人教B版高中数学选修1-1导学案第三章导数及其应用3.2导数的运算课堂导学案 Word版含答案

人教B版高中数学选修1-1导学案第三章导数及其应用3.2导数的运算课堂导学案 Word版含答案
人教B版高中数学选修1-1导学案第三章导数及其应用3.2导数的运算课堂导学案 Word版含答案

导数的运算

课堂导学

三点剖析

一、求函数的导数

【例】求下列函数的导数.

()()();()();()·;();();()·;().

解析:()方法一:′()′()()()′()().

方法二:∵()(),

∴′()′.

()∵(),

∴′′()′′×.

()∵,

∴′′()′.

()′()′;

()′()′

()′·;

()′

二、求直线方程

【例】全国高考卷Ⅳ,文已知直线为曲线在(,)处的切线,为该曲线的另一条切线,且⊥. (Ⅰ)求直线的方程;

(Ⅱ)求由直线、和轴所围成的三角形的面积.

解:(Ⅰ)′.直线的方程为:.

设直线过曲线上的点(),

则的方程为().

因为⊥,则有.

所以直线的方程为.

(Ⅱ)解方程组

所以直线和的交点坐标为()

、与轴交点的坐标分别为(,)、(,).

所以所求三角形的面积

温馨提示

要求与切线垂直的直线方程,关键是确定切线的斜率,从已知条件分析,求切线的斜率是可行的途径,可先通过求导确定曲线在点处切线的斜率,再根据点斜式求出与切线垂直的直线方程.

三、利用导数求函数解析式

【例】已知抛物线通过点(,),且在点(,)处与直线相切,求实数、、的值.

思路分析:解决问题的关键在于理解题意,转化、沟通条件与结论,将二者统一起来.题中涉及三个未知数,题设中有三个独立条件,因此,通过解方程组来确定参数、、的值是可行的途径.

解:∵曲线过(,)点,

∴.①

∵′,∴′|.

∴.②

又曲线过(,)点,∴.③

联立①②③解得.

温馨提示

用导数求曲线的切线方程或求曲线方程,常依据的条件是

()切点既在切线上,又在曲线上;

()过曲线上某点的切线的斜率,等于曲线的函数解析式在该点的导数.

第三章 导数 导学案

§3.1.1 变化率问题 1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义; 2.理解平均变化率的意义,为后续建立瞬时变化. 7880 复习1:曲线22 1259 x y +=与曲线 22 1(9)259x y k k k +=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 二、新课导学 ※ 学习探究 探究任务一: 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水,求平均速度 新知:平均变化率: 2121()()f x f x f x x x -?=-? 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就表 示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ?,即y ?= ;如果它们 的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量与 的增量的比值. ※ 典型例题 例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +?+?作曲线的割线,求出当0.1x ?=时割线的斜率. 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 例 2 已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

苏教版数学高二- 选修2-2导学案 《常见函数的导数》

1.2.1 常见函数的导数 导学案 一、学习目标 掌握初等函数的求导公式; 二、学习重难点 用定义推导常见函数的导数公式. 三、学习过程 【复习准备】 1.导数的相关知识 ①导数的定义;②导数的几何意义;③导函数的定义;④求函数的导数的流程图. (1)求函数的改变量 (2)求平均变化率 (3)取极限,得导数/ y =()f x '= 2.如何求切线的斜率? (0)PQ x k P ?→当时,无限趋近于点处切线的斜率 3.导数:函数在某点处的瞬时变化率 设函数y =f(x)在区间(a ,b)上有定义,x0∈(a ,b),若△x 无限趋近于零时,比值 00()()f x x f x y x x +?-?=??.无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称

该常数A 为函数f(x)在x =x0处的导数,记作f/(x 0). 4.由定义求导数(三步法) ①求函数的增量:=?y ②算比值(平均变化率): =??x y ③取极限,得导数:0 x x y ='= 【情境引入】 本节课我们将学习常见函数的导数.首先我们来求下面几个函数的导数. (1)y=x; (2)y=x 2 ; (3)y=x 3 . 问题:1-=x y ,2-=x y ,3-=x y 呢? 问题:从对上面几个幂函数求导,我们能发现有什么规律吗? 【数学建构】 1.几种常见函数的导数: 问题引入1: (1)(23)x '-+= (4)x '= (2)(2)x '-= (5)(5)x '+= (3)3'= (6)(4)'-= 通过以上运算我们能得到什么结论? 公式一:

问题引入2: (1)x '= 2(2)()x '= 2(3)(3)x '= 1(4)()x '= 通过以上运算我们能得到什么结论? 公式二: 【知识应用】 例1 求下列函数的导数: (1)()'3x ;(2)'21x ?? ??? ;(3 )' . 解: 拓展 例2 求下列函数的导数: 4(1)y x =; 3(2)y x -=; 1(3)y x =; (4)y = =0(5)sin 45y ; =(6)cos u v . 解:

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

3.1导数导学案

导数的概念及运算 一、预习案 (一)高考解读 能利用给出的基本初等函数的导数公式求简单函数的导数,通过图像直观地理解导数的几何意义,会求在某点和过某点的切线方程。 (二)知识清单 2、求导法则 ①运算 (1)=±' )]()([x g x f 。 (2)=?')]()([x g x f 。 (3)=?? ????' )()(x g x f 。 ②复合函数的导数:设)(x v u =在x 处可导,)(u f y =在点u 处可导, 则复合函数)]([x v f 在点x 处可导,且=)('x f 。 (三)预期效果及存在困惑

二、导学案 (一)完成《新亮剑(红色)》第50页查缺补漏。 (二)高考类型 考点一、导数运算 1、已知函数ax x x x f +=sin )(,且1)2 ('=π f ,则a 的值等于( ) A.0 B.1 C.2 D.4 2、函数)(x f 的定义域是R ,2)0(=f ,对任意1)()(,'>+∈x f x f R x ,则不等式1)(+>?x x e x f e 的解集为 考点二、导数几何意义的应用 3、已知函数454)(23-+-=x x x x f 。 (1)求曲线)(x f 在点))2(,2(f 处的切线方程; (2)求经过点)2,2(-A 的曲线)(x f 的切线方程。 练习: 1(2018课标I )设函数ax x a x x f +-+=23)1()(。若)(x f 为奇函数,则曲线)(x f y =在)0,0(处的切线方程为( ) A. x y 2-= B.x y -= C.x y 2= D.x y =

2.(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0 课堂总结: 三、巩固案 1.(2016北京节选)设函数bx xe x f x a +=-)(,曲线)(x f y =在))2(,2(f 处的切线方程为4)1(+-=x e y ,求b a ,的值。 2.(2015全国II )设函数)('x f 是奇函数)(x f 的导函数,0)1(=-f ,当 0>x 时,0)()('<-x f x xf ,解不等式0)(>x f 。

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

3.1 导数的概念及其运算导学案

§3.1 导数的概念及其运算 2014高考会这样考 1.利用导数的几何意义求切线方程;2.考查导数的有关计算,尤其是简单的复合函数求导. 复习备考要这样做 1.理解导数的意义,熟练掌握导数公式和求导法则;2.灵活进行复合函数的求导;3.会求某点处切线的方程或过某点的切线方程. 1. 函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1) x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平 均变化率可表示为Δy Δx . 2. 函数y =f (x )在x =x 0处的导数 学&科& (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3. 函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数,导函数有时也记作y ′. 4. 基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) g 2(x ) (g (x )≠0). 6. 复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [难点正本 疑点清源] 1. 深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系 (1)函数f (x )在点x 0处的导数f ′(x 0)是一个常数; (2)函数y =f (x )的导函数,是针对某一区间内任意点x 而言的.如果函数y =f (x )在区间(a ,b )内每一点x 都可导,是指对于区间(a ,b )内的每一个确定的值x 0都对应着一个确定的导数f ′(x 0).这样就在开区间(a ,b )内构成了一个新函数,就是函数f (x )的导函数f ′(x ).在不产生混淆的情况下,导函数也简称导数. 2. 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不

基本初等函数的导数公式及导数的运算法则教案导学案有答案

§3.2.2基本初等函数的导数公式及导数的运算法则 课前预习学案 一.预习目标 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.预习内容 1.基本初等函数的导数公式表 2. (2 (常数与函数的积的导数,等于:) 三.提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

课内探究学案 一.学习目标 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.学习过程 (一)。【复习回顾】 复习五种常见函数、、、、的导数公式填写下表 (二)。【提出问题,展示目标】 ( 2)根据 基本初 等函数的公式,求函数的 (1)与 (2)与

2.(1)记忆导数的运算法则,比较积法则与商法则的相同点与不同点 推论: (常数与函数的积的导数,等于:) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) (2); (3); (4); 【点评】 ①求导数是在定义域内实行的. ②求较复杂的函数积、商的导数,必须细心、耐心. (四).典例精讲 例1:假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到) 分析:商品的价格上涨的速度就是: 解: 变式训练1:如果上式中某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到) 例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)(2) 分析:净化费用的瞬时变化率就是: 解: 比较上述运算结果,你有什么发现 三.反思总结: (1)分四组写出基本初等函数的导数公式表: (2)导数的运算法则: 四.当堂检测

