谷氨酸发酵

谷氨酸发酵
谷氨酸发酵

味精,学名谷氨酸钠,是谷氨酸的钠盐,味精从诞生到现在有一个世纪的历史了。1907年,日本东京帝国大学的研究员池田菊苗在研究海带时发现一些棕色晶体,即谷氨酸。在一个世纪里,味精的发展大致经历三个阶段:第一阶段:1866年德国人里德豪森博士从面筋中分离到氨基酸,他们称谷氨酸,根据原料定名为麸酸或谷氨酸。第二阶段:以面筋或大豆粕为原料通过用酸水解的方法生产味精,在1965年以前是用这种方法生产的。这个方法消耗大,成本高,劳动强度大,对设备要求高,需耐酸设备。第三阶段:随着科学的进步及生物技术的发展,使味精生产发生了革命性的变化,逐渐采用粮食作为原料,通过微生物发酵、提取、精制而得到高质量的谷氨酸钠。我国味精生产始于1923年,上海天厨味精厂率先采用水解法生产,1932年沈阳开始用脱脂豆粉水解生产味精。1958年开始谷氨酸产生菌筛选及其发酵机理的基础性研究,1964年首先在上海进行工业化生产。目前国内味精生产已经全部采用发酵法生产,原料多采用玉米发酵。但是我国生产技术水平与发达国家相比尚有较大差距,菌种选育,工艺技术,生产规模方面还需加大改革与创新力度。

1.1.1.1.玉米为原料生产味精工艺概述及工艺流程图玉米为原料生产味精工艺概述及工艺流程图玉米为原料生产味精工艺概述及工艺流程图玉米为原料生产味精工艺概述及工艺流程图玉米为原料生产味精全过程可划分为四个工艺阶段:(1)原料的预处理及淀粉水解糖的制备;(2)菌种的活化及种子液的制备;(3)发酵;(4)谷氨酸制取味精及味精成品加工。(具体见工艺流程图表1)

2.2.2.2.原料预处理及淀粉水解糖制备原料预处理及淀粉水解糖制备原料预处理及淀粉水解糖制备原料预处理及淀粉水解糖制备

2.12.12.12.1 原料的预处理此工艺操作的目的在于初步破坏原料结构,以便提高原料的利用率,同时去除固体杂质,防止机器磨损。用于除杂的设备为筛选机,常用的是振动筛和转筒筛,其中振动筛结构较为简单,使用方便。用于原料粉碎的设备除盘磨机外,还有锤式粉碎机和辊式粉碎机。盘磨机广泛用于磨碎大米、玉米、豆类等物料,而锤式粉碎机应用于薯干等脆性原料的中碎和细碎作用,辊式粉碎机主要用于粒状物料的中碎和细碎。2.2 2.2 2.2 2.2 淀粉水解糖制备在工业生产上将玉米淀粉水解为葡萄糖的过程称为淀粉的糖化,所制得的糖液称为淀粉水解糖。由于谷氨酸生产菌不能直接利用淀粉或糊精作碳源,因而必须将淀粉水解为葡萄糖,才能供发酵使用。目前,国内许多味精厂采用双酶法制糖工艺。首先,淀粉先要经过液化阶段,然后在与β-淀粉酶作用进入糖化阶段。首先利用α-淀粉酶将淀粉浆液化,降低淀粉粘度并将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙,整个液化时间约30min。一定温度下液化后的糊精及低聚糖在糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,pH值 4.5,糖化时间18~32h。糖化结束后,将糖化罐加热至80~85℃,灭酶30min。过滤得葡萄糖液,经过压滤机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消毒后进入发酵罐。

3333....菌种的活化及种子液的制备菌种的活化及种子液的制备菌种的活化及种子液的制备菌种的活化及种子液的制备从试管斜面出发,经活化培养,摇瓶培养,扩大至一级乃至二级种子罐培养,最终向发酵罐提供足够数量的健壮的生产种子。 3.1菌种选择玉米为原料发酵生产味精常用菌株有:谷氨酸棒杆菌、黄色短杆菌、乳糖发酵短杆菌、嗜氨小杆菌、硫殖短杆菌等。国产菌株有:北京棒杆菌AS1.299、北京棒杆菌7338、北京棒杆菌D110、棒杆菌S-944、钝齿棒杆菌AS1.542、钝齿棒杆菌HU7251、。本工艺选用谷氨酸棒状杆菌 3.2菌种的活化

