采用辊压机的粉磨系统的选型计算讨论

采用辊压机的粉磨系统的选型计算讨论
采用辊压机的粉磨系统的选型计算讨论

球磨机https://www.360docs.net/doc/9116326626.html,雷蒙磨粉机

电梯设计计算

目录 1.前言 2.电梯的主要参数 3.传动系统的计算 3.1曳引机的选用 3.2曳引机电动机功率计算 3.3曳引机负载转矩计算 3.4曳引包角计算 3.5放绳角计算 3.6轮径比计算 3.7曳引机主轴载荷计算 3.8额定速度验算 3.9曳引力、比压计算 3.10悬挂绳安全系数计算 3.11钢丝绳端接装置结合处承受负荷计算 4.主要结构部件机械强度计算 4.1轿厢架计算 4.2轿底应力计算 4.3轿厢壁、轿门壁、层门壁强度、挠度计算4.4轿顶强度计算 4.5绳轮轴强度计算 4.6绳头板强度计算

4.7机房承重梁计算 4.8补偿链计算 5.导轨计算 5.1轿厢导轨计算 5.2对重导轨计算 6.安全部件计算 6.1缓冲器的计算、选用 6.2限速器的计算、选用 6.3安全钳的计算、选用 7.轿厢有效面积校核 8.轿厢通风面积校核 9.层门、轿门门扇撞击能量计算 10.井道结构受力计算 10.1底坑预埋件受力计算 10.2层门侧井道壁受力计算10.3机房承重处土建承受力计算 10.4机房吊钩受力计算 11.井道顶层空间和底坑计算11.1顶层空间计算 11.2底坑计算 12.引用标准和参考资料

1.前言 本计算书依据GB7588、GB/T10058、GB/T10059、GB10060等有关标准及有关设计手册,对TKJ1600/2.5—JXW(VVVF)乘客电梯的传动系统、主要部件及安全部件的设计、选用进行了计算、校核。 2.电梯的主要参数 2.1额定载重量:Q=1600kg 2.2空载轿厢重量:P1=2500kg 2.3补偿链及随行电缆重量:P2=700 kg 适用于提升高度110m,随行电缆以60m计。 2.4额定速度:v=2.5m/s 2.5平衡系数:?=0.5 2.6曳引包角:α=310.17? 2.7绕绳倍率:i=2 2.8双向限速器型号:XS18A (河北东方机械厂) 2.9安全钳型号:AQ1 (河北东方机械厂) 2.10轿厢、对重油压缓冲器型号:YH2/420 (河北东方机械厂) 2.11钢丝绳规格:8?19S+NF—12—1500(单)右交 2.12钢丝绳重量:P3=700kg 2.13对重重量:G=3300 kg 2.14曳引机型号:GTN2-162P5 (常熟市电梯曳引机厂有限公司)

辊压机终粉磨系统在生料制备中的应用

辊压机终粉磨系统在生料制备中的应用 发表时间:2019-12-17T09:10:48.577Z 来源:《基层建设》2019年第26期作者:文有强[导读] 摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。 中建材(合肥)粉体科技装备有限公司安徽合肥 230051摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。由于中卸烘干磨对烘干热源有较高要求,正常生产时与余热发电系统发生抢风现象,影响余热发电能力,导致产品成本偏高。为了有效节能降耗、降低成本,对生料制备系统进行技术改造,选择辊压机终粉磨技术。辊压机进行生料终粉磨是先进的生产工艺,其利用粒间 高压料床粉碎原理,高效节能,从而提高粉磨系统的粉磨效率,达到节能降耗的目的。关键词:生料制备;辊压机终粉磨系统;中卸烘干磨系统辊压机属于新型水泥节能粉磨设备,除了能够有效节能外,还能降低噪声污染,在现代水泥生产工艺中发挥着举足轻重的作用。以往辊压机主要用于水泥粉磨系统,包括水泥挤压混合粉磨、水泥联合粉磨、水泥半终粉磨等多种形式。辊压机生料终粉磨系统近几年才发展起来,已经体现出其优势,对水泥生产企业节能和降低成本的效果显著。与立磨相比,电耗低是最大优势。某公司现有一条4000t/d熟料生产线,原料粉磨系统采用两套传统的中卸烘干磨粉磨工艺。由于原料粉磨系统设备陈旧,工艺相对落后,生料粉磨电耗高(两套生料粉磨系统平均电耗~24 kwh/t)、生产维护费用高等问题,公司考虑新增两套辊压机终粉磨系统对现有生料粉磨系统进行技改。 一、生料粉磨的基本特点生料粉磨是水泥生产过程的一个重要环节,与水泥粉磨相比,具有自身的特点和要求,主要体现在处理的原料特性和产品要求方面,因此采用的系统技术要求也存在较大差别。生料配料主要包括钙质原料、硅质原料、铁质原料等,这些原料的易磨性、磨蚀性、含水量等差别很大,即使同一类原料波动范围也很宽,必须经过测试生料的邦德功指数试验才能确定合理的系统配置和技术指标,否则只能基于假设的“中等性能”确定初步方案。 二、辊压机作终粉磨工艺改造方案 1、改造前的两套生料粉磨系统的主要配置如下:表2-1 原料粉磨系统主机设备一览表 2、采用的技改方案目前先进的生料粉磨系统主要有两种,一种是采用立式磨系统,另一种是辊压机终粉磨系统。立式磨对原料水分的适应能力更强,缺点是系统热风用量大,电耗偏高;而辊压机终粉磨系统是更加节能的生料粉磨方案,同样情况下,比立磨系统电耗低约2-3kWh/t、热风用量也略少于立磨系统,缺点是当原料水分过高造成物料很黏时,其适应能力不足。因本项目所用原料综合水分可控,且没有很黏的物料,气候条件适用,为避免与已投用余热发电系统争夺热风的现象,经确定采用两套更加节能的辊压机终粉磨系统代替现有的两套生料球磨机系统。 3、生产工艺流程简述在原有生料磨两侧空地上,新增二套HFCG160-120 辊压机+V4000 型气流分级机与原有球磨机系统中现有的风路、选粉、废气处理等系统组合,形成新的辊压机终粉磨系统。工艺流程阐述:来自原料配料库的混合原料(石灰石、硅石、铁矿粉等)通过皮带机输送至辊压机车间气流分级机进料口,新鲜物料汇同辊压机挤压后的物料送入新增的气流分级机内。物料经过气流分级机的分选,粗粉通过皮带机和提升机返回辊压机稳流称重仓,细粉(半成品)被风带入原有组合式高效选粉机内,选出的粗粉也回到辊压机称重仓,细粉即为成品再由空气输送斜槽、提升机等送入生料均化库内。窑尾热风仍作为整个系统的主要烘干热源,重新安装风管后将热风直接引入新增的气流分级机内,与循环风、自然风一起通过料幕,将物料中的细粉带出进入到原组合式选粉机内,通过选粉机分离后的含尘风部分返回到气流分级机内,其余气体进入窑尾收尘器。整个风路系统仍由原组合式选粉机后的循环风机完成,在入V 型气流分级机的热风管、循环风管及冷风管上均设有电动风阀。在上述系统中,在入辊压机系统的物料皮带及V 型气流分级机粗料返回皮带机上均设有自动除铁器,以去除原料及系统中的铁,有效保护辊压机。 工艺流程图如下:

