案例3.环烷烃的结构与化学性质

案例3.环烷烃的结构与化学性质
案例3.环烷烃的结构与化学性质

环烷烃的结构特点和化学性质

对环烷烃“构-性关系”的分析和讲解方面,授课教师应引导学生对比环烷烃和烷烃成键特点的异同点,通过分析得出环烷烃的结构特点、化学通性和化学特性。

(一)环烷烃的结构特点和化学性质

同开链烷烃相似,环烷烃分子中碳元素为sp3杂化,碳的sp3杂化轨道分别与碳的sp3杂化轨道或氢的1s轨道形成σ键。通过单环环烷烃的燃烧热数据的比较和分析,得出成环碳原子数不同,环烷烃的相对热化学稳定性不同。其中,小环的相对热化学稳定性最小,环相对最活泼,最容易发生开环反应,而正常环和大环的相对热化学稳定性最好,尤其环己烷是张力能为0的环。通过数据分析,强调三元环张力最大,最不稳定,而五元环和六元环是稳定的环。

接下来创设探究性情景,引导学生讨论环烷烃的相对热化学稳定性差别较大的原因。通过探究、讨论,引导学生首先分析环丙烷的结构特点与不稳定的原因:环烷烃成键时均以sp3杂化轨道重叠成键,键角应接近四面体所要求的角度109°28',但环丙烷分子为三元环,三个碳原子位于平面正三角形的三个顶点,环内碳-碳之间的夹角为60°,要使键角由正常的109°28'变为60°,必须使两个键各向内偏转24°44'((109°28'—60°)/2 ),键角必然会变形。环中键角的变形会产生张力,即Baeyer张力学说的主要观点——环内碳-碳之间的夹角偏离正常键角越大(碳的sp3杂化轨道成键时形成正四面

体结构,正四面体所要求的角度为109°28'),键角变形的程度越大,环的张力越大,环的稳定性越小。Baeyer张力学说是否适用于所以的环?通过计算环丁烷、环戊烷、环己烷以及某些大环的键角变形程度与环的稳定性顺序的矛盾得出Baeyer张力学说主要适用于小环化合物,尤其是三元环。因为Baeyer张力学说的重要前提是成环的碳原子都在同一平面上,并排成正多边形。除了三元环外,其它环都不是平面结构,所以不适用。借此说明任何学说、规律都是在一定的条件下成立,应该辩证看待。接下来分析环丙烷的成键特点——弯键学说:由于环丙烷为三元环,环上碳的sp3杂化轨道之间只能部分侧面重叠,形成的键称为“弯曲键”或“香蕉键”,重叠程度不大,键的强度比开链烷烃的σ键小得多。σ成键电子部分暴露在两成键原子核之外,容易受到亲电试剂的进攻而开环,如Br2、HX等容易和环丙烷开环加成,这和开链烷烃不同,属于小环的特性反应。但是小环难以和高锰酸钾等强氧化剂反应,这一点和开链烷烃很相似。环丁烷具有和环丙烷相似的化学特性,但或许比环丙烷小,其它的环烷烃具有和开链烷烃相似的化学性质。

对于其它的环烷烃,要求学生掌握六元环的构象特点,理解环己烷的椅型构象是最稳定的构象,并理解环己烷的对称性、直立键(a 键)和平伏键(e键)的特点、两椅型构象之间的相互转变、以及取代环己烷的构象分析及其应用。

在对环烷烃的结构和构象分析方面可结合实物模型、三维动画进行;在Baeyer张力学说、环己烷的构象分析、取代环己烷的构象分

析等方面可以引导学生分组探究,进行启发式教学。

高二化学-烷烃和烯烃知识点总结复习及习题操练

学员编号:年级:高二课时数: 2 学员姓名:辅导科目:化学学科教师:授课类型T C烷烃和烯烃T 分析推理能力授课日期及时段 教学内容 引导回顾 知识点解题方法 1.烷烃和烯烃 1. 熟悉并掌握简单脂肪烃 2.烯烃的顺反异构 2. 简单同分异构体 同步讲解 1.了解烷烃和烯烃同系物熔、沸点的变化规律。 2.掌握烷烃取代、烯烃加成及加聚等重要的有机反应类型,并能灵活地加以运用。 3.进一步理解同分异构现象、同分异构体等概念,并能书写简单烯烃的顺、反异构体,了解烯烃的顺、反异构体在物理性质上的差异性。 1.根据教材中列举的部分烷烃与烯烃的沸点和相对密度的数据,以分子中碳原子数为横坐标,以沸点或相对密度为纵坐标,制作分子中碳原子数与沸点或相对密度变化的曲线图。通过所绘制的曲线图你能得到什么信息? 提示:如图1和图2所示。

通过曲线图可知,随着烷烃分子中碳原子数的增加,烷烃的沸点依次升高,相对密度依次增大,烯烃的曲线图同烷烃的类似。 2.由于烷烃和烯烃的结构不同,使其化学性质也存在着较大的差异,请完成下表的空白,并加以对比总结。提示:如下表所示。 烃的类别分子结构特点代表物质主要化学性质 烷烃 ①都是单键 ②链状结构 ③锯齿状排列 丙烷 ①性质较稳定 ②氧化反应 ③取代反应 ④分解反应 烯烃 ①含C=C键 ②其余键为单键 乙烯 ①氧化反应 ②加成反应 ③加聚反应 1.物理性质 烷烃和烯烃的物理性质随着分子中碳原子数的递增,呈现出规律性的变化:熔沸点逐渐增大,相对密

度逐渐增大,但不超过水的密度。 注意:烷烃、烯烃、炔烃的同系物中,随着碳原子数的增多,物理性质呈现规律性的变化。 ①状态:常温下,碳原子数小于5个的烃呈气态,含5~16个碳原子的烃呈液态,16个碳原子以上的烃呈固态。 ②熔沸点:随着碳原子数的增多,烃的熔沸点逐渐升高,相同碳原子数的同类烃的熔沸点随着支链的增多而降低。 ③密度:随着碳原子数的增多,烃的密度逐渐增大,但是常温常压下的密度均比水的密度小。 ④溶解性:烃都难溶于水,易溶于有机溶剂。 2.有机化学反应类型 (1)取代反应。 ①定义:有机化合物分子中的某些原子或原子团被其他原子或原子团所代替的反应。 ②特点:“有上有下,取而代之”。 ③常见的取代反应。 a .烷烃、芳香烃中的氢原子可以 被—X 、—NO 2、—SO 3H 取代。 CH 4+Cl 2――→光照 CH 3Cl +HCl(卤 代)