把保藏在斜面上的菌体移接到活化斜面(培养基中添加0.1%葡萄糖)上,在30~32℃下恒

温培养18~24h,取出后存放于4℃冰箱内,随时取用。3.3 一级种子培养为了获得大量健壮的细胞,一级种子培养基应该营养丰富,有利于菌体的生长繁殖。为了避免培养过程中因产生有机酸引起培养基Ph下降而造成菌体老化,所以培养基的含糖量要低,一般在2.5%左右。 3.3二级种子培养通过一级种子扩大培养后,种量仍不能满足发酵用的需要,因此需要进一步扩大培养,二级培养基方面组成应与发酵培养基原料组成一致,只是配比上可有差异,这样就保证了二级种子接到发酵罐后能很快适应环境。经过二级种子培养之后,一般来说,种量能够满足需求,但是有些要求高种量还可以采用三级种子培养。 4.4.4.4.发酵过程与控制发酵过程与控制发酵过程与控制发酵过程与控制种子扩大培养为保证谷氨酸发酵过程所需的大量种子,发酵车间内设置有种子站,完成生产菌种的扩大培养任务。从试管斜面出发,经活化培养,摇瓶培养,扩大至一级乃至二级种子罐培养,最终向发酵罐提供足够数量的健壮的生产种子。谷氨酸发酵开始前,首先必须配制发酵培养基,并对其作高温短时灭菌处理。用于灭菌的工艺除采用连消塔—维持罐一喷淋冷却系统外,还可采用喷射加热器—维持管—真空冷却系统或薄板换热器灭菌系统。但由于糖液粘度较大,流动性差,容易将维持管堵塞,同时真空冷却器及薄板加热器的加工制造成本较高,因而应用较少。发酵设备,国内味精厂大多采用机械搅拌通风通用式发酵罐,罐体大小在50m3到200m3之间。对于发酵过程采用人工控制,检测仪表不能及时反映罐内参数变化,因而发酵进程表现出波动性,产酸率不稳定。由于谷氨酸发酵为通风发酵过程,需供给无菌空气,所以发酵车间还有一套空气过滤除菌及供给系统。首先由高空采气塔采集高空洁净空气,经空气压缩机压缩后导入冷凝器、油水分离器两级处理,再送入贮气罐,进而经焦炭、瓷环填充的主过滤器和纤维分过滤器除菌后,送至发酵罐使用。在北方地区由于空气湿度小、温度低,还可采用空气压缩、冷却过滤流程,省去一级冷却设备。 4.1发酵培养基发酵培养基不仅提供菌体生长繁殖所需要的营养和能量,而且是形成谷氨酸的物质来源,因此,要求发酵培养基含有足够的碳源和氮源,其量比种子培养基中含量要高出很多,发酵培养基的组成和配比,因菌种,设备,工艺条件和原料来源不同而异。通常可以采用以下配比(百分比)进行发酵,菌种采用B9,T6-13菌株,水解糖12~14,KCL 0.05,尿素0.5~0.8,MgSO4 0.06,玉米0.6ml,Ph7.0,Na2HPO4 0.17。 4.2谷氨酸发酵参数与控制过滤的滤液冷却到32℃,进入发酵罐发酵,用冷却水调温,每隔12小时升温1~2℃,当发酵时间接近34h时,温度升至37℃。加水使糖化液浓度为14%,发酵时间为34h,发酵菌种的产酸量与葡萄糖量之比为50%。具体来说有温度,PH,氧溶量,菌种种龄、种量,泡沫的控制。4.2.1温度的控制国内常用菌株的最适生长温度为30-34℃,产生谷氨酸的最适温度为34~36℃。0~12h的发酵前期,主要是长菌阶段;发酵12h后,菌体进入平衡期,增速度变得缓慢;温度提高到34~36℃,谷氨酸的生成量就增加。4.2.2 pH的控制一般发酵前期pH控制在7.5-8.5左右,发酵中、后期pH控制在7.0~7.2,调低pH的目的在于提高与谷氨酸合成有关的酶的活力。尿素被谷氨酸生产菌细胞的脲酶所分解放出氨,因而发酵液的pH会上升。发酵过程中,由于菌体不断利用氨,以及有机酸和谷氨酸等代谢产物进入发酵液,使N源不足和发酵液pH下降,需再次流加尿素。 4.2.3溶解氧的控制谷氨酸产生菌是兼性好氧菌,故控制适当的氧溶量十分重要。在实际生产中,搅拌转速固定不变,通常用调节通风量来改变供氧水平。通风比(m3 /m3.min ):每分钟向1m3的发酵液中通入0.1cm3无菌空气,用1:0.1表示。 4.2.4种龄和种量的控制微生物的生长大致可分为适应期、对数期、稳定期、衰老期。种龄:一级种子菌龄控制在11~12h,二级种子菌龄为7~8h。种量:指接入发酵罐内种子的量占发酵罐内发酵培养基量的百分比。接种量的多少对适应期的延续时间也有很大的影响。接种量一般以1%为好。种量过多,使菌体生长速度过快,菌体娇嫩,不强壮,提前衰老自溶,后期产酸不高;如果接种量过少,则菌体增长缓慢,会导致发酵时间延长,容易染菌。 4.2.5泡沫的控制生产上为了控制泡

