理论力学课件 第二章常见约束

S 1

S S

x C

y

面积代入负值、重心坐标公式不改变

5.401=S 31?=x 3

1=y 280

2=S 72=x 102=y π

163?=S 63=x 12

3=y 123cm

687.53

213

32211=++++=S S S S x S x S x x C cm

579.83213

32211=++++=S S S S y S y S y y C

巧测重心

?一个不规则的木板,利用3支铅笔如何找到其重心位置?

物体平衡时,重心要落在支撑点所围成的面积之内。

1

理论力学授课教案

《理论力学》教案 使用教材:《理论力学》 (哈工大主编) 第一篇静力学 第一章静力学 一、目的要求 1.深入地理解力、刚体、平衡和约束等重要概念。 2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。 5.掌握力多边形法则及平面汇交力系合成与平衡的几何条件。 二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下不变形的物体。刚体是静力学中的理想化力学模型。 3)约束:对非自由体的运动所加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。 9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。力系用其合力F R代替,称为力的合成;反之,一个力F R用其分力代替,称为力的分解。 2.静力学公理及其推论 公理1:二力平衡条件 指出了作用于刚体上最简单力系的平衡条件。对刚体而言,这个条件既必要又充分,但对非刚体而言,这个条件并不充分。 公理2:加减平衡力系公理 此公理是研究力系等效变换的依据,同样也只适用于刚体而不适用于变形体。 推论1:力的可传性 表明作用于刚体上的力是滑动矢量。

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

理论力学重点总结

绪论 1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建 设服务。 2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一 方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。 第一章静力学的基本公理与物体的受力分析 1-1静力学的基本概念 1.刚体:即在任何情况下永远不变形的物体。这一特征表现为刚体内任意两点的距离永远 保持不变。 2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。 1-3约束与约束力 1.自由体:凡可以在空间任意运动的物体称为自由体。 2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。 3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。约束是 以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承 受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。 5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的 约束称为单面约束;否则称为双面约束。单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。 6.柔性体约束:为单面约束。只能承受拉力,作用在连接点或假想截割处,方向沿着柔软 体的轴线而背离物体,常用符号F T表示。(绳索、胶带、链条) 7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。光滑接触面(线) 的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。 8.光滑圆柱形铰链约束:简称圆柱铰,是连接两个构件的圆柱形零件,通常称为销钉。光 滑圆柱铰链约束的约束力只能是压力,在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定。 9.铰支座:用光滑圆柱销把结构物或构件与底座连接,并把底座固定在支承物上而构成的 支座称为固定铰链支座,简称铰支座。铰支座约束的约束力在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定,通常表示为相互垂直的两个分力。 10.辊轴支座:将结构物或构件的铰支座用几个辊轴支承在光滑的支座面上,就称为辊轴支 座,亦称为可动铰链支座。辊轴支座约束的约束力应垂直于支承面,通过圆柱销中心,常用F N表示。 11.链杆约束:为双面约束。两端用光滑铰链与其他构件连接且不考虑自重的刚杆称为链杆。 链杆约束的约束力沿链杆两端铰链的连线,指向不能预先确定,通常假设链杆受拉。12.解除约束原理:当受约束的物体在某些主动力的作用下处于平衡,若将其部分或全部的 约束除去,代之以相应的约束力,则物体的平衡不受影响。

理论力学第一章题及解答(文末)

