光纤和光缆光纤的分类按照传输模式来划分光纤中传播的模式

光纤和光缆光纤的分类按照传输模式来划分光纤中传播的模式
光纤和光缆光纤的分类按照传输模式来划分光纤中传播的模式

光纤和光缆

光纤的分类

(1)按照传输模式来划分光纤中传播的模式就是光纤中存在的电磁波场场型,或者说是光场场形(HE)。各种场形都是光波导中经过多次的反射和干涉的结果。各种模式是不连续的离散的。由于驻波才能在光纤中稳定的存在,它的存在反映在光纤横截面上就是各种形状的光场,即各种光斑。若是一个光斑,我们称这种光纤为单模光纤,若为两个以上光斑,我们称之为多模光纤。· 单模光纤(Single-Mode)单模光纤只传输主模,也就是说光线只沿光纤的内芯进行传输。由于完全避免了模式射散使得单模光纤的· 传输频带很宽因而适用与大容量,长距离的光纤通迅。单模光纤使用的光波长为1310nm或1550 nm。如图1单模纤光线轨迹图。· 多模光纤(Multi-Mode)在一定的工作波长下

(850nm/1300nm),有多个模式在光纤中传输,这种光纤称之为多模光纤。由于色散或像差,· 因此,这种光纤的传输性能较差频带比较窄,传输容量也比较小,距离比较短。

2)按照纤芯直径来划分·50/125(μm)缓变型多模光纤·62.5/125(μm)缓变增强型多光纤· 8.3/125(μm)缓变型单模光纤备注:50/62.5/8.3(μm)均为光纤光芯直径数,125(μm)均为光纤玻璃包层的直径数。

(3)按照光纤芯的折射率分布来划分阶越型光纤(Step index fiber),简称SIF;·梯度型光纤(Graded index fiber),简称GIF;·环形光纤(ring fiber);· W形光纤备注:50/62.5/8.3(μm)均为光纤的光芯直径数,125(μm)均为光纤玻璃包层的直径数。

2.光缆

点对点光纤传输系统是通过光缆进行连接。光缆可包含1根光纤(有时称单纤)或2根光纤(有时称双纤),或者甚至更多(48纤、1000纤)

光纤的诞生

人类从未放弃过对理想光传输介质的寻找,经过不懈的努力,人们发现了透明度很高的石英玻璃丝可以传光。这种玻璃丝叫做光学纤维,简称"光纤"。人们用它制造了在医疗上用的内窥镜,例如做成胃镜,可以观察到距离一米左右的体内情况。但是它的衰减损耗很大,只能传送很短的距离。光的损耗程度是用每千米的分贝为单位来衡量的。直到20世纪60年代,最好的玻璃纤维的衰减损耗仍在每公里1000分贝以上。每公里1000分贝的损耗是什么概念呢?每公里10分贝损耗就是输入的信号传送1公里后只剩下了十分之一,20分贝就表示只剩下百分之一,30分贝是指只剩千分之一……1000分贝的含意就是只剩下亿百分之一,是无论如何也不可能用于通信的。因此,当时有很多科学家和发明家认为用玻璃纤维通信希望渺茫,失去了信心,放弃了光纤通信的研究。

激光器和光纤的发明,使人们看到了光通信的曙光。而要实现光纤通信,还需要在激光器和光纤的性能上有重大的突破。但是在这两方面的突破遇到了许多困难,尤其是光纤的损耗要达到可用于通信的要求,从每千米损耗1000分贝降低到20分贝似乎不太可能,以致很多科学家对实现光纤通信失去了信心。就在这种情况下,出生于上海的英藉华人高锟(K.C.Kao)博士,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输。1966年7月,高锟就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信。这篇论文使许多国家的科学家受到鼓舞,加强了为实现低损耗光纤而努力的信心。

世界上第一根低损耗的石英光纤――1970年,美国康宁玻璃公司的三名科研人员马瑞尔、卡普隆、凯克成功地制成了传输损耗每千米只有20分贝的光纤。这是什么概念呢?用它和玻璃的透明程度比较,光透过玻璃功率损耗一半(相当于3分贝)的长度分别是:普通玻璃为几厘米、高级光学玻璃最多也只有几米,而通过每千米损耗为20分贝的光纤的长度可达150米。这就是说,光纤的透明程度已经比玻璃高出了几百倍!在当时,制成损耗如此之低的光纤可以说是惊人之举,这标志着光纤用于通信有了现实的可能性。

光纤理论与光纤结构

一.光及其特性:

1. 光是一种电磁波。可见光部分波长范围是: 390~760nm(毫微米).大于760nm 部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。

2.光的折射,反射和全反射。

因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

二.光纤结构及种类:

1.光纤结构:

光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。

2.数值孔径:

入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&TCORNING)。 3.光纤的种类:

A. 按光在光纤中的传输模式可分为:单摸光纤和多模光纤。

多模光纤:中心玻璃芯教粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。

C.按折射率分布情况分:突变型和渐变型光纤。

突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。 4.常用光纤规格:

单模: 8/125μm, 9/125μm , 10/125μm

多模: 50/125μm 欧洲标准, 62.5/125μm 美国标准

工业,医疗和低速网络: 100/140μm, 200/230μm

塑料: 98/1000μm 用于汽车控制。

三.光纤制造与衰减:

1.光纤制造:

现在光纤制造方法主要有:管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和VAD(轴向汽相沉积)法.