沫,除了在发酵罐内安装机械消泡器外,还在发酵时加入消泡剂。目前谷氨酸发酵常用的消泡剂有:花生油、豆油、玉米油、棉子油、泡敌和硅酮等。天然油脂类的消泡剂的用量较大,一般为发酵液的0.1%~0.2%(体积分数),泡敌的用量为0.02%~0.03%(体积分数)。5.5.5.5.谷氨酸提取及谷氨酸制备工艺谷氨酸提取及谷氨酸制备工艺谷氨酸提取及谷氨酸制备工艺谷氨酸提取及谷氨酸制备工艺谷氨酸的提取一般采用等电点—离子交换法,国内有些味精厂还采用等电点—锌盐法、盐酸水解—等电点法及离子交换膜电渗析法提取谷氨酸。但存在废水污染大,生产成本高,技术难度大等问题,应用上受到限制。具体来说包括三个步骤,酸中和、碱中和、等电点分离。其中酸中和、碱中和过程就是向中和罐盘管内注入冷冻盐水,将发酵液温度调到22℃,然后加硫酸中和,使其pH值从7.0降至3.2,温度从22降至8℃。该过程要先以较快的速率加酸,将pH先调整至5.0,停止加酸与搅拌1.5h,保证晶体增长,然后继续缓慢加酸调整,直到pH降为3.2,温度冷却至8,达到等电点,停止中和及搅拌。过滤得谷氨酸结晶,加入温水溶解,用碳酸钠将谷氨酸溶液的pH值调到5.6,T=70℃。等达到等电点后,发酵液进入等电点中和罐,进入罐前使温度降为22℃,由于谷氨酸等电点只有3.2左右,需要加硫酸调节pH值,该过程要先以较快的速率加酸,将pH先调整至5.0,停止加酸与搅拌1.5h,保证晶体增长,然后继续缓慢加酸调整,直至pH降为3.2左右,温度冷却至8℃,达到等电点停止搅拌,谷氨酸沉淀分离之后可以获得粗糙晶体。5.1谷氨酸钠制取将谷氨酸凝聚物充入二次中和罐,然后加水加纯碱中和成谷氨酸钠,加水溶解温度为40~60℃,Na2CO3调pH至5.6,中和温度控制在70℃以内,接着将谷氨酸钠盐溶液充入活性炭脱色器脱色,分离,再进入离子交换柱除去Ca2+、Fe2+、Mg2+

等金属离子,即可得到高纯度的谷氨酸钠溶液,将纯净的谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295波美时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛选。精制车间加工的谷氨酸产品为谷氨酸单钠,即味精。粗品经提纯、加工、包装,得到成品。味精的干燥过程,国内许多厂家还采用箱式烘房干燥,设备简单,投资低,但操作条件差,生产效率低,不适应大规模生产的要求。也有的厂家使用气流干燥技术,生产量大,干燥速度快,干燥时间短,但干燥过程对味精光泽和外形有影响,同时厂房建筑要求较高,这样均不如振动式干燥床应用效果好。

6.6.6.6.味精生产前景味精生产前景味精生产前景味精生产前景随着世界粮食的短缺和生物燃料的广泛应用,今年来,玉米的价格上升很快,使得以玉米为原料生产味精的企业,固化成本大大提高,各个企业不得不寻求技术方面的突破和新技术的利用,开发新的菌株,满足市场对味精的持续需求。

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

谷氨酸的发酵工程

谷氨酸发酵过程控制 【摘要】谷氨酸是构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。谷氨酸的质量受到发酵的条件、菌种、温度、pH、接种量和种龄等因素的影响。如果控制不好这些因素整个发酵过程发酵液受污染、出现菌体的生长缓慢和代谢产物的积累很少、发酵周期延长甚至所得产品不是最终产品。本文通过综述发酵培养基、培养条件的控制及发酵过程温度、pH、接种量和种龄的控制,以及消泡等多方面因素,来提控制高谷氨酸发酵过程的参数来提高发酵的质量以些方法。 【关键词】谷氨酸、发酵、控制 1.谷氨酸概述 谷氨酸学名:2-氨基-5-羧基戊酸。构成蛋白质的20种常见α氨基酸之一。作为谷氨酰胺、脯氨酸以及精氨酸的前体。L-谷氨酸是蛋白质合成中的编码氨基酸,哺乳动物非必需氨基酸,在体内可以由葡萄糖转变而来。D-谷氨酸参与多种细菌细胞壁和某些细菌杆菌肽的组成。符号:E。 1.1谷氨酸用途 1)下游产品开发 将有一定反应活性的双功能基试剂氯乙醇和L—谷氨酸直接酯化保护羧基,用三光气活化成其相应的N—羧酸酐,可直接得到侧链具有一定反应活性的聚L—氯乙基谷氨酸酯。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。 2)食品业 谷氨酸是在食品工业中应用较多的氨基酸。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,能显着提高食品的风味和有增香作用。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。 3)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种。如:N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。谷氨酸作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需、 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路就是否畅通,所有阀门就是否良好,并关闭所有阀门、 2检查电路、控制柜、开关的状态,确保控制柜运行正常、 3检查空压机油表油表及轴承、三角带、气缸等就是否正常,确保空压机运行正常、 4检查发酵罐搅拌减速机的油量及密封轴降温水就是否正常、 三总过滤器灭菌 当蒸汽总管路上的压力为0、2-0、25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0、15-0、2MPa,此时打开压力表下跑分,计时灭菌2-2、5小时、灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0、15-0、2MPa,保持通气在15-20小时,当出气阀跑分与排污阀放出的空气为干燥空气时,完成灭菌、 四分过滤器灭菌 1当蒸汽管路压力为0、2-0、25MPa时,打开蒸汽过滤器的进气阀与排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,就是压力稳定在0、11-0、15MPa,计时灭菌30-35分钟、灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0、11-0、15MPa,备用、

