遗传算法分析

遗传算法分析
遗传算法分析

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

基于遗传算法的多式联运组合优化

第四章基于遗传算法的集装箱多式联运运输组合优化模型 的求解 4.1 遗传算法简介 4.1.1 遗传算法 遗传算法(Genetic Algorithm,GA)是在20世纪六七十年代由美国密歇根大学的Holland J.H.教授及其学生和同事在研究人工自适应系统中发展起来的一种随机搜索方法,通过进一步的研究逐渐形成了一个完整的理论和方法体系取名为基本遗传算法(Simple Genetic Algorithm)。在接下来几年的研究过程中Holland在研究自然和人工系统的自适应行为的过程中采用了这个算法,并在他的著作《自然系统和人工系统的适配》中对基本遗传算法的理论和方法进行了系统的阐述与描写,同时提出了在遗传算法的理论研究和发展中具有极为重要的作用的模式理论,它的编码技术和遗传操作成为了遗传算法被广泛并成功的应用的基础,经过许多学者多年来的研究,遗传算法逐渐成熟起来,到现在已经成为了一个非常大的体系,广泛的应用于组合优化、系统优化、过程控制、经济预测、模式识别以及智能控制等多个领域。De Jong于1975年在他的博士论文中设计了一系列针对于各种函数优化问题的遗传算法的执行策略,详细分析了各项性能的评价指标。在此基础上,美国伊利诺大学的Goldberg于1989年系统全面的阐述了遗传算法理论,并通过例证对遗传算法的多领域应用进行了分析,为现代遗传算法的研究和发展奠定了基础。 遗传算法是一种模仿基于自然选择的生物进化过程的随机方法,它以类似于基因的编码作为种群的个体,首先,随机的产生初始种群的个体,从这个群体开始进行搜索,根据类似于生物适应能力的适应度函数值的大小,按照不同问题各自的特点,在当前的种群中运用适当的选择策略选择适应能力大的个体,其中所选择出来的个体经过遗传操作、交叉操作以及变异操作产生下一代种群个体。如此反复,像生物的进化过程一样逐代进化,直到满足期望的终止条件为止。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

遗传算法的计算性能的统计分析

第32卷 第12期2009年12月 计 算 机 学 报 CH INESE JOURNA L OF COMPU TERS Vol.32No.12 Dec.2009 收稿日期:2008210219;最终修改稿收到日期:2009209227.本课题得到国家自然科学基金(60774084)资助.岳 嵚,男,1977年生,博士研究生,主要研究方向为进化算法.E 2mail:yueqqin@si https://www.360docs.net/doc/909809874.html,.冯 珊,女,1933年生,教授,博士生导师,主要研究领域为智能决策支持系统. 遗传算法的计算性能的统计分析 岳 嵚 冯 珊 (华中科技大学控制科学与工程系 武汉 430074) 摘 要 通过对多维解析函数的多次重复计算并对计算结果进行统计分析来讨论遗传算法的可靠性和可信度,结果表明:遗传算法的计算结果具有一定的稳定性,可以通过采用多次重复计算的方法提高计算结果的可信度,并用以评价算法及其改进的实际效果.关键词 遗传算法;计算可靠性;置信区间 中图法分类号TP 18 DOI 号:10.3724/SP.J.1016.2009.02389 The Statistical Analyses for Computational Performance of the Genetic Algorithms YU E Qin FENG Shan (Dep artment of Contr ol Science and Eng ineering ,H uazhong University of Science and T ech nology ,W u han 430074) Abstr act In this paper,the author s discuss the reliability of the GAs by reiteratively computing the multi 2dimensional analytic functions and statistical analysis of the results.The analysis re 2sults show that the GAs have certain stability;it could improve the reliability by reiteratively computation and estimates the effects of improvements. Keywor ds genetic algorithms;computational stability;confidence interval 1 遗传算法的随机性 遗传算法是将生物学中的遗传进化原理和随机优化理论相结合的产物,是一种随机性的全局优化算法[1].遗传算法作为一种启发式搜索算法,其计算结果具有不稳定性和不可重现性;遗传算法的进化过程具有有向随机性,整体上使种群的平均适应度不断提高.现在学术界对遗传算法中的某些遗传操作的作用机制还不十分清楚,遗传算法的许多性能特点无法在数学上严格证明.遗传算法的计算过程会受到各种随机因素的影响,如随机产生的初始种群和随机进行的变异操作等,尤其初始种群对计算结果影响较大.但另一方面,大量的实算结果表明,遗传算法的计算结果具有一定的规律性,在统计意义上具有一定的可靠性,这样就可以对待求解问题 进行多次重复计算后取平均值的方法,提高遗传算 法在实际计算中的准确性和可信度. 包括遗传算法在内的启发式搜索算法主要用于解决大型的复杂优化问题,这些问题一般难以使用传统的优化算法解决.遗传算法对这类问题的计算结果也难达到精确的最优解.这给对用遗传算法解决实际工程优化问题的计算结果的评价带来了困难,在实际工程计算中也难以评价遗传算法及其改进型的计算效果的优劣. 为了分析遗传算法的计算性能,本文采用的计算对象是一个复杂的多维解析函数.使用这类函数评价遗传算法计算性能的好处是可以事先通过其他方法求得最优解,这样便于评价遗传算法及其改进型的计算效果.本文从统计学角度对多次重复计算的结果进行分析,试图得到遗传算法的稳定性和可信度方面的相关结论,通过分析遗传算法及其改进

