题都在呼唤着一种摆脱金属电缆的电能传输方式,即无线电能传输。无线电能传输(WPT)是一种有效的新型电能传输方法,通过无线电能传输,不需要使用电缆或其他实物就能进行电能的传输,电能可以通过短距离耦合,中等范围的谐振感应和电磁波感应传输,在很难使用传统电缆的地方也可以实现电能传输[5]。 实现无线电能传输,将使人类在电能方面的应用更加宽广和灵活。电能的无线传输技术将开辟人类能源的另一个新时代,给大众带来非同凡响的意义和影响。

电动汽车无线充电技术文献综述

电动汽车无线充电技术的现状与展望 王利军(合肥工业大学,合肥230000) 刘小龙(合肥工业大学,合肥230000) 端木沛强(合肥工业大学,合肥230000) 景池(合肥工业大学,合肥230000) 【摘要】介绍了无线充电技术的分类、电动汽车无线充电技术的工作原理以及电动汽车无线充电技术的应用情况,对比分析电动汽车传统能源供给方式及无线充电方式的优缺点。分析电动汽车用无线充电技术的特点,并介绍应用于电动汽车的无线充电技术的研发现状。然后以行驶中的充电技术为重点,对将来电动汽车用无线充电技术的发展进行展望。Abstract:The categories, operating principles and applications of wireless charging technology are introduced in this paper. The advantages and disadvantages are analyzed by comparing traditional energy supply mode and wireless charging mode. The characteristic of wireless charging technology for EV is analyzed. And then the development present of wireless charging technology is introduced. Finally,the future of wireless charging technology for EV is described with focus on charging of a moving vehicle on road. 【关键词】电动汽车无线充电无线电力输送电磁感应 Key words:electric vehicle; wireless charging technology; wireless power transmission; electromagnetic induction; 0 引言 随着社会的进步、科技的发展、环境和能源问题的日益突出,发展和普及电动汽车等新能源汽车的呼声日趋高涨,国内外纯电动汽车( EV) 和插电式混合动力汽车( PHEV) 的量产和销售也已开始。然而当前电动汽车的普及还面临着诸多问题。其中充电技术方面,现在电动汽车的充电方式全部是接触式充电(无论是充电模式还是换电模式) ,非接触式的无线充电技术尚处于起步阶段。然而,从便利性来看,非接触式无线充电技术更适用。由于电动汽车二次电池的能量密度远不及汽油,必须经常进行充电作业,且每次充满电都需要数小时。而利用无线充电技术可以省却繁琐的充电作业,甚至可以在汽车行驶中自动进行充电,实现智能化和人性化,同时解决了接触式充电在安全和维护方面的问题。 1 无线充电技术 无线充电技术引源于无线电力输送技术。无线电力传输也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。根据在空间实现无线电力传输供电距离的不同,可以把无线电力传输形式分为短程、中程和远程传输三大类。 1.1 短程传输 通过电磁感应电力传输(ICPT)技术来实现,一般适用于小型便携式电子设备供电。ICPT 主要以磁场为媒介,利用变压器耦合,通过初级和次级线圈感应产生电流,电磁场可以穿透一切非金属的物体,电能可以隔着很多非金属材料进行传输,从而将能量从传输端转移到接收端,实现无电气连接的电能传输。电磁感应传输功率大,能达几百千瓦,但电磁感应原理的应用受制于过短的供电端和受电端距离,传输距离上限是10 cm 左右。 1.2 中程传输 通过电磁耦合共振电力传输(ERPT)技术或射频电力传输(RFPT)技术实现,中程传输可为手机、MP3 等仪器提供无线电力传输。ERPT 技术主要是利用接收天线固有频率与发射场电磁频率相一致时引起电磁共振,发生强电磁耦合的工作原理,通过非辐射磁场实现电能的高

无线通信技术及5G关键技术介绍

姓名:张健康学号:02121222 姓名:王晨阳学号:02121202 姓名:王李宁学号:02121209

[摘要] (2) 1.引言 (3) 2.无线通信技术概念 (3) 2.1 3G即将成为过去 (3) 2.2 4G 是现在 (4) 2.3 5G是未来 (5) 2.4各国研究进展 (6) 3.5G性能指标 (7) 4.5G关键技术 (8) 4.1 新型多天线技术 (8) 4.2 高频段的使用 (9) 4.3 同时同频全双工 (9) 4.4终端直通技术(D2D) (9) 4.5 密集网络 (9) 4.6新型网络架构 (10) 5.结束语 (10) 中国--机遇与竞争并存 (11) 参考文献: (11) [摘要] 第五代通信系统是面向2020年以后人类信息社会需求的无线移动通信系