2.光纤的衰减:

造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。

本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀:光纤材料的折射率不均匀造成的损耗。

对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

四.光纤的优点:

1. 光纤的通频带很宽.理论可达30亿兆赫兹。

2. 无中继段长.几十到100多公里,铜线只有几百米。

3. 不受电磁场和电磁辐射的影响。

4. 重量轻,体积小。例如:通2万1千话路的900对双绞线,其直径为3英寸,重量8 吨/KM。而通讯量为其十倍的光缆直径为0.5英寸,重量450P/KM。

5. 光纤通讯不带电,使用安全可用于易燃,易暴场所。

6. 使用环境温度范围宽。

7. 化学腐蚀,使用寿命长。

光纤设备术语

IDF:Intermediate Distribution Frame,分配线架MDF:Main Distribution Frame,主配线架。

OC:(Optical Carrier,光载波)是SONET规范中定义的传输速度。OC定义光设备的传输速度,STS定义电气设备的传输速度。

SC:Subscriber Connector(Optical Fiber Connector) 用户连接器(光纤连接器)。ONENT:SONET(Synchronous Optical NETwork,光纤同步网络)是一种用于高速数据通信的光纤传输系统。SONET被电话公司和公用通信公司部署,其速度从51Mb/s直到每秒几千兆。SONET是一种提供先进网络管理和标准光纤接口的智能系统。它采用自恢复环结构,如果一条线路发生故障,它能够改道传送。SONET干线广泛用于汇集低速T1和T3线路。SONET是宽带ISDN(B-ISDN)标准规定的。欧洲相应的标准是SDH。SONET采用时分复用(TDM)技术同时传送多数据流。

ST:Straight Tip,直通式光纤连接器。TP:Tunst Pair,对绞线。

光缆终端盒:主要用于光缆终端的固定,光缆与尾纤的熔接及余纤的收容和保护。

光纤盒:应用于利用光纤技术传输数字和类似语音,视频和数据信号。光纤盒可进行直接安装或桌面安装。特别适合进行高速的光纤传输。

光纤面板:光学纤维面板具有传光效率高,级间耦合损失小,传像清晰、真实,在光学上具有零厚度等特点。最典型的应用是作为微光像增强器的光学输入、输出窗口,对提高成像器件的品质起着重要作用。广泛的应用于各种阴极射线管、摄像管、CCD耦合及其他需要传送图像的仪器和设备中。

光纤耦合器:(Coupler)又称分歧器(Splitter),是将光讯号从一条光纤中分至多条光纤中的元件,属於光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的。光纤耦合器可分标准耦合器(双分支,单位1×2,亦即将光讯号分成两个功率)、星状/树状耦合器、以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属於DWDM),制作方式则有烧结(Fuse)、微光学式(Micro Optics)、光波导式(Wave Guide)三种,而以烧结式方法生产占多数(约有90%)。光纤配线架(柜):具有如下功能:光缆的固定,保护和接地;光缆纤芯与尾纤的熔接;光路的调配并提供测度端口;冗余光纤及尾纤的存贮管理。

光纤配线箱:特别适合于光纤接入网中的光纤终端点,具有光缆的配线和熔接功能,可以实

现光缆纤芯的灵活调线及存储。

跳线:就是不带连接器的电缆线对或电缆单元,用在配线架上交接各种链路

线头盒:主要适用于架空光缆、直埋光缆、管道井光缆的直通和分歧接头,并对接头起保护作用.

光纤缩略语

A

AAS Automatic addressing system 自动寻址系统

AB Absorption Band 吸收带

Address Bus 地址总线

Aligned Bundle 定位光纤

ABC Absorbing Boundary Condition 吸收边界条件

Address Bus Control 地址总线控制

Automatic Bandwidth Control 自动带宽控制

Automatic Bias Compensation 自动偏置补偿

ABCs Automatic Base Communication System 自动基地通信系统

ABM Asynchronous Balanced Mode 异步平衡模式

AC Access control 访问控制(对指定用户而言)或接入控制

Access coupler 通路耦合器

ACA Adaptive channel allocation 自适应信道分配

Adjacent channel attenuation 相邻信道衰减

ACC Area communication center 区域通信中心

Automatic control and checking 自动控制和检查

ACCE Area communication center equipment 区域通信中心设备

ACCH Associaed control channel 相关控制信道

ACCI Adaptive cycle cellinsertion 自适应循环信元插入

ACCS Automatic checkout and control system 自动检验与控制系统

ACD Automatic call distribution 自动呼叫分配

Average core diameter 平均纤芯直径

ACDMA Advanced code division multiple access 高级码分多址

ACM Access control module 接入控制模块

ACNS Advanced communications operations network service 高级通信网业务ACPI Automatic cable pair identification (光、电)缆线对自动识别ACS Access control system 接入控制系统