烷烃 习题及答案剖析

甲烷烷烃 1 .复习重点1.甲烷的结构、化学性质; 2.烷烃的定义、命名、同系物、同分异构体及典型的取代反应。 2.难点聚焦 1.有机物:含碳化合物叫做有机化合物,简称有机物。....(除CO、CO、碳酸盐、碳化物、硫氰化物、氰化物等外) 2它们虽然含碳,但性质和组成与无机物很相近,所以把它们看作为无机物。也就是说,有机物一定含碳元素,但含碳元素的物质不一定是有机物。而且有机物都是化合物,没有单质。 那么究竟哪些物质是有机物,哪些物质是无机物,有什么判断依据呢?我们可以通过有机物与无机物的主要区别加以判断。 有机物的组成3.C、H、O、N、S、P、卤素等元素。 构成有机物的元素只有少数几种,但有机物的种类确达三千多种? 几种元素能构几千万种有机物质?(学生自学后概括) 有机物种类之所以繁多主要有以下几个原因: ①碳原子最外电子层上有4个电子,可形成4个共价键; ②有机化合物中,碳原子不仅可以与其他原子成键,而且碳碳原子之间也可以成键; ③碳与碳原子之间结合方式多种多样,可形成单键、双键或叁键,可以形成链状化合1) —5结构图(物,也可形成环状化合物; ④相同组成的分子,结构可能多种多样。(举几个同分异构体) 在有机物中,有一类只含C、H两种元素的有机物。 4.烃:仅含碳和氢两种元素的有机物称为碳氢化合物,又叫烃 在烃中最简单的是甲烷,所以我们就先从甲烷开始学起。

甲烷 一、甲烷的物理性质 (学生回答)无色、无味,难溶于水的,比空气轻的,能燃烧的气体,天然气、坑气、沼气等的主要成分均为甲烷。 收集甲烷时可以用什么方法?(1.向下排空气法,2.排水法) 二、甲烷的分子结构 已知甲烷的气体密度在标准状况下为0.717 g/L,其中含碳的质量分数为75%,含氢质量分数为25%,求甲烷的分子式。(平行班提示:M=ρV) m a.计算甲烷的摩尔质量 因为摩尔质量=气体摩尔体积×密度 =22.4L/mol×O.7179/L =16 g/mol 所以甲烷的分子量为16。 b.按分子量和质量分数计算一个甲烷分子中C、H原子的个数 C原子数:16×75%÷12=1 H原子数:16×25%÷1=4 所以甲烷的分子式为CH。4甲烷的分子式:CH 电子式:结构式:4用短线表示一对共用电子对的图式叫结构式。 上述结构式都不能表明甲烷分子的真实构型 [模型展示]甲烷分子的球棍模型和比例模型。 得出结论:以碳原子为中心,四个氢原子为顶点的正四面体结构。. 甲烷是非极性分子,所以甲烷极难溶于水,这体现了相似相溶原理。:三角锥形 NH :正四面体CH 34 三、甲烷的化学性质 1.甲烷的氧化反应 点燃 O +2H+2OCO CH2242,(等号)”(箭头)而不是“====”a.方程式的中间用的是“ 主要是因为有机物参加的反应往往比较复杂,常有副反应发生。SCO、Hb.火焰呈淡蓝色:CH、

第二节_环烷烃.

环烷烃 2.1环烷烃的定义和命名 分子中具有碳环结构的烷烃称为环烷烃,单环烷烃的通式为C n H2n,与单烯烃互为同分异构体。 环烷烃可按分子中碳环的数目大致分为单环烷烃和多环烷烃两大类型。 1.单环烷烃 最简单的环烷烃是环丙烷,从含四个碳的环烷烃开始,除具有相应的烯烃同分异构体外,还有碳环异构体,如分子式为C5H10的环烷烃具有五种碳环异构体。 为了书写方便,上述结构式可分别简化为: 当环上有两个以上取代基时,还有立体异构。 单环烷烃的命名与烷烃基本相同,只是在“某烷”前加一“环”字,环烷烃若有取代基时,它所在位置的编号仍遵循最低系列原则。只有一个取代基时“1”字可省略。

当简单的环上连有较长的碳链时,可将环当作取代基。如: 2.多环烷烃 含有两个或多个碳环的环烷烃属于多环烷烃。多环烷烃又按环的结构、位置分为桥环、螺环等。 (1)桥环两个或两个以上碳环共用两个以上碳原子的称为桥环烃,两个或两个以上环共用的叔碳原子称为“桥头碳原子”,从一个桥头到另一个桥头的碳链称为“桥”。桥环化合物命名时,从一个桥头开始,沿最长的桥编到另一个桥头,再沿次长的桥编回到起始桥头,最短的桥最后编号。命名时以二环、三环作词头,然后根据母体烃中碳原子总数称为某烷。在词头“环”字后面的方括号中,由多到少写出各桥所含碳原子数(桥头碳原子不计入),同时各数字间用下角圆点隔开,有取代基时,应使取代基编号较小。例如: 1,2,7-三甲基-双环[2.2.1]庚烷双环[4.4.0]癸烷双环[2.2.1]庚烷 (2)螺环脂环烃分子中两个碳环共用一个碳原子的称为螺环烃,共用的碳原子为螺原子。命名时根据成环的碳原子总数称为螺某烷,编号从小环开始,经过螺原子编至大环,在“螺”字之后的方括号中,注明各螺环所含的碳原子数(螺原子除外),先小环再大环,数字间用下角圆点隔开。有取代基的要使其编号较小。例如:

环烷烃命名

2.3.2 环烷烃的命名

单环烷烃的命名 A. 当支链不复杂时,以环烷烃为母体 1,2-dimethylcyclopentane 1,2-二甲基环戊烷 1-ethyl-3-methylcyclopentane 1-甲基-3-乙基环戊烷

单环烷烃的命名methylcyclopentane 2-ethyl-4-methyl-1-propylcycloheptane 甲基环戊烷 4-甲基-2-乙基-1-丙基环己烷A. 当支链不复杂时,以环烷烃为母体 1-ethyl-3-methylcyclopentane 1,2-dimethylcyclopentane 1,2-二甲基环戊烷1-甲基-3-乙基环戊烷

B. 当支链较复杂或不易命名时,以环烷基为取代基 3-cyclohexylhexane 3-环己基己烷 C. 两环相连时 Cyclopropylcyclohexane 环丙基环己烷Cyclopropylcyclopropane 环丙基环丙烷

多环烷烃的命名 A. Spiro cycloalkanes 螺环烃 1)选母体:根据成环的总碳原子数,称为“螺某烷”。 2)编号:从小环开始;从第一个非螺原子开始。3)书写:先写词头“螺”方括号内沿着编号方向写出每个环中除螺原子外的每个环的碳原子数数字之间用圆点隔开最后写出包括螺原子在内碳原子数的烷烃名称12 345678910螺[4.5]癸烷

“小原则”:在不违背螺环烃命名的“大”原则基础上,在编号时应尽可能令取代基的位号最小。 1 2 3 45 67 8 9 10 1-甲基螺[4.5]癸烷思考!