统,它是一个多业务技术融合的网络,通过技术的演进和创新,满足未来广泛的数据、连接的各种业务不断发展的需要,提升用户体验。本文首先介绍5G的概念,然后阐述了5G的性能指标,重点对5G的关键技术进行论述,这些关键技术包括新型多天线技术、微波段的使用、同时同频全双工、设备间直接通信技术、自组织网络。 [关键词] 5G;无线通信;关键技术;移动通信技术 1.引言 4G网络部署正在如火如荼地进行时,关于5G的研究也拉开了序幕。2012年,由欧盟出资2700亿欧元支持的5G研究项目METIS(Mobile and Wireless Communications Enablers for the2020Information Society)[1]正式启动,项目分为八个组分别对场景需求、空口技术、多天线技术、网络架构、频谱分析、仿真及测试平台等方面进行深入研究;英国政府联合多家企业,创立5G创新中心,致力于未来用户需求、5G网络关键性能指标、核心技术的研究与评估验证;韩国由韩国科技部、ICT和未来计划部共同推动成立了韩国“5G Forum”,专门推动其国内5G进展;中国,工业和信息化部、发改委和科技部共同成立IMT-2020推进组,作为5G工作的平台,旨在推动国内自主研发的5G技术成为国际标准。可见,对于5G的研究,许多国家或组织都在积极地进行中,未来5G技术将使人们的通信生活发展到一个全新的阶段。 2.无线通信技术概念 GSM是第一代的无线通信技术 为模拟技术,采用的是频分多址方 式,频谱的利用效率非常低下。GSM 诞生之初的目的为使用数字技术取 代模拟技术,提高语音通话的质量, 提高频谱利用效率,降低组网成本。 GSM可以说是迄今为止最为成功的 无线通信技术,可以实现全球漫游。 GSM主要解决的是语音通话问题,而 随着对移动数据的要求提高,提出了 第三代移动通信技术(3G)。 2.1 3G即将成为过去

短距离无线通信技术综述[文献综述]

文献综述 通信工程 短距离无线通信技术综述 摘要:近年来,数字家庭,无线通信,无线控制,无线定位,无线组网和移动连接等词语频频映入我们的眼帘,短距离无线通信技术才逐渐进入我们的生活。正是由于IT产业的高速发展,网络的普及,家电的智能化以及单片机强有力的功能拓展,才使得它们逐渐来到我们身边,进入我们的生活。有增无减的相关信息报道足以预测这些新事物必将具有强大的生命力和广阔前景。 关键词:WirelessUSB技术;UWB;Bluetooth;Zigbee 1.引言 短距离无线通信技术的范围很广,在一般意义上,只要通信收发双方通过无线电波传输信息,并且传输距离限制在较短的范围内,通常是几十米以内,就可以称为短距离无线通[1]。人们注意到在同一幢楼内或在相距咫尺的地方,同样也需要无线通信。因此,短距离无线通信技术应运而生。目前,便携式设备间的网络连接使用的短距离无线通信技术主要有UWB超带宽、wrielessUSB技术、蓝牙(Bluetooth) 技术、zigbee等。下面叙述几种主要的短距离无线通信及其应用技术[2]。 2.短距离无线通信技术的特征 低成本、低功耗和对等通信,是短距离无线通信技术的三个重要特征和优势[3]。 首先,低成本是短距离无线通信的客观要求,因为各种通信终端的产销量都很大,要提供终端间的直通能力,没有足够低的成本是很难推广的。 其次,低功耗是相对其它无线通信技术而言的一个特点,这与其通信距离短这个先天特点密切相关,由于传播距离近,遇到障碍物的几率也小,发射功率普遍都很低,通常在1毫瓦量级[4]。 最后,对等通信是短距离无线通信的重要特征,有别于基于网络基础设施的无线通信技术。终端之间对等通信,无须网络设备进行中转,因此空中接口设计和高层协议都相对比较简单,无线资源的管理通常采用竞争的方式如载波侦听[5]。

相关文档
最新文档