ACT Automatic code translation 自动译码,自动码型变换

AD Avalanche diode 雪崩二极管

Average deviation 平均偏移,平均偏差

ADM Add/drop multiplexer. 插/分复用器,上/下复用器,一种数字通讯设备ADN Active destination node 有效地址节点

Add/Drop node 上/下节点,插/分节点

ATM Data Network 异步转移(传递)模式数据网络

ADSL Asymmetrical digital subscriber loop 非对称数字用户环路

ADSS Automatic data switching system 自动数据交换系统

AE Actinoelectric effect 光(化)电效应

Aperture effect 孔径效应

AFPM Asymmetric Fabry-Perot saturable absorber 反共振法布里-珀罗可饱和吸收器

AFS Acoustic fiber sensor 光纤声传感器

AFTV All-Fiber video distribution 全光纤电视分配

AGC Automatic Gain Control 自动增益控制

AGCC Automatic Gain Control Calibration 自动增益控制校准

AN Access network 接入网

Access node 接入节点

Active network 有源网络

AOC All-optical communication 全光通信

AOD Active optical device 有源光器件

AOF Active optical fiber 有源光纤

Attenuation optimized fiber 衰减最佳化光纤

AOFC Aerial optical fiber cable 架空光纤

AOI Active output interface 有源输出接口

AON All-optical network 全光网络

AOS Addressable optical storage 光(束)寻址存储,一种存储方式,通过电-机、电-光或声-光等方法使光束偏转,进行寻址,以代替移动记录煤质来实现信息的写入和读出。此法较容易实现大容量和高速度存储。

AOTA All-optical towed array 全光牵引阵列

AOTF Acoustic-optic tunable filter 声光可调滤波器

AOWC All-optical wavelength converter 全光波长转换器

AP Absorption peak 吸收峰

APD Avalanche photon diode 雪崩光电二极管

APOF All plastic optical fiber 全塑光纤

APPN Appropriation 占用

APS Automatic Protection Switching. 自动保护开关,用于器件或光路切换ARP Address resolution protocol 地址解析协议,在TCP/IP网络环境下,用来把IP地址转换成相应的物理地址的一种协议

ARPM Amplitude ratio and phase modulation 振幅比和相位调制

ARROW Anti-resonant reflecting optical waveguide 反共振反射光波导ASA American standards association 美国标准协会

Automatic spectrum analyzer 自动频谱分析仪

ASB Asymmetric switched broadband 非对称交换宽带

ASE Amplification of spontaneous emission 受激发射放大

ASEN Amplified spontaneous emission noise 放大自激发射噪声

ASEP Amplified spontaneous emission power 放大自激发射功率

ASF Air-supported fiber 空气间隙光纤

ASG Arseno silicate glass 砷硅玻璃

ASI Alarm status indicator 告警状态指示器

Alarm status interface 告警状态接口

ASIC Application-specific integrated processor 专用集成电路

ASK Amplitude shift-keyed 幅移键控,用改变载波幅度的方法对载波进行数字调制

ASLC Analogue subscriber line circuit 模拟用户线电路 27

ATM Asynchronous Transfer Mode. 异步转移(传递)模式,一种传递方式,在这一方法中,把信息组成信元,信元的再现取决于要求的或瞬时的比特率。从这一意义上看,这种传递方式是异步的。也可以用统计方式和确定方式的属性含义来修饰这种传递方式。

ATME Automatic transmission measuring equipment 自动传输测量设备ATMOS ATM optical switch 异步转移(传递)模式光交换

ATM-PON Asynchronous transfer mode-passive optical network 异步转移(传递)模式-无源光网络

ATQW Asymmetric triple quantum well 非对称三重量子阱

ATT Attenuator 衰减器,衰耗器

Automatic target tracking 自动目标跟踪

AV Analogue video 模拟视频,模拟电视

AWDS Active wavelength demodulation system 有源波长解调系统

AWG Array waveguide grate 阵列波导光栅

Arbitrary-waveform generator 任意波形发生器

AWGM Array waveguide grate multiplexer 阵列波导光栅复用器

B

BAP Broad band access point 宽带接入点

BBA Broad band access 宽带接入

BBC Broad band coupler 宽带耦合器

BBCC Broad band communication channel 宽带通信信道

BBF Base band filter 基带滤波器

BBLED Broad band light-emitting diode 宽带光发射二极管

BBTFP Broad band tunable Fabry-Perot filter 宽带可调法布里-珀罗滤波器BC Bandwidth compression 带宽压缩