人卫有机化学5-2第二章--烷烃和环烷烃

第二章 烷烃和环烷烃 有机化合物(简称有机物)中有一类数量众多,组成上只含碳、氢两种元素的化合物,称为碳氢化合物,简称烃(hydrocarbon )。烃分子中的氢原子被其他种类原子或原子团替代后,衍生出许多其他类别的有机物。因此,烃可看成是有机物的母体,是最简单的一类有机物。根据结构的不同,烃可分为如下若干种类。 烃在自然界中主要存在于天然气、石油和煤炭中,是古老生物埋藏于地下经历特殊地质作用形成的,是不可再生的宝贵资源,是社会经济发展的主要能源物质,也是合成各类生活用品和临床药物的基础原料。本章讨论两类饱和烃——烷烃和环烷烃。 第一节 烷烃 分子中碳原子彼此连接成开放的链状结构的烃称为开链烃,因其结构与人不饱和开链烃 烃 饱和开链烃—烷烃 脂环烃(环烷烃、环烯烃等) 闭链烃 (环烃) 开链烃 (脂肪烃) 芳香烃 烯烃 炔烃

体脂肪酸链状结构相似又称脂肪烃,具有这种结构特点的有机物统称脂肪族化合物。分子中原子间均以单键连接的开链烃称为饱和开链烃,简称烷烃(alkane)。 一、烷烃的结构、分类和命名 (一)烷烃的结构 1.甲烷分子结构甲烷是家用天然气的主要成分,也是农村沼气和煤矿瓦斯的主要成分,广泛存在于自然界中,是最简单的烷烃。 甲烷分子式是CH ,由一个碳原子与四个氢原子分别共用一对电子,以四个 4 共价单键结合而成。如下图2-1(a)所示。 图2-1 甲烷分子结构示意图 结构式并不能反映甲烷分子中的五个原子在空间的位置关系。原子的空间位置关系属于分子结构的一部分,因而也是决定该物质性质的重要因素。化学学科常借助球棍模型来形象地表示有机物分子的空间结构(不同颜色和大小的球表示不同原子,小棍表示共价键)。根据现代物理方法研究结果表明,甲烷分子空间结构如图2-1(b)所示。但是球棍模型这种表示书写起来极不方便,要将甲烷的立体结构在纸平面上表示出来,常通过实线和虚线来实现。如图2-1(c)所示,虚线表示在纸平面后方,远离观察者,粗实线(楔形)表示在纸平面前方,靠近观察者,实线表示在纸平面上,这种表示方式称透视式。 将甲烷透视式中的每两个原子用线连接起来,甲烷在空间形成四面体。根据现代物理方法测定,甲烷分子为正四面体结构,碳原子处于四面体中心,四个氢原子位于四面体四个顶点。四个碳氢键的键长都为0.109 nm,键能为414.9kJ?mol-1,所有H-C-H的键角都是109.5o。 碳原子核外价电子层结构为2s22p2,按照经典价键理论,共价键的形成是电子配对的过程。碳原子价电子层上只有两个单电子,因而碳原子应该只能形

烷烃的化学性质综合练习题(附答案)

烷烃的化学性质综合练习题 一、单选题 1.如图是常见的四种有机物的比例模型示意图。下列说法正确的是( ) A.甲能使酸性高锰酸钾溶液褪色 B.乙可与稀溴水发生取代反应使溴水褪色 C.丙在铁作催化剂条件下与溴水发生取代反应 D.丁在浓硫酸、加热条件下可与乙酸发生取代反应(酯化反应) 2.下列有关甲烷的说法中错误的是( ) A.采煤矿井中的甲烷气体是植物残体经微生物发酵而来的 B.天然气的主要成分是甲烷 C.甲烷燃料电池、硅太阳能电池都利用了原电池原理 D.甲烷与氯气发生取代反应所生成的产物四氯甲烷是一种效率较高的灭火剂 3.在光照的条件下,将1mol甲烷与一定量的氯气充分混合,经过一段时间,甲烷和氯气均无剩余,生成一氯甲烷、二氯甲烷、三氯甲烷、四氯化碳和氯化氢,若已知生成的二氯甲烷、三氯甲烷、四氯化碳的物质的量分别为X mol,Y mol,Z mol,该反应中生成HCl的物质的量是( ) A.(1+X+2Y+3Z)mol B.(X+Y+Z)mol C.(2X+3Y+4Z)mol D.(1-X-Y-Z)mol 4.甲烷是天然气的主要成分,是一种高效、低耗、污染小的清洁能源。下列有关甲烷的说法正确的是( ) ①甲烷是一种正四面体结构的分子 ②物质的量1:1的甲烷与氯气发生取代反应时,生成物只有CH3Cl和HCl ③0.5 mol甲烷完全燃烧时消耗氧气最多为1 mol ④甲烷分子中的所有原子均满足最外层8电子结构 A.①② B.③④ C.①③ D.②④ 5.甲烷是天然气的主要成分,下列有关甲烷的说法不正确的是( ) A.甲烷是无色、无味,密度比空气小,极难溶于水的气体 B.甲烷化学性质比较稳定,不能被酸性高锰酸钾氧化 C.甲烷与氯气生成四种氯代甲烷的反应都是取代反应 D.燃烧相同体积的天然气和管道煤气(主要成分是CO、H2,体积比为1:1),后者消耗氧气多 6、下列关于甲烷结构的说法中正确的是( ) A.甲烷的分子式是CH4,5个原子共面 B.甲烷分子中,碳原子和氢原子形成了4个不完全相同的碳氢共价键 C.甲烷分子的空间构型属于正四面体结构 D.甲烷中的任意三个原子都不共面 7.一氯代物的同分异体有两种,二氯代物的同分异构体四种的烷烃是() A.甲烷 B.丙烷 C.丁烷 D.环丁烷 8.下列叙述不正确的是( )