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

遗传算法的计算性能的统计分析

遗传算法遗传算法的计算性能的统计分析 岳嵚冯珊 (华中科技大学控制科学与工程系) 摘要:本文通过对多维解析函数的多次重复计算并对计算结果的进行统计分析来讨论遗传算法的可靠性和可信度,结果表明:遗传算法的计算结果具有一定的稳定性,可以通过采用多次重复计算的方法提高计算结果的可信度,并用以评价算法及其改进的实际效果。 关键词:遗传算法;计算可靠性;置信区间 分类号:TP18 1遗传算法的随机性 遗传算法是将生物学中的遗传进化原理和随机优化理论相结合的产物,是一种随机性的全局优化算法[1]。遗传算法作为一种启发式搜索算法,其计算结果具有不稳定性和不可重现性;遗传算法的进化过程具有有向随机性,整体上使种群的平均适应度不断提高。现在学术界对遗传算法中的某些遗传操作的作用机制还不十分清楚,遗传算法的许多性能特点无法在数学上严格证明。遗传算法的计算过程会受到各种随机因素的影响,如随机产生的初始种群和随机进行的变异操作等,尤其初是始种群对计算结果影响较大。但另一方面,大量的实算结果表明,遗传算法的计算结果具有一定的规律性,在统计意义上具有一定的可靠性,这样就可以对待求解问题进行多次重复计算后取平均值的方法,提高遗传算法在实际计算中的准确性和可信度。 包括遗传算法在内的启发式搜索算法主要用于解决大型的复杂优化问题,这些问题一般难以使用传统的优化算法解决。遗传算法对这类问题的计算结果也难达到精确的最优解。这给对用遗传算法解决实际工程优化问题的计算结果的评价带来了困难,在实际工程计算中也难以评价遗传算法及其改进型的计算效果的优劣。 为了分析遗传算法的计算性能,本文采用的计算对象是一个复杂的多维解析函数。使用这类函数评价遗传算法计算性能的好处是可以事先通过其他方法求得最优解,这样便于评价遗传算法及其改进型的计算效果。本文从统计学角度对多次重复计算的结果进行分析,试图得到遗传算法的稳定性和可信度方面的相关结论,通过分析遗传算法及其改进型求解解析问题的计算效果,再把所得到的相关结论推广应用到复杂的工程实际问题中去。 遗传算法在实际使用中有多种形式的变型,经典遗传算法是遗传算法的最简单的形式,但是经典遗传算法并不理想。本文使用的是粗粒度并行遗传算法。粗粒度并行遗传算法是遗传算法的一个重要改进型。它具有比经典遗传算法更好的计算性能。 2算例、实验方法和实验结果 2.1算例 本文所使用的算例是Deb 函数: ]10,10[,)]4cos(10[10)(12?∈??+=∑=i n i i i Deb x n x x x f i π(1) Deb 函数是一个高维的非凸函数,该函数在点(9.7624,9.7624,…,9.7624)上取得最大