BDSL Broad band digital subscriber line 宽带数字用户线

B-EDFA Backward pumped EDFA 后向泵浦掺铒光纤放大器

BEF Band elimination filter 带阻滤波器

Beam expanding fiber 光束扩展光纤

BEFL Brillouin/Erbium fiber laser 布里渊/掺铒光纤激光器

BER Bit error rate. 误码率

BEX Broad band exchange 宽带交换

BF Band filter 带通滤波器

Beat-frequency 拍频,查频

Branching filter 分路滤波器,分支滤波器

BFA Brillouin fiber amplifier 布里渊光纤放大器

BFF Biconical fiber filter 双锥光纤滤波器

BFI Beat- frequency interferomenter 拍频干涉仪

BFOC Bayonet fiber optic connector 卡口式光纤连接器

B-FOG Brillouin fiber optic gyro 布里渊光纤陀螺仪

BFOS Basic fiber optical subsystem 基本光纤子系统,由一个光发送机、一

个光接收机和光纤链路串连组成的系统,它提供了上述单元之间的光学通道BFRL Brillouin fiber ring laser 布里渊光纤循环激光器

BG Band gap 能带隙,某材料的导带和价带之间的能量差

Base group 基群,在特定频率范围内的许多载波通路的总称,它组成一个基本单元,一边进一步调制到最终频带上去

Blazed grating 定向光栅

BGA Back-ground absorption 背景吸收

BGS Brag grating sensor 布拉格光栅传感器

BH Barrier height 势垒高度,在半导体中从势垒的一边到另一边的电位差BIP-EDFA Bidirectonal pumped EDFA 双向泵浦掺铒放大器

BIP-ISDN Broad band, intelligent and personalized ISDN 宽带化、智能化和个人化的综合业务数字网

B-ISDN Broad band intelligent services digital network 宽带综合业务数字网

BIT Broad band interface tester 宽带接口测试仪

BJ Bundle jacket 光纤束护套,光(电)缆内所有构件共有的外部保护层

BL Band-limited 频带限制

Black light 不可见光

BLD Bistable laser diode 双稳激光二极管

BLSR Bidirectional Line Switched Ring. 双向线路交换环

BOA Bifurcation optically active 分支光有源

BOAN Business-oriented optical access network 面向商业的光接入网BOCS Birefringent optical circuit synthesis 双折射光电路合成

BOD Balanced optical detector 平衡光检测器

BOMUDEX Bidirectional optical multiplexer/demultiplexer 双向光复用器/解复用器

BOTDA Brillouin optical biber time domain analysis 布里渊光纤时域分析BOTDR Brillouin optical biber time domain reflectometry 布里渊光纤时域反射法

Bragg grating 布拉格光栅

BRF Birefringent fiber 双折射光纤

Birefringent tuning filter 双折射调谐滤波器

BS Base station 基站

Beam splitter 分光器,分束器

Beam spreader 光束扩散器,使平行的入射光束作小角度的展开

C

cable 针对光纤而言,是指一根或多根光纤组成的有保护的光缆

carrier 运营商 A company that provides a communications circuit. Carriers are either public, such as AT&T and

Sprint, or private.

CATV 有线电视

CCF Chirp compensating fiber 啁啾补偿光纤

CD Chromatic dispersion 色散

CDMA Code division multiple access 码分多址,一种调制方式。数字信息靠它以一种扩充带宽的格式进行编码。在同一带宽内可以同时有好几个传输发生,靠每个传输所用唯一码的正交度来减小相互干扰

center wavelength 中心波长

central office 中心局

CG-SOA Clamped-gain SOA 固定增益半导体光放大器

channel 信道,在光纤通讯DWDM中,用来传输光信号

chromatic dispersion 色散

cladding 纤芯外部包裹的材料,折射率比纤芯材料低

CLEC Competitive local exchange carrier.