环烷烃命名规则及例题

环烷烃命名规则及例题 一、单环烷命名 1.基本与烷同,加前缀“环”称为环某烷 2.环上只有一个取代基时,不必编号 3.多个取代基时,最小取代基所连的C编为1(优先顺序规则),其它取代基位置编号尽可能小(最低系列原则);位号取向需要符合两大规则的要求 4.简单环上连有较复杂C链,或同一C链上连接有几个脂环烃时,可将环当作取代基 二、螺环烷命名 1. 根据环上总碳数称为—螺[ ]某烷 2. 从小环中与螺原子相连的C开始编号,绕经螺原子,再由较大环回到螺原子 3. 尽可能使取代基处在最小位次 4. [ ]内注明各环中除螺原子外的碳原子数,由小到大排列,用圆点隔开 5. 取代基写于前 三、桥环烷命名 1. 根据环上总碳数称为——二环[ ]某烷 2. 从桥头碳起编,沿最长桥到达另一桥头,经次长桥回到第一桥头,最短桥最后编号 3. 尽可能使取代基处在最小的位次 4. [ ]中注明各桥中除桥头碳外的碳原子数,从大到小排列,用圆点分开 5. 取代基写于前 四、环己烷及取代环己烷优势构象的书写规则 1 (1)对位的C-C键相互平行(画Z 字形) (2)每碳各有一个C-H在垂直方向,峰上谷下 (3)每碳各另有一个C-H分别三左三右(左左右右),且上下交替 2、单取代环己烷优势构象 CH3总是取代在e键上。例如:甲基环己烷优势构象:

3、多取代环己烷优势构象 (1)取代基尽量在 e 键上 (2)体积大的取代基尽量在 e 键上(3)同时要满足顺反异构和位置要求 例如:反-1-甲基-3-叔丁基环己烷优势构象: C(CH3)3 CH3 五、例题 1、 1 2 3 4 5 6 1,5-二甲基-2-叔丁基环己烷 2、1 2 3 4 6 1,2-二甲基-3-叔丁基环己烷 3、 1 2 3 4 5 6 1-甲基-2-乙基-6-叔丁基环己烷 4、(CH2)4CH3 环丁基戊烷(戊基环丁烷) 5、H2C CH2 1,2-二环己基乙烷 6、 1 2 3 4 6 5 Cl 7 1,1-二甲基-3-氯环庚烷 7、 1 2 3 4 5 6 7 8螺[3.4]辛烷

烷烃烯烃炔烃知识点总结

第一节 脂肪烃 什么样的烃是烷烃呢?请大家回忆一下。 一、烷烃 1、结构特点和通式:仅含C —C 键和C —H 键的饱和链烃,又叫烷烃。(若C —C 连成环状,称为环烷烃。) 烷烃的通式:C n H 2n+2 (n ≥1) 接下来大家通过下表中给出的数据,仔细观察、思考、总结,看自己能得到什么信息? 表2—1 部分烷烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 甲烷 CH 4 -164 0.466 乙烷 CH 3CH 3 -88.6 0.572 丁烷 CH 3(CH 2) 2CH 3 -0.5 0.578 (根据上表总结出烷烃的物理性质的递变规律) 2、物理性质 烷烃的物理性质随着分子中碳原子数的递增,呈规律性变化,沸点逐渐升高,相对密度逐渐增大;常温下的存在状态,也由气态(n ≤4)逐渐过渡到液态、固态。还有,烷烃的密度比水小,不溶于水,易溶于有 我们知道同系物的结构相似,相似的结构决定了其他烷烃具有与甲烷相似的化学性质。 3、化学性质(与甲烷相似) (1)取代反应 如:CH 3CH 3 + Cl 2 → CH 3CH 2Cl + HCl (2)氧化反应 C n H 2n+2 + — O 2 → nCO 2 +(n+1)H 2O 烷烃不能使酸性高锰酸钾溶液褪色 接下来大家回忆一下乙烯的结构和性质,便于进一步学习烯烃。 二、烯烃 1、概念:分子里含有碳碳双键的不饱和链烃叫做烯烃。 通式:C n H 2n (n ≥2) 例: 乙烯 丙烯 1-丁烯 2-丁烯 师:请大家根据下表总结出烯烃的物理性质的递变规律。 表2—1 部分烯烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 乙烯 CH 2=CH 2 -103.7 0.566 丙烯 CH 2=CHCH 3 -47.4 0.519 (根据上表总结出烯烃的物理性质的递变规律) 2、物理性质(变化规律与烷烃相似) 烯烃结构上的相似性决定了它们具有与乙烯相似的化学性质。 3、化学性质(与乙烯相似) (1)烯烃的加成反应:(要求学生练习) ;1,2 一二溴丙烷 ;丙烷 2——卤丙烷 (简单介绍不对称加称规则) (2) (3)加聚反应: 聚丙烯 光照 3n+1 2 点燃

环烷烃的命名

环烷烃的命名 环烷烃的命名 环烷烃,属于有机化合物,因为仅由氢(H)和碳(C)元素组成,故又属于烃类。又因为其仅由单键连接,构成如环状,故得名。环烷烃的化学通式为 CH,n为碳原子n2(n+1-g)数,g为环的数量。只有单环的环烷烃的命名与其同碳原子数的链状烯烃相似,如:环丙烷、环丁烷、环戊烷、环己烷等,超过20个碳的一般被称为“环石蜡”。 按环的大小,环烷烃可被分为小、中、大三类。环丙烷、环丁烷视作小的。常见的环戊烷、环己烷、环庚烷以及环辛烷至环十三烷是中等大小的,更大的则被视为大的环烷烃。 首先确定其为环烷烃,并观察其有几个碳原子,则命名为环几烃。此后再加上卤素、甲基等取代基进行命名。 多环环烷烃的命名法: 除非有俗名,否则多环环烷烃如桥环烷烃、螺环烷烃的命名较为复杂。名字包括表示环数量的前缀(如“二环”)、各环内碳原子总数的后缀以及表示各端点之间碳原子数的数字前缀,表示于中括号内。多个环公用的碳原子,即桥头碳不计入内。 例一: 二环[3.2.0]庚烷 该环烷烃总碳数为七,由一个五元环及一个四元环,共两个环组成,故词尾为“庚烷”,词头为“二环”。两个被共用的碳原子间有三个连接路线:一为五元环的部分,共三个碳(两个桥头碳不计入内,下同);二为四元环的部分,共二个碳;三为两环之间共用的边线,该物质由两桥头碳直接连结,中间没有碳。由此得出中括号内的数字(以降序表示数字之间用点分隔)。故上图的环烷烃为二环[3.2.0]庚烷,而数字的个数总比环数多一个(在此有两个环及三个数字)。“[3.2.0]二环庚烷”亦可,但环上有取代基时“二环[3.2.0]庚烷”有保留前面的位置的好处,方便加上“2,3-二氯”或“3,3-二甲基”等含数字的前缀,以符合IUPAC命名常规。 例二: 二环[2.2. 1]庚烷(俗名降冰片烷) 上图环烷烃总碳数为七,全为单键,词尾为庚烷;两共用碳间一个碳原子连接着,故词

烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备 一、烷烃的主要化学性质 总体:稳定,自由基型反应居多。 (一)燃烧和氧化 一般条件下不与普通氧化剂反应,剧烈可燃烧,C →CO 2,H →H 2O ,(杂→氧化物) 有机化学中:氧化=加氧or 去氢,还原=加氢or 去氧 (二)卤代反应(实质:取代反应) 取代反应(substitution reaction )是指有机化合物受到某类试剂的进攻,致使分子中一个原子(或基团)被这个试剂所取代的反应。分为亲电取代、亲核取代、自由基取代三类。 探讨一类有机反应主要从以下四个方面展开:反应产物、反应类型、反应历程、反应活性(反应活性又可从试剂和底物两个方面讨论)。 烷烃的取代属于自由基取代反应。 反应产物:一~多卤代烷 反应类型:自由基型(反应条件:光照 or 高温) 反应历程:链引发、增长、终止 反应活性:试剂角度考虑:氟 〉〉氯 〉溴 〉〉碘 底物角度考虑:叔氢 〉仲氢 〉伯氢 二、烷烃的来源和制备 1、烷烃是其他有机物的母体,一般不经人工合成,而是从天然气和石油中获得。 2、天然来源烷烃是相当复杂的混合物,难以分离。若需纯粹烷烃,可人工合成来制备。 3、工业生产采用柯尔伯电解羧酸盐来制取 4、实验室通过武兹、科瑞-郝思合成法以及还原反应来获得。 (1)武慈反应(制备对称烷烃) 2RX (乙醚) + Na → R-R + 2NaX ( X = Br 、I ) (2)科瑞-郝思反应 R 2CuLi (二烷基铜锂) + R ’X → R-R ’ + RCu (烷基铜) + LiX (3)还原 卤代烃、醇、醛、酮、酸等还原制得(见以后章节) 三、环烷烃的主要化学性质 总体:大环像烷,小环像烯。 (一)取代反应(卤代,自由基型) + Br + HBr Br 日光 环己烷 溴代环己烷

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 1.写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2.为什么没有季氢原子? 3.命名下列化合物。 4.写出下列烷烃或环烷烃的结构式 ⑴不含有仲碳原子的4碳烷烃。 ⑵具有12个等性氢原子、分子式为C5H12的烷烃。 ⑶分子中各类氢原子数之比为:1°H:2°H:3°H = 6:1:1,分子式为C7H16的烷烃。 ⑷只有1个伯碳原子、分子式为C7H14的环烷烃。写出所有可能的环烷烃的结构式并加以命名。 5.化合物2,2,4-三甲基己烷分子中的碳原子,各属于哪一类型(伯、仲、叔、季)碳原子? 6.元素分析得知含碳84.2%、含氢15.8%,相对分子质量为114的烷烃分子中,所有的氢原子都是等性的。写出该烷烃的分子式和结构式,并用系统命名法命名。 7.将下列化合物按沸点降低的顺序排列 ⑴丁烷⑵己烷 3 ⑶-甲基戊烷 ⑸-二甲基丁烷⑹环己烷 ⑷-甲基丁烷 2,3 2 8.按稳定性从大到小的次序,用Newman投影式表示丁烷以C2—C3键为轴旋转的4种典型构象式。 9.化合物A的分子式为C6H12,室温下能使溴的四氯化碳溶液褪色,但不能使高锰酸钾溶液褪色。A氢化得2,3-二甲基丁烷,与HBr反应得化合物B(C6H13Br)。写出化合物A 和B的结构式。 10.写出下列化合物的构象异构体,并指出较稳定的构象。 (1)异丙基环己烷(2)1-氯环己烷 11.将下列自由基按稳定性从大到小的次序排列。 12.为什么凡士林在医药上可用作软膏的基质?

13.完成下列反应式 14.写出下列药物的构象。 (1)镇痛药哌替啶(杜冷丁,Dolantin)的主要代谢产物哌替啶酸的结构为: 写出哌替啶酸的构象(—COOH在e键的构象)。 (2)促动力新药西沙必利(Cisapride)的结构为: 写出西沙必利的优势构象。 15.体内的抗坏血酸可使α-生育酚自由基还原再生为α-生育酚,同时抗坏血酸转变为抗坏血酸自由基。完成上述体内的自由基反应。 16.环己烷与氯在光或热的条件下,可生成一氯环己烷的反应是自由基的链反应。写出链引发、链增长、链终止的各步反应式。 17.在C6H14的构造异构体中,哪几种异构体不能用普通命名法命名。 18.试写出下列烷基的名称。 (1)CH3CH2 CH2 CH2― (2)(CH3)2CH―CH2―CH2― 19.试比较(1)丁烷、丙醇和丙胺的沸点;(2)丁烷、甲基乙基醚CH3―O―CH2CH3和丙醇在水中的溶解度。 20.试推测(1)辛烷(2)2,2―二甲基己烷(3)新辛烷和(4)2,2,3,3―四甲基丁烷燃烧热的大小。 21.(1)写出的反应机理。 (2)对于上式反应1940年前人们曾设想过下列机理,但没有被人们普遍认可,试说明可能的原因。 (3)为什么在引发阶段不一定先由乙烷产生CH3·,而是由Cl2产生Cl·? 22.等摩尔的新戊烷和乙烷的混合物进行氯代反应,一氯代反应产生氯代新戊烷[(CH3)3CCH2Cl]和氯乙烷的比例为2.3:1,比较新戊烷和乙烷中1°H的活性。

烷烃知识点总结教学提纲

第一节 烷烃 甲烷 一、甲烷的存在和能源 (1)甲烷是由C 、H 元素组成的最简单的烃,是含氢量最高的有机物。是天然气、沼气、油田气、煤矿坑道气的主要成分。俗名又叫沼气、坑气,由腐烂物质发酵而成。天然气是一种高效、低耗、污染小的清洁能源. (2)世界上20%的能源需求是由天然气供给的,我国的天然气主要分布在东西部(西气东输) 二、物理性质: 甲烷是一种没有颜色,没有气味的气体(天然气为臭味是因为掺杂了H 2S 等气体),标准状况下密度是0.717g/L (可求出甲烷的摩尔质量为16g/moL ),极难溶于水(两个相似相溶原理都可解释)。 三、甲烷分子的组成及结构: 1、组成:如何确定甲烷属于烃,即如何确定有机物有哪些元素组成?通常采用燃烧法。 CH 4+ 2O 2 ??→?点燃CO 2 + 2H 2 O 那么可以肯定甲烷中一定有C 、H 两元素,而不能确定是否有O 元素,于是需要实验数据:如1.6g 甲烷气体点燃后产物使浓硫酸增重3.6g ,使碱石灰增重4.4g 。 计算:甲烷中C 元素为0.1mol ,1.2g ,H 元素为0.4 mol ,0.4 g ,;两者加起来刚好等于甲烷的 质量,故甲烷中只含C 、H 两元素。且两者比例为1:4,但1:4的物质有很多如CH 4、C 2H 8、C 3H 12等,如何确定究竟为哪个,则设甲烷化学式为C x H 4x (CH 4为最简式),要求出x 值还需知道其相对分子质量。由标准状况下密度是0.717g/L ,可求出甲烷的摩尔质量为16g/moL ,故得到x=1。于是甲烷的化学式为CH 4。 2、结构 知道了甲烷的组成,究竟甲烷的空间构型如何?到底是平面正四边形还是立体正四面体,科学家为了弄清楚这个问题,分析了甲烷的二氯代物CH 2Cl 2的种类。如果甲烷是正四边形,那么CH 2Cl 2应该有两种产物(邻位和对位)必有熔沸点等物理性质不同,但如果是立体正四面体,其二氯代物就只有一种。事实上科学家发现CH 2Cl 2确实只有一种,所以确定甲烷的空间构型为正四面体,在甲烷分子中一碳原分子式 电子式 结构式 结构简式 空间结构 CH 4 CH 4 结构简式(在结构式的基础上省略C —H 单键):CH 4 最简式(各元素原子个数的最简单的比值):CH 4 [展示] 甲烷的球棍模型、比例模型。 四、甲烷的实验室制法:(本部份内容教材已经删去,仅作介绍) (1)原料:无水醋酸钠、碱石灰(NaOH 、CaO 的混合物) (2)反应原理: Na 2CO 3 + CH 4↑ CH 3COONa + NaOH CaO H C H H H