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

1.2.2导数运算公式与法则 导学案(教师版)

1.2.2 基本初等函数的导数公式及导数的运算法则(二) 内容要求 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数 . 知识点1 导数运算法则 法则 语言叙述 [f (x )±g (x )]′ =f ′(x )±g ′(x ) 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差) [f (x )·g (x )]′= f ′(x )·g (x )+f (x )·g ′(x ) 两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数 ???? ?? f (x ) g (x )′= f ′(x )g (x )-f (x )·g ′(x ) [g (x )]2 (g (x )≠0) 两个函数的商的导数,等于分子的导数乘上分母减去分子乘上分母的导数,再除以分母的平方 思考 若f (x )=x 2·sin x ,则f ′(x )=(x 2)′·(sin x )′=2x ·cos x 是否正确? 提示 不正确.f ′(x )=(x 2)′·sin x +x 2·(sin x )′=2x ·sin x +x 2·cos x . 知识点2 复合函数的求导法则 复合函数的概念 一般地,对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示 成x 的函数,那么称这个函数为y =f (u )和u =g (x )的复合函数,记作y =f (g (x )) 复合函数的求导法则 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积 【预习评价】 思考 复合函数y =f (g (x )),用中间变量y =f (u ),u =g (x )代换后求导的顺序是什么? 提示 根据复合函数的求导法则y ′x =y ′u ·u ′x ,求导的顺序是从外向内逐层求导.

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

导数的四则运算法则导学案(1)

导数的四则运算法则导学案 复习回顾1. 常见函数的导数公式:(默写) ='+)(b kx _________ ____='C )('α x =_____________ _______ )(='x a ______ )(log ='x a ___________ )(='x e =')(ln x _________ )(sin 'α=____________ =')(cos α________ 2 求下列函数函数的导数 (1)5 )(-=x x f (2)x x x f = )( (3)sin 2y x π?? =+ ??? (4)3 sin π =y (5))2cos(x y -=π (6)x y 4= (7)x y 3 log = 【自主探究】 导数的加减法运算法则: 1.[]=' ± )()(x g x f 2.[]='+c x f )( 导数的乘除法运算法则 1.[]=')()(x g x f ; 2. = ' ?? ????)()(x g x f ; 3.[]=')(x kf ; 说明: 1.导数的加法与减法法则 两个函数的和(差)的导数,等于这两个函数的导数的和(差),即v u v u '±'='±)(,和(差)函数求导法则由两个可以推广到n 个。 2.导数的乘法、除法法则:

①两个函数积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数的和,即v u v u uv '+'=')(。若c 为常数,则c u c u cu '+'=')(u c '+=0u c '=。由以上两个法则可知:)()()()(x v b x u a x bv x au '±'=±,b a ,为常数。 ②两个函数商的导数,等于分子的导数与分母的积减去分母的导数与分子的积,再除以分母的平方。即 2 v v u v u v u y '-'=' ?? ? ??=' 【合作探究】 例1求下列函数的导数 (1)()5 4 3 2 23459f x x x x x x =+-+-+ (2)()sin f x x x = (3)sin 2y x = (4) tan y x = (5) y =x 1·cos x (6)x e y x sin 2=23x + (7)x e y x ln = (8)x a y x ln -= 例2 求下列函数的导数 (1) 2 sin y x x =+ (2) 3 2 3622 y x x x =- -+ (3) 2 )12(-=x y (4)2 (23)(32)y x x =+-