国产大型辊压机及粉磨系统的方案

国产大型辊压机及粉磨系统的方案 作者:张永龙王学敏王虔虔单位:合肥水泥研究设计院1 国产辊压机发展简介 自上世纪八十年代中期由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD公司辊压机设计制造技术以来,经过了二十年的发展历程。国产辊压机的规格,辊径由800mm发展到今天的1600mm ;辊宽由200mm发展到今天的1400mm;装机功率由90kW×2发展到今天的1120kW×2 ;整机重量由30多吨发展到今天的200多吨,产品质量逐步提高。辊压机的通过量由40t/h发展到今天的800t/h;配套磨机的产量由20t/h 发展到今天的180t/h,节能幅度达30%以上。 回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段 1986年—1992年 在此期间参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同时,相继开发出各自的国产化辊压机,并在1990年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产40%,节电15%的效果。 1.2 整改提高阶段 1993年—1999年 在此期间由于各厂家制造的辊压机在生产线上相继出现问题,使得许多看中辊压机增产节能效果的厂家想上而不敢上,一些用了辊压机的厂家也觉得是“尝到了甜头,吃尽了苦头”。合肥水泥研究设计院针对出现的问题进行了分析认为主要存在两个方面问题,一是加工件、配套件的质量问题,二是工艺系统的设计及配套问题。经国家“八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG系列辊压机。有效解决了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题,在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位的配套件质量也都大大提高,为国产化辊压机的长期安全运转做出了贡献,设备运转率达90%以上;研究、开发出具有自主知识产权的国家专利产品——SF系列打散分级机以及“V”型选粉机,使辊压机和球磨机各自的优点得以充分发挥,构成的粉磨系统工艺参数更加合理。 1.3 快速发展阶段 2000年至今 解决了国产化辊压机设备制造和工艺配套两方面的问题,为国产化辊压机的快速发展应用奠定了基础,近些年国家水泥产业结构调整,淘汰立窑,发展旋窑,加上能源紧张又为辊压机的快速发展创造了难得的机遇。近几年旋窑朝着大型化发展,5000t/d 熟料生产线已成为市场的主流,这就要求国产化辊压机也朝着大型化发展,我们抓住了机遇,及时开发出装机功率在1120kW×2的大型 HFCG160-140辊压机。近些年国产工业迅速发展,加工能力和加工质量进一步提高,为5000t/d 熟料生产线设备国产化创造了条件,同样也为大型辊压机国产化创造了条件。HFCG160-140大型辊压机配Ф4.2×13m开路水泥磨产量可达170t/h以上,配Ф4.2×13m闭路水泥磨产量可达180t/h以上,取得使磨机增产100%,节电 30%的效果。

摩擦式提升机选型方法

摩擦式提升机选型方法 1.提升容器的选择 1)小时提升量: t b CA A r f N h ?= 式中 C -----不均衡系数。《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20; f ?----提升能力富裕系数。 2)提升速度: t m H V 4.0= 式中 t H ---提升距离,罐笼提升时:s t H H =;箕斗提升时:z s x t H H H H ++=。 3)一次提升时间估算: θ++++?= u v H v T m t m q 1 式中 1?---提升正常加速度,通常2 1/1s m ≤?; u ---容器启动初加速及爬行段延续的时间,取5~10s ; θ---提升容器在每次提升终了后的休止时间,s 。 4)一次提升量' Q 的确定:t b CT A Q r f q N 3600' '?= 2.钢丝绳的选择 1)钢丝绳的端部荷重:c d Q Q Q += 式中 Q ---容器的载重量,即实际一次提升量,kg ; c Q ---容器(包括连接装置)的重量,kg 。 2)提升钢丝绳的单重: c B d k H m Q P -= σ1.1' 式中 B σ---钢丝绳的公称抗拉强度,一般选B σ=155~1702/mm kg ; m----钢丝绳的静力安全系数; c H ---钢丝绳的最大悬垂长度,m 。 k t h c H H H H ' ++= 式中 h H ---尾环绳的高度,m 。 S H H g h 25.0++= 式中 S---两提升容器的中心距,m ;对于单容器带平衡锤的提升系统,则为提升容器与平 衡锤的中心距,m ; g H ---过卷高度, m ;t H ---提升高度 , m 。 p x s z t h H H H H +++= 式中 z H ---井底车场运输水平至在装载位置的提升容器底部的距离,在未最后确定前,一 般按18~25m 计算; s H ---矿井深度; x H ---井口至卸载煤仓的高度,在未最后确定前,一般可取13.5~14.5m ; p h --- 箕斗在卸载位置时,底部高出煤仓的高度,一般取0.3~0.5m 。