案例3.环烷烃的结构与化学性质

环烷烃的结构特点和化学性质 对环烷烃“构-性关系”的分析和讲解方面,授课教师应引导学生对比环烷烃和烷烃成键特点的异同点,通过分析得出环烷烃的结构特点、化学通性和化学特性。 (一)环烷烃的结构特点和化学性质 同开链烷烃相似,环烷烃分子中碳元素为sp3杂化,碳的sp3杂化轨道分别与碳的sp3杂化轨道或氢的1s轨道形成σ键。通过单环环烷烃的燃烧热数据的比较和分析,得出成环碳原子数不同,环烷烃的相对热化学稳定性不同。其中,小环的相对热化学稳定性最小,环相对最活泼,最容易发生开环反应,而正常环和大环的相对热化学稳定性最好,尤其环己烷是张力能为0的环。通过数据分析,强调三元环张力最大,最不稳定,而五元环和六元环是稳定的环。 接下来创设探究性情景,引导学生讨论环烷烃的相对热化学稳定性差别较大的原因。通过探究、讨论,引导学生首先分析环丙烷的结构特点与不稳定的原因:环烷烃成键时均以sp3杂化轨道重叠成键,键角应接近四面体所要求的角度109°28',但环丙烷分子为三元环,三个碳原子位于平面正三角形的三个顶点,环内碳-碳之间的夹角为60°,要使键角由正常的109°28'变为60°,必须使两个键各向内偏转24°44'((109°28'—60°)/2 ),键角必然会变形。环中键角的变形会产生张力,即Baeyer张力学说的主要观点——环内碳-碳之间的夹角偏离正常键角越大(碳的sp3杂化轨道成键时形成正四面

体结构,正四面体所要求的角度为109°28'),键角变形的程度越大,环的张力越大,环的稳定性越小。Baeyer张力学说是否适用于所以的环?通过计算环丁烷、环戊烷、环己烷以及某些大环的键角变形程度与环的稳定性顺序的矛盾得出Baeyer张力学说主要适用于小环化合物,尤其是三元环。因为Baeyer张力学说的重要前提是成环的碳原子都在同一平面上,并排成正多边形。除了三元环外,其它环都不是平面结构,所以不适用。借此说明任何学说、规律都是在一定的条件下成立,应该辩证看待。接下来分析环丙烷的成键特点——弯键学说:由于环丙烷为三元环,环上碳的sp3杂化轨道之间只能部分侧面重叠,形成的键称为“弯曲键”或“香蕉键”,重叠程度不大,键的强度比开链烷烃的σ键小得多。σ成键电子部分暴露在两成键原子核之外,容易受到亲电试剂的进攻而开环,如Br2、HX等容易和环丙烷开环加成,这和开链烷烃不同,属于小环的特性反应。但是小环难以和高锰酸钾等强氧化剂反应,这一点和开链烷烃很相似。环丁烷具有和环丙烷相似的化学特性,但或许比环丙烷小,其它的环烷烃具有和开链烷烃相似的化学性质。 对于其它的环烷烃,要求学生掌握六元环的构象特点,理解环己烷的椅型构象是最稳定的构象,并理解环己烷的对称性、直立键(a 键)和平伏键(e键)的特点、两椅型构象之间的相互转变、以及取代环己烷的构象分析及其应用。 在对环烷烃的结构和构象分析方面可结合实物模型、三维动画进行;在Baeyer张力学说、环己烷的构象分析、取代环己烷的构象分

环烷烃命名

环烷烃命名规则及例题 一、单环烷命名 1.基本与烷同,加前缀“环”称为环某烷 2.环上只有一个取代基时,不必编号 3.多个取代基时,最小取代基所连的C 编为1(优先顺序规则),其它取代基位置编号尽可能小(最低系列原则); 位号取向需要符合两大规则的要求 4.简单环上连有较复杂C 链,或同一C 链上连接有几个脂环烃时,可将环当作取代基 123 4 5 6 1,5-二甲基-2-叔丁基环己烷 二、螺环烷命名 1. 根据环上总碳数称为—螺[ ]某烷 2. 从小环中与螺原子相连的C 开始编号,绕经螺原子,再由较大环回到螺原子 3. 尽可能使取代基处在最小位次 4. [ ]内注明各环中除螺原子外的碳原子数,由小到大排列,用圆点隔开 5. 取代基写于前 12 3 456 5-甲基螺[2.5]辛烷 三、桥环烷命名 1. 根据环上总碳数称为—— 二环[ ]某烷 2. 从桥头碳起编,沿最长桥到达另一桥头,经次长桥回到第一桥头,最短桥最后编号 3. 尽可能使取代基处在最小的位次 4. [ ]中注明各桥中除桥头碳外的碳原子数,从大到小排列,用圆点分开 5. 取代基写于前 1234 5 6 7 8 二环[4.2.0]辛烷 四、环己烷及取代环己烷优势构象的书写规则 1