CO Central office. 中心局

Coating 保护膜

coaxial cable 同轴电缆

C-OFDR Coherent optical frequency domain reflectiometry 相干光频域反射法

COLIDAR Coherent light detecting and ranging 相干光检测和测距,相干激光雷达

COP Coherent optical processor 相干光处理机

COQ Channel optimized quantizer 信道最佳化量化器

COTDR Coherent detection OTDR 相干检测光时域反射计

CPW Circular polarized wave 圆极化波,圆偏振波

CoPlanar waveguide 共面波导

CPWDM Chirped-pulse wavelength-division-multiplexing 线性脉冲波分复用critical angle 临界角

CTB Composite triple beat 复合三次拍频,两个或多个信号通过具有非线性特性的设备时,由于产生多个不需要的信号,落在视频载频附近的三次拍频及三阶互调产物称为复合三次差拍,因而产生干扰

CTC Channel traffic control 信道业务量控制

CTV Conference TV 会议电视

D

D&C-SW Delivery-and-coupling type optical switch 分配和耦合型光开关Dark fiber 暗光纤,备用光纤

dB Decibel. 相对功率的对数表达,在光传输中,通常用来描述损耗

DC Directional coupler 定向耦合器

Depressed-cladding 凹陷型包层

Dispersion compensation 色散补偿

Diversity combiner 分集和路器

Drift compensation 漂移补偿

Drop cable 引入光(电)缆,用于分配网络户外部分的光缆

DCA Dynamic channel assignment 动态信道分配

DCC Digital communication channel 数据通信信道

Digital control channel 数字控制信道

Diversity cross connect 数字交叉连接

DCF Dispersion compensation fiber 色散补偿光纤,具有很大负波导色散的光

纤。

Dual coated fiber 双涂覆光纤

DCM Directional coupler modulator 定向耦合调制器

Dispersion compensator module 色散补偿模块

DCS Dynamic channel selection 动态信道选择

DCSM Depressed cladding single-mode (fiber) 凹陷型包层单模光纤

DD Delay distortion 时延失真

Differential detection 差分检测

Drift-diffusion 漂移扩散

DDE Dynamic data exchange 动态数据交换

DD-EDFA Dispersion decreasing erbium-doped fiber amplifier 色散降低掺铒光纤放大器

DDF Dispersion decreasing fiber 色散降低光纤

DFB Distributed feedback laser. 分布反馈布拉格激光器

DFCF Dispersion flat compensation fiber 色散平坦补偿光纤

DFF Dispersion flat fiber 色散平坦光纤

Dispersion flat single mode fiber 色散平坦单模光纤

DFOS Distributed fiber optic sensing 分布式光纤传感器

Dual frequency optical source 双频光源

DFS Distributed fiber sensor 分布式光纤传感器

DFSM Dispersion flattened single mode 色散平坦单模

DM Dispersion management 色散管理

DMF Dispersion management fiber 色散管理光纤

diffraction grating 衍射光栅

diode An electronic device that conducts electricity in one direction only. The simplest semiconductor

devices are diodes.

dispersion 色散,一种光传输过程中的现象

DOAP Division-of-amplitude photopolarimeter 分幅光偏转计

DOES Double-heterostructure optoelectronic switch 双异质结光电开关

DOP Degree of polarization 偏转度

DOS Digital optical switch 数字光开关

DPON Domestic passive optical network 国内无源光网络

DRB Double Raleigh backscattering 双瑞利背向散射

DS Dispersion shift 色散位移

DSCF Dispersion slope compensation fiber 色散斜率补偿光纤

DSF Dispersion-shifted fiber. 色散位移光栅,单模光纤的一种,在1550nm

处色散为零,用于DWDM系统中

DSL Digital subscriber line. 数字用户线,利用现有公用电话网的二线用户环路作为综合业务数字网基本用户/网络接口,并实现传输速率为160kbit/s的双数字传输的用户线路。

Distributed Service Logic 分配式服务逻辑

DS-SMF Dispersion shifted single mode fiber 色散位移单模光纤

DU Dispersion-unshifted (single mode fiber)非色散位移光纤(单模光纤)

DWDM Dense wavelength division multiplexing. 密集波分复用器

E

EA Electro absorption 电吸收

EAM Electro absorption modulator 电吸收调制器

EBL Expanding beam laser-scan 扩展束激光扫描

ECC Embedded communications channel 嵌入式通信信道

ECL External cavity laser 外腔激光器

External cavity mode-locked semiconductor laser 外腔锁模半导体激光器ECM Echo cancellation method 回波消除法

ECMLL External cavity mode-locked laser 外腔式锁模激光器

ECSL Extended-cavity semiconductor laser 扩展式腔半导体激光器

External cavity semiconductor laser 外腔式半导体激光器

EDF Erbium-doped fiber 掺铒光纤

EDFA Erbium-doped fiber amplifier 掺铒光纤放大器

EDFFA Erbium-doped Fluoride fiber amplifier 掺铒氟化物光纤放大器

EDFL Erbium-doped fiber laser 掺铒光纤激光器

EDFLS Erbium-doped fiber laser source 掺铒光纤激光源

EDFRS Erbium-doped fiber ring laser 掺铒光纤环激光器

EDPA Erbium doped planar amplifier 掺铒平面放大器

EDWA Erbium doped waveguide amplifier 掺铒波导放大器

EE-LED Edge-emitting LED 边发射发光二极管,其光输出功率是从异质生长层之间发射出来的发光二极管。与表面发射的发光二极管相比,它通常具有较高的输出功率,与光纤和集成光路的耦合效率也较高