人工智能之遗传算法论文含源代码

30维线性方程求解 摘要:非线性方程组的求解是数值计算领域中最困难的问题,大多数的数值求解算法例如牛顿法的收敛性和性能特征在很大程度上依赖于初始点。但是对于很多高维的非线性方程组,选择好的初始点是一件非常困难的事情。本文采用了遗传算法的思想,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了遗传算法的群体搜索和全局收敛性。选择了几个典型非线性方程组,考察它们的最适宜解。 关键词:非线性方程组;混合遗传算法;优化 1. 引言遗传算法是一种通用搜索算法,它基于自然选择机制和自然遗传规律来模拟自然界的进化过程,从而演化出解决问题的最优方法。它将适者生存、结构化但同时又是 随机的信息交换以及算法设计人的创造才能结合起来,形成一种独特的搜索算法,把一些解决方案用一定的方式来表示,放在一起成为群体。每一个方案的优劣程度即为适应性,根据自然界进化“优胜劣汰”的原则,逐步产生它们的后代,使后代具有更强的适应性,这样不断演化下去,就能得到更优解决方案。 随着现代自然科学和技术的发展,以及新学科、新领域的出现,非线性科学在工农业、经济政治、科学研究方面逐渐占有极其重要的位置。在理论研究和应用实践中,几乎绝大多数的问题都最终能化为方程或方程组,或者说,都离不开方程和方程组的求解。因此,在非线性问题中尤以非线性方程和非线性方程组的求解最为基本和重要。传统的解决方法,如简单迭代法、牛顿法、割线法、延拓法、搜索法、梯度法、共轭方向法、变尺度法,无论从算法的选择还是算法本身的构造都与所要解决的问题的特性有很大的关系。很多情况下,算法中算子的构造及其有效性成为我们解决问题的巨大障碍。而遗传算法无需过多地考虑问题的具体形式,因为它是一种灵活的自适应算法,尤其在一些非线性方程组没有精确解的时候,遗传算法显得更为有效。而且,遗传算法是一种高度并行的算法,且算法结构简单,非常便于在计算机上实现。本文所研究的正是将遗传算法应用于求解非线性方程组的问题。 2. 遗传算法解非线性方程组为了直观地观察用遗传算法求解非线性方程组的效果,我们这里用代数非线性方程组作为求解的对象问题描述:非线性方程组指的是有n 个变量(为了简化讨论,这里只讨论实变量方程组)的方程组 中含有非线性方程。其求解是指在其定义域内找出一组数能满足方程组中的每 个方程。这里,我们将方程组转化为一个函数则求解方程组就转化为求一组值使得成立。即求使函数取得最小值0 的一组数,于是方程组求解问题就转变为函数优化问题 3. 遗传算子 遗传算子设计包括交叉算子、变异算子和选择算子的设计。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

matlab遗传算法工具箱函数及实例讲解(转引) 核心函数:? (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数?【输出参数】? ?pop--生成的初始种群?【输入参数】? ?num--种群中的个体数目? ?bounds--代表变量的上下界的矩阵? ?eevalFN--适应度函数? ?eevalOps--传递给适应度函数的参数? ?options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如? precision--变量进行二进制编码时指定的精度? F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)? (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts.? ?termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs ,mutOps)--遗传算法函数?【输出参数】? x--求得的最优解? endPop--最终得到的种群?

bPop--最优种群的一个搜索轨迹?【输入参数】? bounds--代表变量上下界的矩阵? evalFN--适应度函数? evalOps--传递给适应度函数的参数? startPop-初始种群? opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 termFN--终止函数的名称,如['maxGenTerm']? termOps--传递个终止函数的参数,如[100]? selectFN--选择函数的名称,如['normGeomSelect']? selectOps--传递个选择函数的参数,如[0.08]? xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']? xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]? mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']? mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]?注意】matlab工具箱函数必须放在工作目录下?【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0=x=9?【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08?【程序清单】?