(1)对位的C-C键相互平行(画Z 字形) (2)每碳各有一个C-H在垂直方向,峰上谷下 (3)每碳各另有一个C-H分别三左三右(左左右右),且上下交替 2、单取代环己烷优势构象 总是取代在e键上。例如:甲基环己烷优势构象: CH3 3、多取代环己烷优势构象 (1)取代基尽量在e 键上 (2)体积大的取代基尽量在 e 键上 (3)同时要满足顺反异构和位置要求 例如:反-1-甲基-3-叔丁基环己烷优势构象: C(CH3)3 CH3 五、例题 1、 1 2 3 4 5 6 1,5-二甲基-2-叔丁基环己烷 2、1 2 3 4 6 1,2-二甲基-3-叔丁基环己烷 3、 1 2 3 4 5 6 1-甲基-2-乙基-6-叔丁基环己烷 4、(CH2)4CH3 环丁基戊烷(戊基环丁烷) 5、H2C CH2 1,2-二环己基乙烷

第二章 烷烃和环烷烃最终版

第一章 烷烃和环烷烃 一、烷烃 1.烷烃的命名:普通命名法(异构词头用词头“正”、“异”和“新”等区分) 系统命名法:(1)选主链:碳链最长 (2)编号:“最低系列”原则是:逐个比较两种编号法中表示取代基位置的数字,最先遇到取代基位置最小者,定为最低系列. (3)书写表达:次序规则(p19) 小练习:1、用系统命名法命名下列有机物: 2、根据名称写出下列有机物的结构简式,并判断下列有机物命名是否正确,如不 正确,指出错误原因,然后再写出正确命名 (1)2,2,3,3-四甲基戊烷 (2)3,4-二甲基-4-乙基庚烷 (3)2,5-二甲基庚烷 (4)2,3-二甲基-6-乙基辛烷 (5)3,3-二甲基丁烷 (6)3-甲基-2-乙基戊烷 2.烷烃的分子结构 ① 烷烃的构象和构象异构体 ② 交叉式和重叠式构象(最不稳定) ③ 透视式或纽曼投影式 小练习: 以C2与C3的σ键为旋转轴,试分别画出2,3-二甲基丁烷和2,2,3,3-四甲基丁烷的典型构象式,并指出哪一个为其最稳定的构象式。 1)烷烃的物理性质: a. C1~ C4为气态,C5~ C17为液态,C17以上为固态 b. 沸点随相对分子质量增大而增大 CH 3— CH 2 —CH 2 —CH CH 2 —CH 3 —CH 3 CH 3— CH 3 CH 3 —CH 3 C CH 3— C H 2 —CH —CH 3 CH 3

c.相对分子质量相同、支链多、沸点低。 d.基本上随分子量的增加而增加 参阅物理常数表,试推测下列化合物沸点高低的一般顺序。 (1) (A) 正庚烷 (B) 正己烷 (C) 2-甲基戊烷 (D) 2,2-二甲基丁烷 (E) 正癸烷 (2) (A) 丙烷 (B) 环丙烷 (C) 正丁烷 (D) 环丁烷 (E) 环戊烷 (F) 环己烷 (G) 正己烷 (H) 正戊烷 (3) (A) 甲基环戊烷 (B) 甲基环己烷 (C) 环己烷 (D) 环庚烷 2)烷烃的化学性质:(从物质的结构来判断) a.甲烷的卤代反应:(氯代和溴代反应,反应速率:氯代 >溴代)自由基取代 b.其它烷烃的卤代反应(一卤代):反应活性:3o H > 2o H > 1o H > CH4 c.自由基的相对稳定性:3o > 2o > 1o,越是稳定的自由基,越容易形成。 小练习:1.已知烷烃的分子式为C5H12,根据氯化反应产物的不同,试推测各烷烃的构造,并写出其构造式。 (1)一元氯代产物只能有一种 (2)一元氯代产物可以有三种 (3)一元氯代产物可以有四种 (4)二元氯代产物只可能有两种 2.将下列的自由基按稳定性大小排列成序。 ⑴⑵⑶⑷ 二、环烷烃 1、环烷烃的命名和类型 (一)单环烷烃(注意支链、顺反异构) (二)多环烷烃(桥环和螺环的命名) ①桥环:环的数目[桥头间的碳原子数]某烷,例:二环[4. 4. 0]癸烷 ②螺环:螺[除螺C外的碳原子数]某烷,例:螺[4. 5]癸烷 小练习:1、给下列环烃命名 CH3CH3CHCH2CH2 CH3 CH3CCH2CH3 CH3 CH3CHCHCH3 CH3 CH 3 CH 3 H 3 C

环烷烃命名规则及例题教学提纲

环烷烃命名规则及例 题

环烷烃命名规则及例题 一、单环烷命名 1.基本与烷同,加前缀“环”称为环某烷 2.环上只有一个取代基时,不必编号 3.多个取代基时,最小取代基所连的C编为1(优先顺序规则),其它取代基位置编号尽可能小(最低系列原则);位号取向需要符合两大规则的要求 4.简单环上连有较复杂C链,或同一C链上连接有几个脂环烃时,可将环当作取代基 二、螺环烷命名 1. 根据环上总碳数称为—螺[ ]某烷 2. 从小环中与螺原子相连的C开始编号,绕经螺原子,再由较大环回到螺原子 3. 尽可能使取代基处在最小位次 4. [ ]内注明各环中除螺原子外的碳原子数,由小到大排列,用圆点隔开 5. 取代基写于前 三、桥环烷命名 1. 根据环上总碳数称为——二环[ ]某烷 2. 从桥头碳起编,沿最长桥到达另一桥头,经次长桥回到第一桥头,最短桥最后编号 3. 尽可能使取代基处在最小的位次

4. [ ]中注明各桥中除桥头碳外的碳原子数,从大到小排列,用圆点分开 5. 取代基写于前 四、环己烷及取代环己烷优势构象的书写规则 1、环己烷优势构象的书写(透视式) (1)对位的C-C键相互平行(画 Z 字形) (2)每碳各有一个C-H在垂直方向,峰上谷下 (3)每碳各另有一个C-H分别三左三右(左左右右),且上下交替 2、单取代环己烷优势构象 CH3总是取代在e键上。例如:甲基环己烷优势构象: 3、多取代环己烷优势构象 (1)取代基尽量在 e 键上 (2)体积大的取代基尽量在 e 键上 (3)同时要满足顺反异构和位置要求 CH3 C(CH3)3 例如:反-1-甲基-3-叔丁基环己烷优势构象: 五、例题