EELS Edge-emitting laser 边发射激光器,一种边发射的发光激光器,它的发光区被限制在一边的很小部分,有限的光发射区改善了与光纤和集成光路的耦合效率

EFBGL Erbium fiber Bragg grating laser 铒光纤布拉格光栅激光器

EML Eroabsorption modulated laser 电吸收调制激光器

EOM Electro-optical modulator 电光调制器,通常以调制信号为外加电场,改变电光晶体的双折射特性,从而达到改变光的参数的目的。电光调制和其他调制方法相比,器件结构稳固,不易失调。缺点是损耗较大,调制电压较高,调制电源功率损耗较大,调制频率与带宽很高

EOTF Electro-optic tunable filter 电光可调谐滤波器

EP Eye pattern 眼图,为评价数字传输系统的特性,把接收到的随机基带数字信号波形同步显示在示波器屏幕上。所出现的图形形状像人眼,故称为眼图。从眼图可一目了然地看出此传输系统码元间干扰的程度

ER 112

Ethernet 以太网

F

FDDI Fiber Distributed Data Interface.光纤分布式数据接口,一种光纤通信标准。采用单一的比特流格式而不是采用一组字节格式的光数据传信率。

FE Fast Ethernet. 快速以太网

fiber-optic cable A data transmission medium that uses glass or plastic fibers, rather than copper wire, to carry

modulated pulses of light; also called optical fiber.

Fibre Channel A technology for transmitting data between computer devices at data rates from 100 to 400 MBps over

optical fiber or copper. Fibre channel is optimized for connecting servers to shared storage devices and

for interconnecting storage controllers and drives.

FWM Four-wave mixing. 四波混频

G, H

Gbps Gigabits per second. 吉比特每秒

GBps Gigabytes per second. 吉位每秒

GE Gigabit Ethernet. 前兆以太网

GHz Gigahertz (one billion hertz). 吉赫兹

graded-index fiber 渐变折射率光纤

GIMM Graded Index Plasec-Cladding Fiber 渐变折射率多模(光纤)

I

ILEC Incumbent local exchange carrier. Term used to describe the primary existing carriers, formerly known

as Regional Bell Operating Companies (RBOCs); distinguished from new competitive carriers coming

out of deregulation of the telecommunications industry.

IL insertion loss 插入损耗

IP Internet Protocol. 网际协议,TCP/IP网络体系结构中的网际层协议,用以提供无连接的数据报服务

IR Intermediate reach. Distance specification for optical systems that operate effectively from 3 to 20 km.

ISO International Organization for Standardization. 国际标准化组织

ITU International Telecommunication Union. 国际电信联盟,简称国际电联ITU grid ITU 标准指定激光波长,以193.1 THz (1552.52 nm)为中心,基于100 GHz 频率间隔

IXC Interexchange carrier. 交换机间载波

J, K,L

lambda A data channel in a WDM or DWDM system assigned to a specific wavelength. Lambda and

wavelength are sometimes used interchangeably.

LAN Local area network. 局域网,一种小范围内采用的高速,低误码的网络形式。以太网,FDDI 光纤分布式数据接口和令牌网被广泛的应用在局域网技术中。并列的还有城域网MAN 和广域网WAN

Laser 激光

LD laser diode. 激光二极管

LEC Local exchange carrier. 市话载波

Local exchange center 市内交换中心

LED Light emitting diode. 光二极管

loss budget The amount of overall attenuation allowable in a system. LR Long reach. 远距离

Link restoration 链路恢复

Local record 本地纪录

Location register 位置寄存器

M

MAN Metropolitan area network. 城域网,比局域网的范围宽一些,通常在一个城市范围内,连接全球网络的长途骨干部分和接入部分。

material dispersion 材料色散

Mbps 兆比特每秒

MM fiber Multimode fiber. 多模光纤

modal dispersion 模式色散

MPLS MultiProtocol Label Switching. 多协议标签交换

MTBF Mean time between failure. 平均故障间隔时间

MUX See multiplexer. 多路复用器

N

NAS Network attached storage. Central data storage system that is attached to the network that it serves. See

also SAN.

NDSF Non-dispersion-shifted fiber. 非色散位移光纤,单模光纤的一种,零色散点在1310nm处。

nonlinearity 非线性,指电路,光电器件,光纤的信号中产生的不良因素。

NZ-DSF Non-zero dispersion-shifted fiber. 非零色散位移光纤,单模色散位移光纤的一种,在1530~1550nm区色散不为零,即G.655单模光纤,用于

1530~1550nm以外区域的信号传输,能够扩大传输带宽同时还减小光纤的非线性效应。

O

OA Optical amplifier. 光放大器

OADM Optical add/drop multiplexer. 光插/分复用器

OC Optical carrier. 光载波,为SONET 光传输定义的一系列物理协议(如OC-1, OC-3, OC-12)

optical channel spacing 光通道间隔

optical fiber fiber optic cable. 光纤

optical link loss

budget

The range of optical loss over which a fiber optic link will operate and meet all specifications,

expressed relative to the transmitter output power.