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

导数的计算(二)导学案

导数的计算(二) 班级 小组 姓名 【学习目标】 1、 记住导数的和、差、积、商的求导法则. 2、会运用导数的四则运算解决一些函数的求导问题. 重点:运用四则运算求导数; 难点:复杂函数的求导. 【预习导学】 导数的运算法则 ①[]' ()()f x g x ±= ; ②[]' ()c f x ?= (c 为常数) ③[]'()()f x g x ?= ; ④' ()()f x g x ?? =? ? ?? (()0)g x ≠ 预习交流 (1)你能用文字语言叙述上述运算法则吗? (2)应用导数公式和四则运算法则求导有哪些注意点? 【预习检测】 1、已知函数()1sin x f x x e =-+,则'()f x = . 2、已知函数51()5f x x -= ,则'1 ()2 f = . 3、函数cos x y x =的导数( ) A.2sin x x - B.sin x - C.2sin cos x x x x +- D.2 cos cos x x x x +- 4、曲线()ln f x x x =在1x =处的切线方程为( ) A.22y x =+ B. 22y x =- C.1y x =- D.1y x =+ 【课堂探究】 1、 求下列函数的导数 (1)sin cos 22x x y x =-; (2)3 22x y e x =-?; (3)233x y x +=+; (4)2sin x y x = 2、求下列函数的导数 (1 )y =+ (2)(1)(2)(3)y x x x =+++ (3)cos sin 2x y e x x =++ (4)ln 21 x x y x =-+ 3、求过点(1,1)-与曲线3 2y x x =-相切的直线方程. 【课堂练习】 1、求下列函数的导数 (1)232ln 1y x x =-+; (2)2 cos y x x =; (3)tan y x =; (4)2 2(1)x y x e x =--; (5)2 1x e y x =+ 2、曲线2 x y x =+在点(1,1)--处的切线方程为( ) A.21y x =+ B.21y x =- C.23y x =-- D.22y x =-+ 3、设2 ()sin ,f x ax b x =-且''1(0)1,()32 f f π==,则a = ,b = . 4、已知抛物线2 y ax bx c =++过点(1,1)P ,且在(2,1)Q -处于直线3y x =-相切,求,,a b c 的值.

高中数学《导数的计算》学案1 新人教A版选修

高中数学《导数的计算》学案1 新人教A版选 修 3、2 导数的计算 【成功细节】 张玥谈导数的计算的方法(xx年,北京文9) 已知是的导函数,则的值是____、本节内容公式和法则比较多,以公式的推导、记忆以及应用为主,重点是基本初等函数导数公式以及导数的四则运算法则的灵活运用,公式的形式多样,容易引起混淆,并且公式中往往会有一些条件容易忽略,导致遗漏错误、所以在学习时,我认为应注意以下几个方面:(1)要牢记常数函数和幂函数的求导公式,能用定义法求这些函数的导数的方法,注意四种常见函数实际上就是四种特殊的幂函数;(2)要熟记基本初等函数的导数公式,特别是对数函数和指数函数的导函数的形式,;(3)熟练掌握导数的四则运算法则,注意公式的形式以及前提条件,两个函数的和与差的导数与两个函数积的导数的形式是不同的;(4)和(或差)、积的函数的导数运算法则可以推广到两个以上函数的和(差)、积的求导;(5)在求函数的导数时,一定要先化简函数的表达式,尽量不使用积的函数的导数的法则;(6)若两个函数不可导,则它们的和、差、积、商不一定不可导。如,这个题主要考查基本初等

函数的导数公式以及函数和的导数的计算法则,是一个简单的小题,但计算时要细心,可先求出导函数,然后再求导数值,显然有公式可得,,所以、 【高效预习】 (核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。叶圣陶 【关注、思考】 1、阅读课本第8182页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比、 【领会、感悟】 1、这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率 【领会感悟】 2、基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。例1是导数的简单应用、 【精读细化】

导数的四则运算导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §4导数的四则运算法则 【学习目标】 1、掌握导数的四则运算法则; 2、利用基本初等函数的导数公式和导数的四则运算法则求一些函数的导数。 【重点、难点】 重点:四则运算法则; 难点:四则运算法则的运用。 【使用说明与学法指导】 1.根据学习目标,自学课本内容,限时独立完成导学案; 2.用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.和(差)求导法则:若函数)(x f 、)(x g 有导数,则 []_______________)()(='±x g x f 2.积的求导法则:若函数)(x f 、)(x g 有导数,则[]_____ __________)()(='x g x f 3、商的求导法则:若函数)(x f 、)(x g 有导数,0)(≠x g 则_______________)()(='?? ????x g x f 【合作探究】 1、求下列函数的导数 (1)3334++-=x x x y (2)x x y tan = (3))cos (sin x x e y x += (4)x x y ln = (5)112+-=x x y (6)1ln 2+=x x y 2、已知函数()( )cos sin 4f x f x x π'=+,求)4(πf .