2m3谷氨酸发酵罐设计

江西科技师范学院 生物工程专业《化工原理课程设计》说明书 题目名称2m3 产谷氨酸发酵罐的设计 专业班级2009 级生物工程(1)班 学号 学生姓名唐盼阙素云周婷 指导教师常军博士 2011 年10 月31 日

目录 一、设计方案的确定1 谷氨酸的生产工艺流程1 生产原料1 发酵菌株1 培养基的制备2 二、发酵罐主体设计计算2 发酵罐主要条件及主要技术指标2 罐体选型、几何尺寸的确定、罐体主要部件尺寸的设计计算3发酵罐的选型3 发酵罐容积的确定 3 发酵罐装液量的确定3 冷却装置的设计3 罐体选料4 罐体壁厚4 封头壁厚计算5 夹套直径5 挡板的设计5 搅拌器的设计5 搅拌器的计算5 搅拌轴功率的计算 6 管道设计8 通风管管径计算8 进出物料管8 冷却水进出口管径 8 管道接口8 仪表接口8 三、其他附件选型9 四、附录及图纸10 附录1计算结果汇总表10 附录2计算结果汇总表10 五、总结11 六、参考文献及资料12

一、设计方案的确定 谷氨酸的生产工艺流程 谷氨酸的生产主要包括以下工作:谷氨酸发酵的原料处理和培养基的配制; 子培养;发酵工艺条件的控制;谷氨酸提取;谷氨酸的精制。 发酵法生产谷氨酸的工艺流程如下: 图1 谷氨酸生产工艺流程图 生产原料 谷氨酸生产时发酵原料的选择原则:首先考虑菌体生长繁殖的营养;考虑到有利于谷氨酸的大量积累;还要考虑原料丰富,价格便宜;发酵周期短,产品易提取等因素。目前谷氨酸生产上多采用尿素为氮源,采用分批流加,以生物素为生长因子。国内大多数厂家用淀粉为发酵原料,主要有玉米、小麦、甘薯、大米等,其中甘薯的淀粉最为常用。少数厂家用糖蜜为发酵原料,主要有甘蔗糖蜜、甜菜糖蜜。 发酵菌株 现有谷氨酸生产菌分属于棒状杆菌属、短杆菌属、小杆菌属及节杆菌属。目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。目前国内各味精厂所使用的谷氨酸生产菌主要有(1)纯齿棒状杆菌及其 (2)天津短杆菌T613及其诱变株FM-415、CMTC6282、诱变株B9、B9-17-36、F-263等菌株; S9114等菌株;(3)北京棒杆菌及其诱变株D110等菌株。本实验选择北京棒杆菌。

谷氨酸发酵车间的物料衡算

工艺计算 生产方法:以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取。主要技术指标: 淀粉液化工艺参数: 糖化工艺参数:

培养基配方: 灭菌各参数:

一、谷氨酸发酵车间的物料衡算 首先计算生产1000kg 纯度为100%的味精需耗用的原材料以及其他物料量。 (一)、发酵液量 设发酵液初糖和流加高浓糖最终发酵液总糖浓度为180kg/ ,则发酵液量为: )(0.8% 124%99%95%601801000 3 1m V =????= 式中 180——发酵培养基终糖浓度(kg/) 60%——糖酸转化率 95%——谷氨酸转化率 99%——除去倒罐率1%后的发酵成功率 124%——味精对谷氨酸的精制产率 (二)、发酵液配制需水解糖量,以纯糖计算: )(136017011kg V G =?= (三)、二级种液量: ) (4.0%53 12m V V == (四)、二级种子培养液所需水解糖量: )(164022kg V G == 式中 40——二级种液含糖量(kg/) (五)、生产1000kg 味精需水解糖总量: )(137616136021kg G G G =+=+= (六)、耗用淀粉原料量: 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(6.1572%)111%5.98%80(G kg G =??÷=淀粉 式中 80%—淀粉原料含纯淀粉量 98.5%—淀粉糖化转化率 (七)、液氨耗用量: 二级种液耗液氨量:2.4V 2=0.96(kg ) 发酵培养基耗液氨量:20V 1=160(kg ) 共耗液氨量:160+0.96=161.0(kg ) (八)、磷酸氢二钾耗量:

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

谷氨酸发酵

谷氨酸发酵 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。 谷氨酸除用于制造味精外,还可以用来治疗神经衰弱以及配制营养注射液等。我国的谷氨酸发酵虽然在产量、质量等方面有了较大的提高,但与国外先进水平相比还存在一定差距。主要表现在:设备陈旧,规模小,自控水平、转化率和提取率低,易受噬菌体污染,废水污染问题尚未完全解决等。 一、菌种的选育 主要通过基因突变、基因工程、细胞工程得到优良的菌种。 可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变,从突变个体中筛选出符合生产要求的优良菌种。 在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。 1.谷氨酸生产菌的生化特征 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸. 6. 耐高糖耐高谷氨酸 . 7. CO2固定能力强. 8 .解除谷氨酸反馈抑制. 9. 具有向胞外分泌谷氨酸的能力. 2.谷氨酸产生菌 棒杆菌属:北京棒杆菌 钝齿棒杆菌 谷氨酸棒杆菌 短杆菌属:黄色短杆菌 产氨短杆菌 小杆菌属:嗜氨小杆菌 节杆菌属:球形节杆菌 3.共同点: 1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低. 2. 谷氨酸脱氢酶活性强. 3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱. 4. 异柠檬酸裂解酶活力微弱. 5. 不利用谷氨酸.