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

详解MATLAB在最优化计算中的应用(pdf版) 第1章 MATLAB语言基础1 1.1 MATLAB简介1 1.1.1 MATLAB的产生与发展1 1.1.2 MATLAB语言的优势1 1.2 MATLAB入门2 1.2.1 MATLAB工作环境2 1.2.2 MATLAB中的数据类型8 1.2.3 MATLAB语言中的常量与变量11 1.2.4 MATLAB中的矩阵13 1.2.5 符号运算20 1.2.6 关系与逻辑运算22 1.3 MATLAB中的矩阵运算22 1.3.1 矩阵的代数运算22 1.3.2 矩阵的关系与逻辑运算25 1.3.3 矩阵分析25 1.4 MATLAB中的图形功能28 1.4.1 二维图形29 1.4.2 三维图形33 1.5 MATLAB工具箱的使用35 1.5.1 MATLAB工具箱的特点35

1.5.2 MATLAB工具箱的使用方法35 1.6 本章小结37 第2章 MATLAB程序设计38 2.1 MATLAB程序设计方法38 2.1.1 MATLAB中的控制结构38 2.1.2 MATLAB中的M脚本文件和M函数文件46 2.1.3 MATLAB程序的调试53 2.2 MATLAB扩展编程55 2.2.1 调用MATLAB引擎56 2.3 本章小结73 第3章最优化计算问题概论74 3.1 引言74 3.1.1 最优化问题的提出74 3.1.2 最优化理论和方法的产生与发展75 3.2 最优化问题的典型实例76 3.2.1 资-源利用问题76 3.2.2 分派问题77 3.2.3 投资决策问题79 3.2.4 多目标规划问题80 3.3 最优化问题的数学描述81 3.3.1 最优化问题三要素81 3.3.2 最优化问题分类82

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

模拟退火算法与遗传算法性能比较

模拟退火算法与遗传算法性能比较 摘要:模拟退火算法与遗传算法是两种非常重要的多目标优化算法。其原理简单,对优化目标函数解析性没有要求,因此在工程问题中被广泛应用。本文介绍了这两种优化算法的原理,并分析了两种算法的性能并讨论了应用过程中的关键问题,对两种算法的合理选取及改进具有参考价值。 关键字:模拟退火,遗传算法,优化 1.前言 对于多目标优化问题,传统的做法是全局搜索,即“穷举法”。这种通过搜索整个解空间的方法虽然能获得全局最优解,但运算量非常大,当优化空间的维度非常高时,该方法在计算上不可行。通过利用目标函数的解析性质以及借助实际问题的约束条件能部分降低搜索空间,但任不能解决高维问题优化。面对复杂问题,求得最优解是很困难的,在有限时间内求得满意解是可能的。获取高维优化问题满意解的常用方法是迭代运算,但通常迭代运算容易陷入局部最优陷阱,造成“死循环”。模拟退火算法及遗传算法是两种原理简单的启发式智能搜索算法,均具有逃离局部陷阱的能力,是工程应用中快速获取满意解的常用算法,对其性能比较对于正确使用这两种智能优化算法具有重要意义。 2.算法介绍 2.1.模拟退火算法 模拟退火算法是一种随机搜索算法,Kirkpatrick[1]于1983年首次将该算法应用于多目标优化。该算法模拟冶金上的退火过程而得名,其基本思想是:对当前合理解增加扰动产生新解,评价新解对目标函数的改进情况,若小于零,则接受新解为新的当前解,否则以概率接受新解为新的当前解。新的当前解将将继续优化,直到没有显著改进为止。 模拟退火算法使用过程中以下细节影响其全局搜索性能。初始温度T选择越高,则搜索到全局最优解的可能性也越大,但计算复杂度也显著增大。反之,能节省时间,但易于陷入局部最优。依据解的质量变化概率选择温度下降策略能增强算法性能。每次温度降低迭代次数及算法的终止可由给定迭代次数内获得更优解的概率而确定。 2.1.遗传算法 遗传算法最早由Holland等[2]提出,该算法模拟遗传变异与自然选择机制,是一种通过交换机制,重组基因串的概率搜索算法,其基本思想是:分析解空间大小及精度要求,确定合理解唯一编码形式。合理解转化成的编码即为染色体,随机选取的多个初始染色体构成初始种群。会依据评价函数计算种群中每个个体

相关文档
最新文档