1、 设函数()b f x ax x =-,曲线()y f x =在点(2,(2)f 处的切线方程为 74120x y --=,求()y f x =的解析式。 【巩固提高】 1、设()2sin f x x x =-,若0()0f x '=且0(0,)x π∈,求0x . 2、点P 是曲线2ln y x x =-上的任意一点,求点P 到直线2y x =-的距离的最小值 . 3、已知函数32()2,()f x x ax g x bx c =+=+的图象都经过点P (20),,且在点P 处有公共切线,求)(x g 4、已知函数32 1 ()2()3f x x x ax a R =-+∈,在曲线()y f x =的所有切线中,仅有一条切线l 与直线y x =垂直。 (1)求a 的值和切线l 的方程; (2)设曲线()y f x =上任意点的切线的倾斜角为θ,求θ的取值范围。 【课堂小结】

导数导学案

-可编辑修改- §3.1 变化率与导数(1) 学习目标 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景; 2.会求函数在某一点附近的平均变化率; 学习过程 一、新课导学 问题1:气球膨胀率,求平均膨胀率 吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象? 问题2:高台跳水 在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t (单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 新知:平均变化率:_______________=_______ 试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ?,即 x ?= 或者2x = ,x ?就 表示从1x 到2x 的变化量或增量,相应地,函数的变 化量或增量记为y ?,即y ?= ;如果它 们的比值y x ??,则上式就表示为 , 此比值就称为平均变化率. 反思:所谓平均变化率也就是 的增量 与 的增量的比值. ※ 典型例题 例1已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,1.1]; (2)[1,2] 变式:已知函数2()f x x x =-+的图象上一点 (1,2)--及邻近一点(1,2)x y -+?-+?,则y x ??= 小结 1.函数()f x 的平均变化率是 2.求函数()f x 的平均变化率的步骤: (1)求函数值的增量 (2)计算平均变化率 ※ 学习探究二 问题3:计算运动员在49 65 0≤ ≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什 么问题吗? 新知: 1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度. 2.导数的概念

《23计算导数》导学案.doc

导函数 /(x) = ./V)= 《2.3计算导数》导学案 课程学习目标 1 ?理解导数的概念 2 ?掌握导数的怎义求法. 3 ?熟记基木初等函数的导数公式并能求一些简单?函数的导函数. 课程导学建议 重点:基本初等函数的导数公式及会求一些简单函数的导函数. 难点:导数公式的应用. 第一层级知识记忆与理解 知识体系梳理 创设情境 根据导数的概念,我们知道可以用定义法求函数/(x)=f 的导数,那么是否有公式法來求 它的导数呢? 知识导学 问题1:由导数的定义求/(x)=x, ./W=,,./W=的导数 对于/⑴=兀,/(x)= ==1, B|J/(x)=x r =l. 对于哭力乞乙/(x )= ===2x , BP/(x)=( x\= lx . 对于何=,/?= ====?即几x )=(),=?. 问题2:(1)导函数的概念:如果一个函数/⑴在区间(0, b)上的每一个点x 处都有导数, 导数值记为/W ,/(x)=,则厂⑴是关于x 的函数,称/V)为心)的导函数,简称导数. (2) 儿个常用函数的导数. 原函 /(x)=c /(X )=X ,/U)=x

问题3:基本初等函数的导数公式. (1)c'= 0 (cWR); (2)(/) - nx n l (nWQ); (3)(s加x) - cos x , (cos x) - -sin x; ⑷(y),= e , (a)'= a-In a; (5)(加x\= , (JogQ'= log a e =. 问题4:利用导数的定义求导与导数公式求导的区别. 导函数定义本身就是函数求导的最基本方法,但导函数是由极限定义的,所以函数求导总是要归结为求极限,这在运算上很麻烦,有时甚至很困难,但是用导函数定义推导出常见函数与基本初等函数公式后,求函数的导函数就可以用公式直接求导了,简洁迅速. 知识链接 变化是无处不在的,变化的快慢也是不断变化的,因此导数具有非常广泛的应用.比如我们在其他 学科中学习过密度、压强、比热容、功率、工作效率等概念,我们在生活中经常用到脉搏、心率、降雨 强度、车流量等概念,这些概念刻画的都是事物的变化率,在非均匀变化状态下,对这些概念的精确刻 画必须借助于导数. 基础学习交流 1.物体自由落体的运动方程为s(t)=gt2, g=9.8 m/s2,若列(1)==9.8 mis,那么下列说法中正确的是(). A.9.8 〃於是物体从0 $到1 $这段时间内的速度 B.9.8 〃加是物体从1 s到(1+如)s这段时间内的速度 C.9.8 〃於是物体在/=1 s这一-吋刻的速度 D.9.8 〃於是物体从1 s到(1+加)s这段时间内的平均速度 【解析】根据导数的意义可知C1E确. 【答案】C 2.已知/(x)二,则的值是(). A.- B. C.? D. 【解析】 【答案】A 3.函数尹X在兀=处切线的斜率为

相关文档
最新文档