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

谷氨酸发酵知识完全总结

谷氨酸的性质及基本介绍 147.12926 1.538 主要用途简介: (一)食品工业:谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。 (二)日用化妆品:谷氨酸作为营养药物可用于皮肤和毛发。 N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。 焦谷氨酸钠(味精脱水生成的产物)具有极强的吸湿性,能保持皮肤湿润,防止干燥,并增强皮肤和毛发的柔软和弹力。日本己有以谷氨酸钠(或谷氨酸)为原料生产的高级人造革、化妆品和洗涤剂等产品。 (三)医药行业:谷氨酸作有较高的营养价值,医学上主要用于治疗肝性昏迷,还用于改善儿童智力发育。 (四)农业:谷氨酸与某些激素配合,可制成柑桔增甜剂;还可作为微肥的载体,在氮磷钾基本满足的条件下,作为叶面喷洒的微肥具有投入少、效益高等特点。 谷氨酸钠既是西红柿保护性杀菌剂,又是防治果树腐烂病的特效杀菌剂。 氨基酸铜是目前生产上良好的杀菌剂,有机铜比无机铜的应用效果好。 特殊说明: (一)谷氨酸晶体为白色结晶或结晶性粉末,味微酸。 (二)吸湿性温度50℃,其临界湿度在90%以上。

谷氨酸生产水平与市场分析 生产水平: 谷氨酸棒状杆菌-生物素敏感型高产菌株:采用生物素亚适量工艺,发酵32h,产酸达140g/L以上,糖酸转化率达62%以上,国内同类研究的领先水平。 谷氨酸棒状杆菌-谷氨酸温度敏感型突变株:在最佳发酵条件下,发酵24h,产酸达到160g/L,糖酸转化率达72%,国际同类研究的先进水平。 市场分析: 我国味精工业的产量稳居世界第一位,2007年全国味精产量达190万吨。味精工厂的味精平均销售价格为7,800元/吨,成本为7,000元/吨。按照上述产量计算,我国味精工业中纯味精的总产值约150亿元,加上相当于上述总值30%的副产品(主要是饲料蛋白、化肥、液态肥料)的产出,我国味精工业年生产总值约为200亿元人民币。 从市场需求来看,2007年国内谷氨酸年产量约190万吨,国内人均消费味精仅1kg,与日本、香港、台湾、东南亚等国家及地区的味精消费水平(1.5kg)相比,还是较低的。味精综合开发利用的效益显著,通过提高产酸率,吨味精成本可降低500元左右,其生产成本将低于日本的味精生产成本,具备了参与国际市场的竞争力,可以抓住机遇扩大味精出口量。同时在国内可降低味精销售价格,刺激国内市场消费。

氨基酸工艺学

1、味精是L-谷氨酸单钠的商品名称,含有一分子的结晶水,其分子式为NaC5H8O4N·H2O 2、国内味精厂所使用的谷氨酸生产菌株主要有北京棒杆菌AS1.299、钝齿杆菌AS1.542 和天津短杆菌T 6-13三类。 3、谷氨酸发酵中,谷氨酸产生菌只有一条生物合成途径中,生成谷氨酸的前体物为α-酮戊二酸。而在赖氨酸发酵中,存在两条不同的生物合成途径,即二氨基庚二酸途径和α-氨基己二酸途径 4、谷氨酸制味精过程中,中和操作时一般应先加谷氨酸后加碱,否则会发生消旋化,生成DL- 谷氨酸钠。 5、在谷氨酸发酵中,溶解氧的大小对发酵过程有明显的影响。若通气不足,会生成乳酸或琥珀 酸,若通气过量,会生成ɑ-酮戊二酸 6、从发酵液中提取赖氨酸,目前一般采用离子交换方法。影响提取得率最大的是菌体和钙离子 7、谷氨酸的晶型分为α-型结晶和β-型结晶两种,等电点提取谷氨酸时,首先必须形成一定数量 的晶核,然后才能进行育晶。谷氨酸起晶有自然起晶和加晶种起晶两种方法。 8在谷氨酸发酵中,生成谷氨酸的主要酶有谷氨酸脱氢酶(GHD)、转氨酶(AT)和谷氨酸合成酶(GS)三种。 9、L–谷氨酸在水溶液中的等电点是3.22,L–赖氨酸的等电点是6.96 10、在谷氨酸发酵过程中,对生物素的要求是亚适量,而在赖氨酸发酵生产中要求生物素过量。 11、游离的赖氨酸具有很强的呈盐性,因此,一般工业制造产品是以赖氨酸盐酸盐形式存在,其化学性质相当稳定。 二、单项选择题(共10小题,每小题2分,共20分) 得分评卷人 1、下列菌株中,_C_属于赖氨酸产生菌。 A.Hu7251 B.FM84-415 C.AS1.563 D.WTH-1 2、下列哪种氨基酸发酵是在供氧不足的条件下产酸最高?(D ) A.精氨酸B.赖氨酸C.苏氨酸D.亮氨酸 3、谷氨酸发酵产酸期的最适温度一般为(C )。 A.30℃~32℃B.32℃~34℃C.34℃~37℃D.38℃~40℃ 4、在谷氨酸(AS1.299菌)发酵中后期,为有利于促进谷氨酸合成,pH值维持在___C__范围为好。A.pH6.2~6.4 B.pH6.8~7.0 C.pH7.0~7.2 D.pH7.3~7.6