第二章 烷烃和环烷烃

第二章 烷烃和环烷烃 一、 教学目的与要求: 1、掌握烷烃和环烷烃的结构特征和命名;烷烃和环烷烃的构象异构。 2、掌握烷烃和环烷烃的化学性质的异同点;烷烃和环烷烃的自由基取代及 机理;掌握小环的开环加成。 二、教学重点 1、烷烃的命名(包括六碳以下的英文命名)。伯、仲、叔碳原子和氢原子, 乙烷与正丁烷的构象; 2、烷烃的结构特征:σ键。卤代自由基反应机理,伯、仲、叔氢的反应活 性,伯、仲、叔碳自由基的相对稳定性; 3、脂环烃的命名(单环、螺环与桥环),三元、四元环的开环加成。 4、环己烷的椅式构象以及取代环己烷的优势构象规律。 三、教学难点: 1、烷烃的英文命名; 2、自由基卤代反应机理; 3、环己烷的椅式构象,以及取代环己烷的优势构象规律; 4、环丙烷的结构; 六、教学步骤及时间分配 导言:烃(Hydrocarbon ):碳氢化合物。 简述烃的分类,介绍本章学习的重点要求,强调本章内容是学习后续各章的 基础。 1.1 烷烃 一、烷烃的结构 烷烃的结构特征:碳为sp 3杂化;C-H 、C-C 均为σ键。 σ键特点:键牢固,电子云沿键轴呈圆柱形对称,可自由旋转。 [示CH 4、CH 3CH 3的球棒模型] 简述同系列和同系物的概念和重要性: 二、烷烃的异构现象 (一) 碳链异构(carbon chain isomer ):具有相同分子式,仅由于碳链结 构不同而产生的同分异构现象。 如:丁烷(C 4H 10 ): 正丁烷 异丁烷 戊烷(C 5H 12): 正戊烷 异戊烷 新戊烷 从以上异构体引出:四种类型的碳,三种类型的氢。 分析:各级碳和氢的结构特征和代表的符号。 思考:①指出下列烷烃的各级碳和氢: CH 3-C-CH 2-CH-CH 2-CH 3CH 3CH 33CH 32CH 3 CH 3

有机化学命名规则

命名规则 烷烃的命名 普通命名法: 碳原子数目+ 烷 碳原子数为1~10用天干(甲、乙、丙、……壬、癸)表示 不同的异构体用词头“正”、“异”和“新”等区分 碳原子数为10以上时用大写数字表示 IUPAC命名法(系统命名法): 1. 选择主链(母体) (1)选择含碳原子数目最多的碳链作为主链,支链作为取代基。 (2)分子中有两条以上等长碳链时,则选择支链多的一条为主链。 2. 碳原子的编号 (1)从最接近取代基的一端开始,将主链碳原子用1、2、3……编号 (2)从碳链任何一端开始,第一个支链的位置都相同时,则从较简单的一端开始编号。 (3)若第一个支链的位置相同,则依次比较第二、第三个支链的位置,以取代基的系列编号最小(最低系列原则)为原则。 3.烷烃名称的写出 A 将支链(取代基)写在主链名称的前面 B 取代基按“次序规则”小的基团优先列出烷基的大小次序:甲基<乙基<丙基<丁基<戊基<己基<异戊基<异丁基<异丙基。 C 相同基团合并写出,位置用2,3……标出, 取代基数目用二,三……标出。 D 表示位置的数字间要用逗号隔开,位次和取代基名称之间要用“半字线”隔开。 烷烃的命名归纳为十六个字:最长碳链,最小定位,同基合并,由简到繁。

121' 2' 环烷烃的命名 普通环烷烃的命名 以环为母体,名称用“环” 开头。 环外基团作为环上的取代基。 取代基位置数字取最小 若取代基碳链较长,则环可作为取代基 (称环基) 相同环连结时,可用词头“联”开头。 联环丙烷 环烷烃的顺反异构:假定环中碳原子在一个平面上,以环平面为参考平面,两取代基在同一边的叫顺式(cis -),否则叫反式(trans -) 桥环烃的命名 桥 头 碳:几个环共用的碳原子 环的数目:断裂二根C —C 键可成链状烷烃为二环;断裂三根C —C 键可成链状烷烃为三环 桥头碳原子数:不包括桥头C ,由多到少列出 环的编号方法:从桥头开始,先长链后短链 环的数目【桥头碳原子数多到少列出用.隔开】组成桥环的碳原子总数 螺环烃的命名 编号从小环开始 取代基数目取最小 螺【除螺C 外碳原子数用.隔开由小到大】组成螺环的碳原子总数 环烷烃的其它命名方法 : 按形象命名:立方烷、金刚烷 按衍生物命名:十氢萘 稀烃的命名 烯烃与烷烃的系统命名规则类似,将后缀“烷”改为“烯”来确定它的种类,其命名有三步。

高中化学教案 (第1课时) 烃的概述 烷烃的化学性质

《有机化学基础》 课题:第一章第三节第一课时烃的概述烷烃的化学性质。 课型: 新授课 教材分析:本章是在必修2第3章《重要的有机化合物》的基础上,以“结构-有机化合物-性质”为线索,包括认识有机化学、有机化合物的结构和性质、烃三部分内容。第3节《烃》引导学生从类别上对烷烃、烯烃、炔烃、苯及其同系物各种烃的结构、性质、应用、不同类别烃之间的转化关系进行研究,在必修2第3章《重要的有机化合物》第1节《认识有机化合物》(甲烷)和第2节《石油和煤——重要的烃》(乙烯和苯)的基础上,从个案学习上升到类别学习。内容框架为: 设计思路 本节以“烃的概述和烷烃的化学性质、烯烃和炔烃的化学性质、苯及其同系物的化学性质”为基本线索,在学习过程中要建立烃的分类框架并能够举例说明。由此,将本节内容分为3个课时进行学习: 第1课时为烃的概述和烷烃的化学性质,学习烃的分类、链烃的主要物理性质、烷烃的化学性质(如与卤素单质的取代反应,与氧气的反应等);第2课时为烯烃和炔烃的化学性质,主要学习烯烃和炔烃的命名、不饱和烃的重要性质加成反应,掌握烯烃和炔烃与卤素、卤化氢等的加成反应,与酸性KMnO4溶液的氧化反应;第3课时为苯及其同系物的化学性质,主要学习苯及其同系物与卤素单质、硫酸的取代反应,与酸性KMnO4溶液的氧化反应等。 综上,本节内容安排为: 第1课时:烃的概述和烷烃的化学性质; 第2课时:烯烃和炔烃的化学性质; 第3课时:苯及其同系物的化学性质 教学目标: 知识与技能: 1、建立烃的分类框架并能够举例说明。

2、知烃的熔、沸点比较低,各种烃都难溶于水并且比水轻。 3、掌握烯烃和炔烃的命名规则,会用系统命名法命名分子中含有一个双键或三键的烯烃或炔烃。 4、烷烃能与氧气、卤素单质的反应。 过程与方法: 通过烯烃和炔烃的命名规则与烷烃的比较,体会新旧知识之间的联系与区别。 情感态度与价值观: 通过了解自然界和人类生产、生活中存在的烃,认识烃对生产、生活和自然环境的影响。教学重点、难点:认识各种烃并对它们进行命名,掌握烷烃的化学性质。

相关文档
最新文档