OTDR Optical time domain reflectometer. 光时域反射计,利用反射测量技术测量光波导特性的一种仪器

P

PDH Pleisiochronous Digital Hierarchy. 准同步数字系列

photodetector An optoelectronic transducer such as a PIN photodiode or avalanche photodiode.

PD photodiode 光电二极管,一种能够将光转化为电的半导体器件

photon 光子,一种电磁能量子

photonic 光电,一种用以描述A term used to describe communications using photons, analogous to electronic for electronic

communications.

physical layer 物理层,开放式系统互连参考模型的首层。全光技术例如DWDM 即是工作在物理层。

PMD Polarization mode dispersion. 偏振模式色散

POS Packet over SONET. A technology in which IP packets are mapped into SONET frames with

intervening use of an ATM layer.

protocol

transparency

Ability of systems to transport information without being aware of higher layer protocols. Such systems

are also sometimes called protocol agnostic.

PSTN Public switched telephone network. 公共交换电话网,用户提供电话业务的语音传输网,其交换中心分布在较广的地理范围内,并用通信线路连接起来。交换中心之间和交换中心与交换局之间遵守通信公司自己制定的信令系统。

R

Rayleigh scattering The scattering of light that results from small inhomogeneities of material density or composition.

refractive index 折射率

regenerator A device that regenerates optical signals by converting incoming optical pulses to electrical pulses,

cleaning up the electrical signal to eliminate noise, and reconverting them to optical pulses for output;

also called a regenerative repeater.

S

SAN Storage area network. A dedicated, centrally managed, secure information infrastructure that enables

any-to-any interconnection of servers and storage systems. See also NAS. SDH Synchronous Digital Hierarchy. 同步数字系列,由欧洲标准制定的一种采用ATM和SONET在光纤上 European standard that defines a rate and format standards for

transmission of optical signals over fiber using ATM and SONET. In contrast to PDH, SDH provides

for a synchronous multiplexing scheme. See also PDH; SONET.

short reach See SR.

SM fiber Single-mode fiber. 单模光纤,其纤芯很小,只能通过一个模式。SNR Signal-to-noise ratio. 信噪比,用于衡量信号质量的参数

SONET Synchronous Optical Network. 同步光网络,由Bellcore开发的一个接口标准,广泛应用在电信中的光纤高速同步传输

SR Short reach. Distance specification for optical systems that operate effectively up to 3 km.

step-index fiber Fiber that has a uniform index of refraction throughout

the core.

T

T-carrier Generic designator for any of several digitally multiplexed telecommunications carrier systems. The

two most common are T1, which transmits DS-1 formatted data at 1.544 Mbps, and T3, which transmits

DS-3 formatted data at 44.736 Mbps.

TDM Time-division multiplexing. 时分复用

Transponder 转发器,用在DWDM系统中,能够接受信号,并且将其转换为波长信号以便与其他波长复用。

U, W

UPSR Unidirectional Path Switched Ring. 单向通道交换环

WAN Wide area network. 广域网

waveguide 波导,一种限制和引导电磁波传输的材料介质。光纤就是波导的一个例子。

光缆的种类与结构

2.5 光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)光缆——适用于室布放的光缆。 (4)设备光缆——用于设备布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 2.5.2 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图2.11所示。

光纤种类和作用

光纤种类和作用 一.光纤的分类 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将Optical Fibe(光纤)又简化为Fiber,例如:光纤放大器(FiberAmplifier)或光纤干(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然是不可取的。光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价廉等。光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,兹将各种分类举例如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。 二.石英光纤 石英光纤是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3Pm波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO炸作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。由于它的瑞利散射很小,而且损耗也接近理论的最低值。所以多用于长距离的光信号传输。石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。 三.红外光纤 作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2pm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。红外光纤(Infrared Optical Fiber)主要用于光能传送。 例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。 四。复台光纤 复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成分玻璃比石英的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤内窥镜。 五.氟化物光纤

光纤基础知识简介

光纤简介 一、光纤概述 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。 二、光纤工作波长 光是一种电磁波。可见光部分波长围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。 三、光纤分类 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。 (2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模