第一章 思考题 1.1平均速度与瞬时速度有何不同? 1.2 在极坐标系中,r v r =,θθ r v =.为什么2θ r r a r -=而非r ?为什么θθ r r a 20+=而非θθ r r +?你能说出r a 中的2θ r -和θa 中另一个θ r 出现的原因和它们的物理意义吗? 1.3 在内禀方程中,n a 是怎样产生的?为什么在空间曲线中它总沿着主法线方向?当质点沿空间运动时,副法线方向的加速度b a 等于零,而作用力在副法线方向的分量b F 一般不等于零,这是不是违背了牛顿运动定律呢? 1.4 在怎样的运动中只有τa 而无n a ?在怎样的运动中又只有n a 而无τa ?在怎样的运动中既有n a 而无τa ? 1.5dt r d 与dt dr 有无不同?dt v d 与dt dv 有无不同?试就直线运动与曲线运动分别加以讨论. 1.6人以速度v 向篮球网前进,则当其投篮时应用什么角度投出?跟静止时投篮有何不同? 1.7雨点以匀速度v 落下,在一有加速度a 的火车中看,它走什么路经? 1.8某人以一定的功率划船,逆流而上.当船经过一桥时,船上的渔竿不慎落入河中.两分钟后,此人才发现,立即返棹追赶.追到渔竿之处是在桥的下游600米的地方,问河水的流速是多大? 1.9物体运动的速度是否总是和所受的外力的方向一致?为什么? 1.10在那些条件下,物体可以作直线运动?如果初速度的方向和力的方向一致,则物体是沿力的方向还是沿初速度的方向运动?试用一具体实例加以说明. 1.11质点仅因重力作用而沿光滑静止曲线下滑,达到任一点时的速度只和什么有关?为什么是这样?假如不是光滑的将如何? 1.12为什么被约束在一光滑静止的曲线上运动时,约束力不作功?我们利用动能定理或能量积分,能否求出约束力?如不能,应当怎样去求? 1.13质点的质量是1千克,它运动时的速度是k j i v 323++=,式中i 、j 、k 是沿x 、 y 、z 轴上的单位矢量。求此质点的动量和动能的量值。 1.14在上题中,当质点以上述速度运动到(1,2,3)点时,它对原点O 及z 轴的动量矩各是多少? 1.15动量矩守恒是否就意味着动量也守恒?已知质点受有心力作用而运动时,动量矩是守恒的,问它的动量是否也守恒? 1.16如()r F F =,则在三维直角坐标系中,仍有▽0=?F 的关系存在吗?试验之。 1.17在平方反比引力问题中,势能曲线应具有什么样的形状?

约束条件在理论力学问题解决中的应用

第22卷 湖北师范学院学报(自然科学版)V o l 122第3期Journal of H ubeiN o r m al U niversity (N atural Science )N o 13,2002 约束条件在理论力学问题解决中的应用 朱 松 樊东红 (湖北师范学院物理系,湖北黄石 435002) 摘要:在理论力学问题的分析、解答过程中,理解、利用各种约束,特别是一些不易引起注意的运动约束,对寻找思路和解决问题有重大作用。除加强基本概念和基本规律的训练,建立和正确理解质点、刚体等模型之外,有必要强调约束条件的寻找和利用。 关 键 词:理论力学;约束;约束方程 中图分类号:O 313.3 文献标识码:A 文章编号:100922714(2002)0320104205 理论力学是大学物理专业的一门理论物理课。学生在学习本课程中往往对基本概念、基本规律的理解不易深透,解题感到困难,甚至无从下手。学生必须通过习题练习,才能加深对知识的理解,培养自己提出问题、分析问题、解决问题的能力。因此,以诱导学生理论联系实际,提高学习能力为主要目的的习题课成为理论力学教学过程中的重要一环。在辅导解题的过程中,除强调基本概念和基本规律的应用,培养将数学结果、文字描述化为清晰的运动或动力学过程图象的能力之外,引导学生学会利用约束条件往往成为他们解题的一个突破口。实际上,质点、刚体等模型的动力学过程都会受到除物理规律外某种条件的制约,这样才有了多姿多彩的运动变化。抓住一个这样的约束条件,就多提供一个方程,为问题的解决创造了条件。 下面谈谈本人在辅导学生利用约束条件时的一些体会。 1 利用适当的变换识别约束条件 有时,约束条件不明显或是不易引起注意,甚至让人觉得想当然而不能说明理由。这时,可通过物理规律来说明、验证或者将约束形式转换为另一种容易理解的形式 。 图1 杆在半圆周内滑动 例1 长为L 的杆AB 在一固定平面内运动。其A 端在半径 r (r ≤L 2)的固定圆周里滑动,而杆本身则于任何时刻均通过此圆周的M 点。试求杆的转动瞬心。 解 利用作图法。杆A 端轨迹为固定圆周,故V A ⊥OA ,切圆 周于A ;杆上点M 处速度V M 方向沿杆A B 向。则过点M 作M C ⊥ A B ,交A O 延长线于点C (如图1),点C 即为转动瞬心。 M 处的约束为运动约束,限制了杆A B 上M 处的动点M 的 速度取向。学生对固定圆周上约束——定点M 的作用有疑问,为 加深对这种约束的认识,以下从两个方面来解释。 以固定圆周上点M 为极点,极轴通过圆心O (如图1),则杆上距离杆A 端a 处点P 的极矢为〔收稿日期〕 2002—03—28 〔作者简介〕 朱 松(1971— ),男,硕士? 401?

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

相关文档
最新文档