辊压机粉磨系统

辊压机粉磨系统 一、所属行业:建材行业 二、技术名称:辊压机粉磨系统 三、适用范围:水泥生产线原料及水泥粉磨,高炉矿渣的超细粉磨。 四、技术内容: 1.技术原理 采用高压挤压料层粉碎原理,配以适当的打散分级装置。 2.关键技术 专用磨辊堆焊及修复技术,液压、润滑、喂料、传动、自动控制技术,以及与之相配套的打散分级、球磨机改造等。 3.工艺流程 辊压机联合粉磨→半终粉磨→终粉磨。 五、主要技术指标: 5000t/d水泥生产线采用不同水泥成品粉磨系统能耗指标比较: 采用球磨机闭路系统电耗指标:38~42kWh/t; 采用辊压机粉磨系统:单套粉磨能力200t/h,系统电耗(P.O42.5级水泥)≤30kWh/t。 六、技术应用情况: 该设备1990年通过国家建材局技术鉴定,1992年荣获建材行业部级科技进步二等奖,1993年荣获国家科技进步二等奖。迄今已有400多台HFCG型辊压机及其系统水泥生产线运行,并批量出口国外。 典型用户有:台泥(英德)、河北冀东、浙江红狮、山东山水、兆山新星、山东山铝、福建水泥、广西华润、湖北华新等诸多水泥集团。目前该技术在行业内的推广比例达到60%。 七、典型用户及投资效益: (1)某5000t/d新型干法水泥生产线 项目节能技改投资额约2000万元,建设期150天。同比采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,吨水泥粉磨电耗降低8kWh/t计算,年节电效益约为800万元(按0.5元/ kWh计算),投资回收期3.0年。 (2)某2500t/d新型干法水泥生产线,老厂改造

节能技改投资额约1200万元,建设期150天。比原采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,以年产100万吨水泥,吨水泥粉磨电耗降低8kWh/t 计算,年节电效益约为400万元(按0.5元/度计算),投资回收期3.5年。 八、推广前景和节能潜力: 据“十一五”期间水泥产业结构调整政策,新型干法水泥增量相当于新建200多条5000t/d新型干法水泥生产线,需要各种规格的辊压机在800台套以上。另外,尚有大量的中、小水泥厂利用原有的球磨机改造为粉磨站。市场前景广阔,节能降耗效果显著。 “十一五”期间,该技术在行业内的普及率预计能达到80%,需总投入10亿元,可节电8亿kWh。 九、推广措施及建议: 1.参加行业推广会、技术交流会; 2.建议进一步提高耐磨材料材质,进一步延长耐磨材料使用寿命。

辊压机主要参数确定

辊压机主要参数确定 第三节辊压机主要参数确定 一、辊径D和辊宽B及最小辊隙S min的确定 目前,在设计和使用上辊径有两种方案:一为大辊径;另一为小辊径。辊径 D 有如下简化计算式 D=Kd max(9-1) 式中K ———系数,由统计数据而得,K=10-24 ; d max———喂料最大粒度,mm。 采用大辊径有如下优点: (1)大块物料容易咬入,向上反弹情况少。 (2)由点载荷、线载荷、径向挤压三者所组成的压力区高度较大,物料受压过程较长。 (3)辊子直径大,惯性大,运转平稳。 (4)辊径大,则轴承大,轴承及机架受力情况较好,且有足够空间便于轴承的安装与维修。 (5)辊面寿命相对延长。 但辊径大,则重量和体积较大,整机重量比小辊径方案重15%左右。辊宽 B 的设计也有两种方案:一为宽辊;另一为窄辊。辊宽B可用下式计算B=K B D (9-2) 式中K B———辊宽系数,K B0.2-1.2; D ———辊径,mm 。 宽辊相应的辊径要小,窄辊相应的辊径要大。宽辊具有边缘效应小、重量轻、体积小等优点。但对喂料程度的反应较敏感,出料粒度组成及运转平稳性略差。 辊压机两辊之间的间隙称为辊隙,在两辊中心连线上的辊隙,称为最小辊隙,用S min表示。 根据辊压机的具体工作情况和物料性质的不同,在生产调试时,调整到比较合适的尺寸。在喂料情况变化时,更应及时调整。在设计时,最小辊隙S min可按下式确定S min=K s D(9-3)式中K s———最小辊隙系数,因物料不同而异,水泥熟料取K s=0.016-0.024,水泥原料取K s=0.020-0.030; D ———挤压辊外直径,mm。 二、工作压力 水泥工业用辊压机,对于石灰石和水泥熟料,平均单位压力控制在140-180MPa 之间比较经济,设计最大工作压力宜取200MPa 。这个压力值又直接控制着辊子的工作间隙和物料受压过程的压实度。为了更精确地表示辊压机的压力,用辊子的单位长度粉磨力(即线压力)F m(kN/cm)来表示,一般为80-100kN/cm。 三、辊速 辊压机的辊速有两种表示方法:一种是以辊子圆周线速度V 表示;另一种是以辊子转速表示。 辊子的圆周线速度与产量、功率消耗和运行的平稳性有关。辊速高,产量也大,但过高的转速使得辊子与物料之间的相对滑动增大,咬合不良,使辊子表面磨损加剧,对辊压机的产量也产生不利影响。 目前一般辊速在 1 - 1.75m/s 之间,也有人提出,为了保证合理的轴承使用寿命,辊速不允许超过 1.5m/s 。转速(单位:r/min )的确定公式如下 式中K ———因物料不同的系数,对回转窑熟料K=660 ; D ———辊子外径,m。 四、生产能力Q 辊压机生产能力Q(单位:t/h)的计算公式如下