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

谷氨酸发酵控制

一简述甜菜糖蜜添加吐温发酵的机理!!! 吐温是一种表面活性剂,它是在菌体细胞不饱和脂肪酸合成的过程中,作为抗代谢物具有抑制作用,对生物素具有拮抗作用。通过拮抗脂肪酸的生物合成,达到控制磷脂合成,导致磷脂合成不足。结果形成磷脂合成不足的不完全的细胞膜,提高了谷氨酸向膜外漏出的渗透性。 二简述甘蔗糖蜜添加青霉素流加糖发酵的机理!!! 添加青霉素可抑制谷氨酸生产菌细胞壁的后期合成,主要抑制糖肽转肽酶,影响细胞壁肽聚糖的生物合成。因为青霉素的结构与革兰氏阳性的谷氨酸菌所特有的糖肽的D-Ala-D-Ala末端结构类似,因而它取代合成糖肽的底物而和酶的活性中心结合,是五肽末端的丙氨酸不能被肽酶移去,谷氨酸桥一头无法与它前面的丙氨酸相接,因此交联不能形成,网状的结构连接不起来,糖肽的合成就不能完成,于是菌体内的尿二磷和N-乙酰胞壁酸便大量的积累,青霉素与转肽酶相结合,形成了青霉素的酶,结果形成不完全的细胞壁,导致形成不完全的细胞膜。由于青霉素合成细胞壁后期生物合成,是细胞膜处于无保护的状态,又由于膜内外的渗透压差,进而导致细胞膜的物理损伤,形成不完全的细胞膜,失去渗透障碍物,增大了谷氨酸向胞外分泌的渗透能力。 三简述温度敏感突变株发酵生产谷氨酸的机理!!! 谷氨酸温度敏感突变株的突变位置是在决定与谷氨酸分泌有密切关系的细胞膜结构基因上,发生碱基的转换或者颠换,一个碱基被另一

个碱基所置换,这样为该基因所指导的酶在高温下失活,导致细胞膜某些结构的改变,当控制培养温度为最适温度时,菌体正常的生长,当温度提高到一定的程度时,菌体便停止生长且大量的产酸。而它仅需通过控制物理的方式就可以完成谷氨酸生产菌由生长型细胞向产酸型细胞的转变。 四简述谷氨酸发酵培养基对发酵的影响及控制措施!!! 影响因素及控制措施如下: 1.生物素 谷氨酸在发酵的过程中,前期:菌体的生殖期,一定量的生物素是菌体增殖期所必须的一般在5ug/L,而在产物合成期,要控制生物素的浓度,一般在0.5ug/g,以保证产物的正常合成。 2. 碳源 谷氨酸产生菌均不能利用淀粉,只能利用葡萄糖、蔗糖、麦芽糖等;有些菌种能利用醋酸、乙醇、正烷烃等作碳源。淀粉水解糖的质量对发酵影响很大。一般还原性的糖的浓度控制在125—150g/L。 3 碳氮比 碳氮比对谷氨酸发酵影响很大,在发酵的不同阶段,控制碳氮比以促进以生长阶段向产酸阶段转化,在长菌阶段,如氨根离子过量会抑制菌体生长,在产酸阶段,如氨根离子不足,a-酮戊二酸不能还原并氨基化,而积累a-酮戊二酸,谷氨酸生成量少。 一般发酵工业碳氮比为100:(0.2~2.0),谷氨酸的碳氮比为100:(15~30),当碳氮比在100:11以上才开始累积谷氨酸。

谷氨酸发酵

第一章文献综述 1.1谷氨酸简介 谷氨酸在生物体内的蛋白质代谢过程中占有重要地位,参与动物、植物和微生物中的许多重要化学反应。目前,我国许多工厂采用多种方法来提高谷氨酸产率,如选育高产菌种、改进发酵工艺、搞好发酵控制、引进微机控制、增加控制参数等。这些方法对于提高谷氨酸产率非常有效。 谷氨酸是生产味精的主要原料,随着发酵法生产谷氨酸技术的发展,我国味精生产始于1923年,至今已有80多年历史,随着科学技术的不断进步,味精生产技术也在不断变革,由创建之初的以面筋、豆粕为原料水解法生产工艺,改变为现在以淀粉为原料发酵法生产工艺,发酵法生产工艺从1964年在上海味精厂首次投入生产以来,发酵法生产谷氨酸的生产技术进步较大,尤其是近几年随着菌种的突破以及新技术,新设备的应用进展更快,进入九十年代,尤其九五年后,技术进步较快,目前行业最好水平时(仅少数厂家)制糖收率99%以上,发酵产酸11-12%,转化率59-62%,提取收率96-98%精制收率96%,与80年代比较全行业平均制糖收率提高了10%,发酵产酸率提高了117%,转化率提高了43%,提取收率提高了20%,精制收率提高了8.8%,综合技术指标淀粉消耗下降了166%