国产大型辊压机及粉磨系统工艺方案

国产大型辊压机及粉磨系统工艺方案 来源:合肥水泥研究设计院 1. 国产辊压机发展简介 自上世纪八十年代中期,由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD 公司辊压机设计制造技术以来,经过二十年的不断完善,国产辊压机的辊径由800mm 发展到今天的1600mm ; 辊宽由200mm 发展到今天的1400mm ;装机功率由90kW< 2发展到今天的1120kW< 2; 整机重量由30 多吨发展到今天的200 多吨,通过量由40t/h 发展到今天的800t/h ;配套磨机的产量由 20t/h 发展到今天的180t/h ,辊压机产品质量逐步提高,节能幅度达30% 以上。回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段(1986 年—1992 年) 参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同 时,相继开发出各自的国产化辊压机,并在1990 年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产 40% ,节电15% 的效果。 1.2 整改提高阶段(1993 年—1999 年) 在此期间,由于各厂家制造的辊压机在水泥生产中相继出现问题,让一些辊压机用户“既尝到了增产节能甜头,也吃尽了频繁检修的苦头”。使得许多青睐辊压机增产节 能效果的企业想上而不敢上。合肥水泥研究设计院对此进行了分析和整改、 完善。一是注重加工件、配套件的质量提高;二是优化工艺系统及设备的选型与配套。经国家 “八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG 系列辊压机。有效解决 了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题。国内的减速机、轴承、液压元器件、耐磨堆焊材料等研发等单位的配套件质量也都大大提高,为国产辊压机的长期安全运转奠定了基础,使主机设备运转率达90% 以上,同时还开 发出具有自主知识产权的SF系列打散分级机以及“V”分级机等国家专利产品,使挤 压粉磨系统工艺更加完善,参数更加合理。 1.3 快速发展阶段(2000 年至今) 解决了大型国产化辊压机设备制造和工艺配套两方面的问题,使国产辊压机进入全面推广应

矿井提升机的选型原则

矿井提升机的选型原则 对于年产量大于600kt的大、中型矿井,由于提升煤炭及辅助工作最均较大,一般均设主、副井2套提升设备。主井采用箕斗提升煤炭,副井采用罐笼完成辅助提升任务,如提升矸石、升降入员和下放材料、设备等。矿山机械设备对于年产量小于300kt 的小型矿井,如果仅用1套罐笼提升设备就可以完成全部主、副井的提升仟务时,则采用丨套提升设备是经济的。对于年产量大于1800kt的大型矿井,主井往往需要2套箕斗提升设备,副井除配备1套罐笼提升设备外,多数尚需要设置1套单容器平衡锤系统专门提升矸石。(2) 一般情况下,主井均采用箕斗提升方式。但在特殊条件下,例如矿井生产的煤质品种多,且需分别运送,或是保证煤炭有足够的块度,只好采用罐笼作为主井的提升设备。(3) 为了提高生产率,中型以上的矿井原则上都要采用双钩提升。矿山机械设备如果矿井同时开采水平数过多,采用平衡锤单容器提升方式也是比较方便的。(4) 根据我国H前的实际情况,对于小型矿并,以采用单绳缠绕式提升系统为宜。对于年产量9001ct以上的大甩矿井,以采用多绳摩擦提升系统为宜。矿山机械设备对于中型矿并,如井较浅,可采用单绳缠绕系统;井较深时,也可采用多绳摩擦提升系统,或主井采用单绳箕斗,副井采用多绳摩擦罐笼提升。(5)

矿井若有2个水平,且分前、后期开采时,提升机、井架或井塔等大型固定设备要按最终水平选择。提升容器、钢丝绳和提升电动机根据实际情况也可按第一水平选择,待井筒延伸到第二水平时,另行更换,但电动机以换装一次为宜。(6) 对于斜井,目前应采用单绳缠绕式提升机。(7) 地面生产系统靠近井口时,采用箕斗提升可以简化煤的生产流程;若远离井口,地面尚需一段窄轨铁路运输,应采用罐笼提升。以上所述,仅提出了决定提升方式的一般原则。矿山机械设备在具体的设计工作中,要根据矿井的具体条件,提出若干可行的方案,然后对基建投资、运转费用、技术的先进性诸方面进行技术经济比较,同时还要考虑到我国提升设备的生产和供应情况,才能决定合理的方案。矿山机械设备特别是计算机技术在煤矿的日益广泛应用,为矿井设计和优化设计提供了更为有利的条件。

5吨电梯计算书_一

XXXX5000/0.5—J交流调频调压调速载货电梯 计算书

XXXXXXX 目录 1.前言 2.电梯的主要参数

3.传动系统的计算 3.1曳引机的选用 3.2平衡系数的计算 3.3曳引机电动机功率计算 3.4曳引机负载转矩计算 3.5曳引包角计算 3.6放绳角计算 3.7轮径比计算 3.8曳引机主轴载荷计算 3.9额定速度验算 3.10曳引力、比压计算 3.11悬挂绳安全系数计算 3.12钢丝绳端接装置结合处承受负荷计算 4.主要结构部件机械强度计算 4.1轿厢架计算 4.2轿底应力计算

4.3轿厢壁、轿门壁、层门壁强度、挠度计算4.4轿顶强度计算 4.5绳轮轴强度计算 4.6绳头板强度计算 4.7机房承重梁计算 5.导轨计算 5.1轿厢导轨计算 5.2对重导轨计算 6.安全部件计算 6.1缓冲器的计算、选用 6.2限速器的计算、选用 6.3安全钳的计算、选用 7.轿厢有效面积校核 8.轿厢通风面积校核 9.层门、轿门门扇撞击能量计算 10.井道结构受力计算 10.1底坑预埋件受力计算 10.2层门侧井道壁受力计算 10.3机房承重处土建承受力计算 10.4机房吊钩受力计算 11.井道顶层空间和底坑计算 11.1顶层空间计算 11.2底坑计算

12.电气选型计算(变频器的容量,应急电源容量、接触器、主开关、电缆计 算) 13. 机械防护的设计和说明 14. 轿厢地坎和轿门至井道表面的距离计算 15. 轿顶护栏设计 16.轿厢护脚板的安装和尺寸图 17.开锁区域的尺寸说明图示 18.操作维修区域的空间计算(主机、控制柜、限速器、盘车操作) 19.轿厢上行超速保护装置的选型计算(类型、质量围) 20.引用标准和参考资料 1.前言 本计算书依据GB7588、GB/T10058、GB/T10059、GB10060等有关标准及有关设计手册,对KJDF5000/0.25—J(VVVF)载货电梯的传动系统、主要部件及安全部件的

辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义 辊压机部分 一、工作原理和工作方式: 该设备根据高压料层粉碎能耗低的原理,采用单颗粒粉碎群体化的工作方式,脆性物料经过高压区挤压后使物料粒度迅速减小,<0.08mm的细粉含量达20%~30%,<2mm的物料含量达70%以上,在所有经挤压后的物料表面存有大量的裂纹,易磨性显著改善,使物料在进入下一工序的粉磨时所需的粉磨能耗大幅度降低,获得大幅度增产节能的效果。 辊压机的核心部分是两个辊径辊宽相同,相向转动的磨辊,辊压机采用的工作方式是在两个相向转动的磨辊之间形成高压力区,采用过饱和喂料的方式在磨辊上方设置用于保证仓内料位的称重仓,料位由称重传感器以负反馈方式控制,形成具有一定料压的料柱,通过进料装置喂入两磨辊之间,磨辊将物料拉入辊隙后在压力区以高压将物

料压成密实的料饼后从辊隙间落下进入下一工序。 由于辊压机工作时采用完全正压力对物料实施挤压,同时在辊面菱形花纹对物料的限制作用下,物料与磨辊之间无产生剪切效果的相对滑移(注:在获得相同粉碎效果的前提下,剪应变所需能量是压应变的5倍),所以上述工作方式不仅节省能耗,辊面磨损也很小。 二、设备结构: 设备由主机架、轴系、液压系统、润滑系统、进料装置、传动系统、检测系统等组成。 1、主机架: 主机架用于承受设备的挤压粉碎力,分别由上、下横梁,左、右立柱,承载销,定位销,导轨及高强度联接螺栓组等组成。上、下横梁采用工字型结构,左、右立柱则采用工字型与箱型相结合的结构形式,均具有较高的刚度,通过高强度螺栓组的联接使整个机架形成一个刚性的整体。 承载销将立柱上所受到的挤压粉碎力传递到上、下横

导轨的选型及计算

导轨的选型及计算 按结构特点和摩擦特性划分的导轨类型见表6-1[5],各类导轨的主要特点及应用列于表中。 表6-1 导轨类型特点及应用 6.1 初选导轨型号及估算导轨长度 X 方向初选导轨型号为494012GGB 20B AL2P -? [6]具体数据见《机械设计手册》9-149 Y 方向初选导轨型号为4109022G G B20AAL 1-?P 导轨的运动条件为常温,平稳,无冲击和震动 为何选用滚动直线导轨副: 1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利

于提高数控系统的响应速度和灵敏度。驱动功率小,只相当普通机械的十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高10倍。 4)采用滚动直线导轨副可简化设计,制造和装配工作,保证质量,缩短时间,降低成本。 导轨的长度: 由于导轨长度影响工作台的工作精度和高度,一般可根据滑块导向部分的长度来确定导轨长度。 其公式为: L=H+S+△l-S1-S2 由此公式估算出Lx=940mm,Ly=1090mm 其中L—导轨长度 H—滑块的导向面长度 S—滑块行程 △l—封闭高度调节量 S1—滑块到上死点时,滑块露出导轨部分的长度 S2—滑块到下死点时,滑块露出导轨部分的长度 6.2 计算滚动导轨副的距离额定寿命 X方向的导轨计算 X方向初选导轨型号为4 940 12 GGB20B AL2P- ?,查表9.3-73[1]得,这种导轨的额定动,静载荷分别为Ca=13.6kN,Coa=20.3kN。 4个滑块的载荷按表9.3-48序号1的载荷计算式计算。 其中工作台的最大重量为: G=100×9.8=980N F1=F2=F3=F4=1/4(G1+F)=250N 1)滚动导轨的额定寿命计算公式[6]为: L=(f h f t fc fa Ca/ fwPc) ε ?K=27166km 式中 L——额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受的载荷(KN); Z——导轨上的滑块数;

导轨的选型和计算

导轨得选型及计算 按结构特点与摩擦特性划分得导轨类型见表6-1 [5\各类导轨得主要特点及应用列于表中。 导轨类型特点及应用 表 X方向初选导轨型号为⑹具体数据见《机械设计手册》9-149 Y方向初选导轨型号为 导轨得运动条件为常温,平稳,无冲击与震动 为何选用滚动直线导轨副:

1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利于提高数控系统得响应速度与灵敏度。驱动功率小,只相当普通机械得十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高1 0倍。 4)采用滚动直线导轨副可简化设计,制造与装配工作,保证质量,缩短时间,降低成本。 导轨得长度: 由于导轨长度影响工作台得工作精度与高度,一般可根据滑块导向部分得长度来确定导轨长度。 其公式为: L=H+S+A I -S1-S2 由此公式估算出L x = 940mm, L y = 1090mm 其中L—导轨长度 H—滑块得导向面长度 S—滑块行程 △ I—封闭高度调节量 S1 —滑块到上死点时,滑块露出导轨部分得长度 S 2—滑块到下死点时,滑块露出导轨部分得长度 6、2计算滚动导轨副得距离额定寿命 X方向得导轨计算 X方向初选导轨型号为,查表9、3-73[,]得,这种导轨得额定动,静载荷分别为Ca 二13、6kN, Coa二20、3k No 4个滑块得载荷按表9、3-48序号1得载荷计算式计算。 其中工作台得最大重量为: G二100X9、8=980N F 1 =F2=F3=F4=1/4 ( G1+F) =250N 1)滚动导轨得额定寿命计算公式⑹为: L=(仇f t fc f a Ca/ fwP c ) K =27166km 式中L ----- 额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受得载荷(KN); Z——导轨上得滑块数;

电梯拽引机设计计算

电梯曳引机设计计算[1][9] 电梯的载荷、运行速度等主要参数取决于曳引机的电机功率和转速,蜗杆与蜗轮的模数和减速比,曳引轮有直径和绳槽数,以及曳引比(曳引方式)等。 (1)曳引电动机的选择 曳引电动机是驱动电梯上下运行的动力源,其运行情况比较复杂。运行过程需频繁的起动、制动、正转、反转、而且负载变化大,经常工作在重复短时状态、电动状态、再生制动状态下。因此,要求曳引电动机不但应能适应频繁起、制动的要求,而且起动电流小,起动力矩大,机械特性硬,噪声小,当供电电压在额定电压±7%的范围内变化时,还能正常的起动和运行。因此电梯用曳引电动机是专用电动机。由于曳引电动机的工作情况比较复杂,所以对于电机功率的计算机比较麻烦,一般常用以下公式计算: η102)1(QV K P P -= (2-2) 式中:P —曳引电动机的功率(kw ); P K —电梯平衡系数(一般取0.4~0.5); Q —电梯轿厢额载重量(kg ); V —电梯额定运行速度(m/s ); η—电梯的机械总效率。(因为电V =1.0m/s < 2 m/s 则采用有齿轮曳引机 一般取0.5~0.55。) 代入数据得: (10.5)16000.81020.5P -??= ?=12.549kw (2-3) 根据《电梯结构原理及安装维修》书P25表2-1电梯曳引系列表选择曳引电动机为:JTD15kw 电动机,其转速为:960 r/min 。 由所选曳引电机得:曳引轮直径D=780mm ,曳引比y i =2:1。 (2)减速比的计算 采用有齿轮曳引机的电梯,其运行速度与曳引机的减速比、曳引轮直径、曳引比、曳引电动机的转速之间的关系可用如下公式表示:

提升机技术参数及设备选型过程

矿井提升机技术参数介绍及设备选型过程 目录 一、提升机相关参数 二、选型过程 三、MA标志查询办法 四、提升系统设计内容与步骤。 五、电机功率选择与校核 一、技术参数 1、卷筒宽度和直径 2、两卷筒中心距 3、最大静张力、最大静张力差 4、钢丝绳直径、绳速 5、提升高度、容绳量 6、减速器速比 7、电机功率、极数、电机型号简介 8、变位质量 JK-2/2JK-2提升机技术参数表 1、卷筒宽度和直径 卷筒直径:提升机卷筒上第一层钢丝绳中心到卷筒中心距离的2倍。 绞车卷筒的直径为:卷筒缠绳表面到卷筒中心距离的2倍。 二者概念有差别,相差1根钢丝绳的直径。 卷筒宽度:卷筒两个挡绳板内侧直间的距离。 卷筒直径和宽度决定了卷筒使用钢丝绳的最大直径和容绳量 2、最大静张力和最大静张力差 JK-2型提升机的最大静张力161KN,2JK-2型绞车的最大静张力和最大静张力差分别为61KN、40KN。 钢丝绳的张力,也就是钢丝绳的拉力。在单钩提升时,滚筒上只有一根钢丝绳,其拉力主要由提升容器、钢丝绳、提升载荷的重力构成。拉力最大值在天轮的切点处,载荷越大、井筒越深、容器重量越大钢丝绳的拉力就越大。最大静张力是针对提升机而言的,是强度允许的,滚筒上最大的拉力值 双钩提升时,滚筒上有两条钢丝绳,重载钢丝绳的拉力大,轻载钢丝绳的拉力小,两根钢丝绳拉力的差值就是静张力差。最大静张力差就是静张力差的最大值,是绞车强度所允许的,滚筒上两根钢丝绳拉力差的最大值。 通过以上分析,我们可以这样来理解二者。 对于单滚筒绞车,只有最大静张力,没有最大静张力差。最大静张力就是绞车强度所允许的容器、钢丝绳、提升载荷自重的总和。单位为重力单位:KN,最