1.2谷氨酸的生产工艺流程 1.2.1液化和糖化 因为大米涨价, 目前大多数味精厂都使用淀粉作为原材料。淀粉先要经过液化阶段。然后再与β- 淀粉酶作用进入糖化阶段。首先利用α- 淀粉酶将淀粉浆液化, 降低淀粉粘度并将其水解成糊精和低聚糖, 应为淀粉中蛋白质的含量低于原来的大米, 所以经过液化的混合液可直接加入糖化酶进入糖化阶段, 而不用像以大米为原材料那样液化后需经过板筐压滤机滤去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙,整个液化时间约30min。一定温度下液化后的糊精及低聚糖在糖化罐内进一步水解为葡萄糖。淀粉浆液化后, 通过冷却器降温至60℃进入糖化罐, 加入糖化酶进行糖化。糖化温度控制在60℃左右, pH 值4.5, 糖化时间18~32h。糖化结束后, 将糖化罐加热至80~85℃, 灭酶30min。过滤得葡萄糖液, 经过压滤机后进行油水分离( 一冷分离, 二冷分离) , 再经过滤后连续消毒后进入发酵罐。 1.2.2谷氨酸发酵

生物素对谷氨酸发酵的影响及控制

生物素对谷氨酸发酵的影响及控制摘要: 阐述生物素对谷氨酸在发酵过程中的影响和控制生物素的用量来提高谷氨酸的产量,以及生物素测定方法的介绍。 关键词:生物素谷氨酸影响测定方法发酵 1生物素对谷氨酸生产的影响 1.1谷氨酸的生物合成途径 谷氨酸生物合成的主要途径:葡萄糖经糖酵解(EMP途径)和磷酸戊糖途径(HMP途径)生成丙酮酸,再被氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸,α-酮戊二酸在谷氨酸脱氢酶的催化及NH4+的存在条件下,经还原氨基化反应生成谷氨酸。 1.2 生物素对谷氨酸生物合成途径的影响 生物素对谷氨酸生物合成途径有下列几方面的影响[1]: (1)生物素对糖酵解速度的影响 生物素在糖酵解过程中,主要影响糖酵解速度,而不是EMP途径与HMP途径的比率。在生物素充足条件下,糖降解速度远远超过丙酮酸的氧化速度,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸,引起了乳酸的溢出。只有在生物素限量的情况下,糖降解速度与丙酮酸氧化速度才趋于平衡。 (2)生物素对NAD及NADH2含量的影响 在生物素缺乏菌中,葡萄糖氧化能力降低,特别是醋酸、琥珀酸的氧化能力显著减弱。在生物素缺乏菌中,NAD及NADH2含量减少到l/2-1/4。 (3)生物素对乙醛酸循环的影响 乙醛酸循环的关键酶是异柠檬酸裂解酶,该酶受葡萄糖、琥珀酸阻遏,为醋酸所诱导。葡萄糖为原料发酵生产谷氨酸时,在生物素亚适量条件下,异柠檬酸裂解酶几乎没有活性。原因在于丙酮酸氧化能力下降,醋酸生成速度减慢,为醋酸所诱导形成的异柠檬酸裂解酶很少。再者,由于该酶受琥珀酸阻遏,在生物素亚适量条件下,因氧化能力降低而积累的琥珀酸就会反馈抑制该酶活性,并阻遏该酶的生成,乙醛酸循环基本上是封闭的,代谢流向沿异柠檬酸→α-酮戊二酸→谷氨酸的方向高效率地移动。 (4)生物素对氮代谢的影响 生物素限量时,几乎没有异柠檬酸裂解酶,琥珀酸氧化力弱,苹果酸和草酰乙酸脱羧反应停滞,同时由于完全氧化降低的结果,使ATP的形成减少,蛋白质合成活动停滞。在铵离子适量条件下,生成积累谷氨酸,且生成的谷氨酸也不会通过转氨作用生成其他氨基酸。在生物素充足条件下,异柠檬酸裂解酶、琥珀酸氧化力、丙酮酸氧化力、蛋白质合成、乙醛酸循环比例、草酰乙酸和苹果酸脱羧反应都不断加大,导致谷氨酸量减少,通过转氨作用生