钢带主机曳引能力计算书

曳引能力计算书 型号 FXPD1000 日期 一.主要技术参数和部件配置 额定载重Q=400kg

轿厢自重P=460kg 额定梯速V=s 提升高度H=12m 曳引比 r=2 平衡系数ψ= 主机型号:FXPD400-FG , e N =,e n =153r/min ,2GD =2.kg m 导向轮 DP D =100mm ,DP M =24kg ,钢带单绕,包角a=180° 反绳轮Pcar D =100mm,Pcar M =24kg 悬挂钢带规格为×30mm ,s n =2,s q =m 不加装补偿链及张紧装置 二. 曳引机选型验算 曳引机功率验算 ()()110.54000.40.491021020.82e QV N r ψη--??===??kW< 所选曳引机功率满足使用要求。 电梯速度验算 3.140.11530.460602 e Dn V r π??===?m/s 曳引机额定速度满足设计要求 三. 曳引力通用参数计算 计算对重重量 cwt M =P+=660kg 计算悬挂钢带重量 × ×q SRcwt SRcar s s M M H n ===12×2×= 计算补偿绳重量 0CRcwt CRcar M M == 计算随行电缆重量 Trav M =×H ×t n ×q t =×12×1×= 计算驱动主机转动惯量 q J =2 GD /4=2.kg m 计算曳引轮和导向轮的转动惯量 2.4y y y DP M D J J k -===×2240.14 -=2.kg m 计算导向轮的折算质量

2DP DP J m R ==2 0.0360.05= 计算轿厢和对重反绳轮的换算转动惯量 222244Pcar Pcar Pcwt Pcwt Pcar Pcwt M D M D J J k k r r ====*2224*0.14*2 =2.kg m 计算轿厢和对重反绳轮的折算质量 2222Pcar Pcwt Pcar Pcwt J r J r m m R R ====220.009*20.05 = 计算张紧轮的换算转动惯量 PTD J =0 计算张紧轮的折算质量 PTD m =0 四. 轿厢装载工况计算 计算轿厢侧拉力 T 底层轿厢=omp car +1.25++=r 2r C SR M P Q M 460+1.25*400+0+6.48=2 计算对重侧拉力 = T 顶层对重cwt 2Comp CRcwt M M M r r r ++=660003302 ++=kg 计算绳槽摩擦系数 *180180 a π== μ= f=(钢带直接作用在曳引轮上。当量摩擦系数=摩擦系数) 计算曳引能力系数 fa 0.45*3.14 1.413=e e e ==装 验算曳引条件 =T T 底层 轿厢顶层对重330=< 五. 紧急制动工况计算 计算额定负载转矩

生料辊压机终粉磨说明书

原料粉磨及废气处理系统调试操作说明书

一、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。 辅助原料包括砂岩、铁矿石和粉煤灰。砂岩、铁矿石由胶带输送机输送至原料调配站。在原有粉煤灰输送皮带下增加一台三通阀,对原有输送皮带进行改造,新增一座φ5m粉煤灰仓,仓底设置棒阀和定量给料机。 因原料粉磨/废气处理改造为辊压机终粉磨后系统能力加大,经核算石灰石库底定量给料机能力足够,不需调整;更换原石英砂岩库定量给料机;原石英砂岩库底定量给料机移至铁矿石库底计量铁矿石用。在定量给料机计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨车间。 原料粉磨采用辊压机终粉磨系统,入磨物料粒度≤55mm。各种原料经胶带机送入V型选粉机(12.10)分级打散,其中粗粉部分经提升机(12.11)、除铁器(12.12)、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压;另一部分进入动态选粉机(12.18)分选,合格成品随一部分气流送入旋风收尘器(12.22)收集,不合格品经过重锤阀(12.18-1)、除铁器(12.19)、空气输送斜槽 (12.20) 、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压。挤压后的物料经提升机(12.17)送入V选。旋风收尘器(12.22)收集下来的成品经空气输送斜槽(12.25、12.39)、斗式提升机(12.41)、空气输送斜槽(12.42)入生料库储存、均化。出旋风收尘器(12.22)的气体经循环风机(12.27),一部分气体作为循环风重新进入V型选粉机(12.10),其余气体则通过窑尾袋收尘器净化后,经尾排风机和烟囱排入大气。窑尾袋收尘器和增湿塔收下的粉尘经链式输送机、提升机(16.01)汇同生料成品一起经空气输送

滚动导轨选型

直线运动系统选用思路: 1.根据实际应用工况初步选定型号系列和配置方式 2.静安全系数验算 直线运动系统承受过大的静载荷时,滚动体和接触面会发生永久变形,这个永久变形如果大到一定程度时,就会影响直线运动系统的平稳运行。所以要根据基本额定静载荷和最大实际静载荷来验算静安全系数是否达到要求。 3.寿命验算 利用额定动载荷和最大实际动载荷来验算直线运动系统所能运行的里程数或时间数是否能达到我们的要求。 4.如果静安全系数和寿命其中的一项或均达不到要求,就需要改变型号系列和配置方式重 新计算了。 相关定义: 基本额定静负荷C0(N):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的倍时,大小一定的径向静止负载。作为静作用力的限度。 容许静力矩M R/P/Y(Nm):在产生最大应力的接触部位,使滚动体和导轨面永久变形量之和达到滚动体直径的倍时,方向和大小一定的静止力矩。作为静作用力矩的限度。 静安全系数f s:负载能力(基本额定静负荷C0、容许静力矩M R/P/Y)与实际负荷(F、M r/p/y)的比值。f s=C0/F或f s=M R/P/Y/M r/p/y。 基本额定动载荷C(N):一批相同的直线运动系统在相同条件下运行,使滚珠直线导轨额定寿命为L=50km、滚柱直线导轨额定寿命为L=100km的方向和大小一定的负荷。 额定寿命L(km):一批相同的直线运动系统在相同条件下运行,其中90%不产生表面剥落而所能达到的总运行距离。直线运动系统的额定寿命L是根据基本额定动负载C和实际最大负荷F max按下式计算得到的: 滚珠直线运动系统寿命:L=(C/F max)3×50 滚柱直线运动系统寿命:L=(C/F max)10/3×100