谷氨酸的发酵和提取工艺综述

综述:谷氨酸的发酵与提取工艺 第一部分谷氨酸概述 谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,在人体内,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代谢过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代谢和糖代谢,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。 1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。尽管如此,我国人均年消耗味精量还只有400g左右,而台湾省已达2000g。因此,中国将是世界上最大的潜在味精消费市场,也就是说,味精生产会稳步发展。这也意味着谷氨酸的生产不断在扩大[1]。 谷氨酸生产走到今天就生产技术而言已有了长足进步,无论是规模还是产能都今非昔比,与此同时各厂家还在追求完美, 这是行业进步的动力,也是生存之所需。实际上生产工艺是与时俱进的,没有瑕疵的工艺是不存在的。如:配方及提取方法现在是多种多样,有单一用纯生物素的,也有用甘蔗糖蜜加纯生物素的, 还有加玉米浆干粉或麸皮水解液及豆粕水解液等等;提取方法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。 本综述简述谷氨酸生产的流程及发酵机制,着重介绍谷氨酸的提取工艺。 第二部分谷氨酸生产原料及其处理 谷氨酸发酵的主要原料有淀粉、甘蔗糖蜜、甜菜糖蜜、醋酸、乙醇、正烷烃(液体石蜡)等。国内多数谷氨酸生产厂家是以淀粉为原料生产谷氨酸的,少数厂家是以糖蜜为原料进行谷氨酸生产的,这些原料在使用前一般需进行预处理。 (一)糖蜜的预处理 谷氨酸生产糖蜜预处理的目的是为了降低生物素的含量。因为糖蜜中特别是甘蔗糖蜜中含有过量的生物素,会影响谷氨酸积累。故在以糖蜜为原料进行谷氨酸发酵时,常常采用一定的措施来降低生物素的含量,常用的方法有以下几种:(1)活性炭处理法; (2)水解活性炭处理法;(3)树脂处理法。 (二)淀粉的糖化 绝大多数的谷氨酸生产菌都不能直接利用淀粉,因此,以淀粉为原料进行谷氨酸生产时,必须将淀粉质原料水解成葡萄糖后才能供使用。可用来制成淀粉水解糖的原料很多,主要有薯类、玉米、小麦、大米等,我国主要以甘薯淀粉或大米制备水解糖。 淀粉水解的方法有三种:①酸解法;②酶解法;③酸酶(或酶酸)结合法。 1.酸解法用酸解法生产水解糖,其工艺流程如下: 原料(淀粉、水、盐酸)调浆→糖化→冷却→中和→脱色→过滤除杂→糖液2.酶解法先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶解法。 与淀粉的酸解相比,酶解法具有以下一些优点:①酶解反应条件比较温和。细菌α-淀粉酶是在pH6.0~7.0、温度85~90℃条件下,将淀粉液化成能溶解于水的糊精和低聚糖;而糖化酶是在pH4.0~4.5、温度58—60℃条件下,完成糖化反应的。②由于酶的作用专一性强,因此水解过程中很少有副反应发生。③淀粉乳

年产5万吨谷氨酸发酵工厂设计开题报告综述

本科毕业设计(论文)开题报告 题目:年产5万吨谷氨酸工厂发酵设计 开题报告 课题类型:工业设计 学生姓名:刘少年 学号:3100402209 专业班级:生物工程102 学院:生物与化学工程学院 指导教师:李松 开题时间:2014年3 月 2014年月日

一、本课题的研究意义、研究现状和发展趋势 引言:谷氨酸为无色晶体或结晶性粉末,分为α、β两种晶型,通常β型稳定。分子式:COOCCH(NC2)CH2CH2COOH分子结构如下所示: 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L一谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在。多种食品以及人体内都含有谷氨酸盐,它既是蛋白质或肤的结构氨基酸之一又是游离氨基酸,L型氨基酸美味较浓。谷氨酸(2一氨基戊二酸)有左旋体、右旋体和外消旋体。左旋体,即L一谷氨酸,是一种鳞片状或粉末状晶体,呈微酸性,无毒。微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮及冷醋酸中,也不溶于乙醇和甲醇。在200℃时升华,247℃一249℃分解,密度为1.538沙衬,旋光度+37一 +38.9(25℃)。谷氨酸的用途广泛,它本身作为药品,能治疗肝昏迷症,也可用来生产味精、食品添加剂、香料和用于生物化学的研究[1]。

1.1研究目的及意义 谷氨酸发酵是通气发酵,也是我国目前通气发酵产业中,生产厂家最多,产品产量最大的产业。该生产工艺和设备具有很强的典型性,本论文对味精发酵生产工艺及主要设备作简要介绍,以期有助于了解通气发酵工艺及主要设备的有关知识。本设计是年产量为20000吨的味精厂,重点是产品的物料衡算,热量衡算,同时工艺流程及设备选型等设计。本设计的重点车间为发酵工艺车间,重点设备为糖化,煮沸,发酵设备。 该论文设计的目的是从生产实际出发,确保生产的各个环节中使用较少的人力、物力、财力取得较大的经济效益。此为本设计的指导思想,亦是本设计最主要的特点。同时本设计从节约用地出发,充分利用厂房设备来安排产品,对于那些类型不相同,生产设备,生产条件十分相同,甚至是用同一厂房,设备来生产不同产品。 1.2谷氨酸用途 1.食品行业 应用较多的是制成谷氨酸钠。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用,用于食品内,有增香作用。在食品中浓度为0.2%一0.5%,每人每天允许摄入量(ADI)为0一120微克/千克(以谷氨酸计)。在食品加工中一般用量为0.2一1.5克/公斤。谷氨酸 作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

相关文档
最新文档