提升机选型计算

绞车提升能力计算 已知:α=25o L=960M f1= f2= n=7 每米钢丝绳mP= ,车皮重600kg, 煤重850kg, 矸石重1600kg(1350KG)已知:电动机型号JR127-6型,电机额定功率Ne 185KW,滚筒直径2m,二级传动系数y=,过负荷系数∮,提升机最大提升速度V=*2(滚筒直径)*979(转速)÷(60*30传动比)=s。 一、绳端负荷: 求 Qj(提6个煤车) Qj=n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =6*(850+600)+*+960**+* =37190 + 12093 =49283N 提4个矸石车时: Qj = n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =4*(1600+600)**(+*)+960***( + * )=37617 + 12093 =49710 N 提5个矸石车时: Qj = n .g(Sin25o+f1COS25o)+ .g (Sin25o+f2 COS25o) =5*(1600+600)**(+*)+960***( + * )=47022 + 12093 =59115 N 钢丝绳安全系数校验:

1、提6个煤车时,查表得出6*7FC ,公称强度1700Mpa钢丝 绳破断拉力总和为,所以钢丝绳安全系数:÷ = >符合《煤矿安全规程》要求。 2、提4个矸石车时,查表得出6*7FC ,公称强度1700Mpa钢 丝绳破断拉力总和为,所以钢丝绳安全系数:÷ = >符合《煤矿安全规程》要求。 3、提5个矸石车时,查表得出6*7FC ,公称强度1700Mpa钢 丝绳破断拉力总和为, ,所以钢丝绳安全系数:÷ = <,不符合《煤矿安全规程》要求。 一、电动机初选(按4个矸石车): Ns =Fc * Vmax / (1000 * Y) = 49710* /(1000 * ) =204KW 选JR127-6型电动机 P=185KW, Ie=350A , Y= ,cos∮=, λ=, U2e=254V, I2e=462A, GD2=49kg/m2,Nd =980r/min, 所以Vmax = ∏D. Nd / 60t =*2*980/60*30=s 二、提升电动机变位质量 1、电动机 Gd =(Gd2)2、Dg2 = 49 *302/22=11025 2、天轮取Gt = 200KG 3、提升机变位质量Gj = 8200KG 4、钢丝绳变位质量Pk .Lk = *960 = 2043kg ∑G = Qj + Gt +Gd + Gj = +200 +11025 +8200=

曳引力及曳引机选型计算

曳引力及曳引机选型计算 1 电梯曳引的校核计算 1.1 有关电梯曳引的要求: 根据《GB7588-2003 电梯制造与安装安全规》中9.3,本类型乘客电梯的电梯曳引应满足以下三个条件: (1)轿厢装载至125%额定载荷的情况下应保持平层状态不打滑; (2)必须保证在任何紧急制动的状态下,不管轿厢是空载还是满载,其减速度值不能超过缓 冲器(包括减行程的缓冲器)作用时减速度的值;任何情况下,减速度不应小于0.5m/s2; (3)当对重压在缓冲器上而曳引机按电梯上行方向旋转时,应不能提升空载轿厢; (4)设计依据可按照《GB7588-2003 电梯制造与安装安全规》中的附录M。

1.2 电梯曳引的校核计算: 1.2.1计算选用参数: 本类型乘客电梯的曳引轮绳槽采用带切口的半圆槽。表1.1中的参数为本计算选用参数。 表1.1

1.2.2 根据《GB7588-2003 电梯制造与安装安全规》的要求,曳引应满足的计算条件: (1) 在轿厢装载和紧急制动条件时,曳引应满足如下公式: αf 2 1 e T T ≤ 其中: e ――自然对数的底 f ――钢丝绳在绳槽中的当量磨擦系数 α ――钢丝绳在绳轮上的包角 T 1,T 2 ――绳轮两侧的钢丝绳分配的力

(2) 在轿厢滞留条件时,曳引应满足如下公式: αf 2 1 e T T ≥ 其中: e ――自然对数的底 f ――钢丝绳在绳槽中的当量磨擦系数 α ――钢丝绳在绳轮上的包角 T 1,T 2 ――绳轮两侧的钢丝绳分配的力 1.2.3 带切口槽的半圆形绳槽当量摩擦系数的计算: (1) 带切口槽的半圆形绳槽当量摩擦系数可按如下公式计算: 其中: β ――下部切口角度值 γ ――槽的角度值 μ ――磨擦系数 = =1.972μ (2) 摩擦系数μ可按如下公式计算: a. 在装载工况条件下: μ=0.1 b. 在紧急制停条件下: μ= 10 /v +11 .0,其中v 为轿厢额定速度下对应的绳速 v=R t ×V=1×0.75=0.75 m/s ,所以,μ=10/v +11.0=10 /75.011 .0+=0. c. 在轿厢滞留工况条件下:μ=0.2 (3) 带切口槽的半圆形绳槽当量摩擦系数的计算: a. 在装载工况条件下: f=1.972μ=1.972×0.1=0.1972 b. 在紧急制停条件下: f=1.972μ=1.972×0.=0.1834 γ βγβπβγμ Sin +Sin )]2/(Sin )2/(Cos [4=f ----γ+βγβπβγμ =Sin Sin )]/(Sin )/(Cos [f ---2-243095-52360-.6581-295-2304Sin Sin .)] /(Sin )/(Cos [+π?μ

相关文档
最新文档