光纤。 (4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。 四、单模光纤与多模光纤 光纤是一种光波导,因而光波在其中传播也存在模式问题。所谓“模”是指以一定角速度进入光纤的一束光。模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。基模是截止波长最长的模式。除基模外,截止波长较短的其它模式称为高次模。 根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散)。模分散技术限制了多模光纤的带宽和距离。单模光纤只能允许一束光传播,所以单模光纤没有模分散特性。 (1)单模光纤 单模光纤(Single Mode Fiber)的中心高折射率玻璃芯直径有三种型号:8μm、9μm和10μm,只能传一种模式的光。相同条件下,纤径越小衰减越小,可传输距离越远。中心波长为1310nm或1550nm。单模光纤用激光器作为光源。单模光纤用于主干、大容量、长距离的系统。

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

光纤分类及应用

(一)光纤的传输特性 一.衰减 1.光在光纤中传播时,平均光功率沿光纤长度方向呈指数规律减少,即: P(L)=P(0)10-(αL/10) 2.α为衰减系数,它的取值只与在光纤中传播的光线的波长有关。 3.衰减谱 石英玻璃光纤的衰减谱具有三个主要特征是: a.衰减随波长的增大而呈降低趋势。 b.衰减吸收峰与OH_离子有关。 c.在波长大于1600nm衰减的增大的原因是由微(或宏)观弯曲损耗和 石英玻璃吸收损耗引起的。 4.衰减起因 光纤中的传输光能衰减的起因是材料本身、制造缺陷、弯曲、接续等对光能的吸收和散射损耗。究其原因,如表3.1所示。 二.色散 1.由于光纤中的信号是由不同的频率成分和不同的模式成分来携带的, 这些不同的频率成分和不同的模式成分的传输速度不同,从而引起色

散。 2.在光纤中,不同速度的信号传过的距离所需的时延不同。时延差越大, 色散就越严重。因此,常用时延差表示色散程度。 3.单模光纤中只传输基模LP01,总色散由材料色散、波导色散和折射剖面 色散组成。这三个色散都与波长有关,所以单模光纤的总色散也称为 波长色散。 公式:D(λ)=D m+D w+D p 4.纯石英玻璃材料色散与波长的关系,如图所示。从图可看出,在波长 微1.29μm附近由一个零材料色散波长λ0有所移动,但移动变化甚 微,而过了λ0材料色散微正值。 材 料 色 散 ( p s / ( n m · k m ) ) 图 纯石英玻璃材料色散与波长的关系 波长(μm) 三.偏振模色散 光纤中的光传输可描述为完全时沿X轴振动和完全是沿Y轴上的振动或一些光在两个轴上的振动,如下图。每个轴代表一个偏振“模”。两个偏振模的到达时间差称为偏振色散PMD(Polarization Mode Dispersion)。 造成单模光纤中的PMD的内在原因是光纤的椭圆度和残余内应力。四.光纤的非线性效应 1.当光功率增加到一定程度时,光信号与光纤传输媒介间的非线性交互现象将会呈现。光纤的非线性可分为两类:受激散射效应和折射率扰动。 2.受激散射效应也分为两种形式:由于声光子振动而产生的受激布里渊散

光纤传输的特点优势及传输原理

光纤传输的特点优势及传输原理 优点 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。 组成部分 光源(又称光发送机),传输介质、检测器(又称光接收机)。计算机网络之间的光纤传输中,光源和检测器的工作一般都是用光纤收发器完成的,光纤收发器简单的来说就是实现双绞线与光纤连接的设备,其作用是将双绞线所传输的信号转换成能够通过光纤传输的信号(光信号)。当然也是双向的,同样能将光纤传输的信号转换能够在双绞线中传输的信号,实现网络间的数据传输。在普通的视、音频、数据等传输过程中,光源和检测器的工作一般都是由光端机完成的,光端机就是将多个E1信号变成光信号并传输的设备,所谓E1是一种中继线路数据传输标准,我国和欧洲的标准速率为2.048Mbps,光端机的主要作用就是实现电一光、光一电的转换。由其转换信号分为模拟式光端机和数字式光端机。因此,光纤传输系统按传输信号可分为数字传输系统和模拟传输系统。模拟传输系统是把光强进行模拟调制,将输入信号变为传输信号的振幅(频率或相位)的连续变化。数字传输系统是把输入的信号变换成“1”,“O”脉冲信号,并以其作为传输信号,在接受端再还原成原来的信号。当然,随着光纤传输信号的不同所需要的设备有所不同。光纤作为传输介质,是光纤传输系统的重要因素。可按不同的方式进行分类:按照传输模式来划分:光线只沿光纤的内芯进行传输,只传输主模我们称之为单模光纤(Single—Mode)。有多个模式在光纤中传输,我们称这种光纤为多模光纤(Multi-Mode)。 按照纤芯直径来划分:缓变型多模光纤、缓变增强型多模光纤和缓变型单模光纤按照光纤芯的折射率分布来划分:阶跃型光纤(Step index fiber),简称SIF;梯度型光纤(Graded index f iber),简称GIF;环形光纤(r iv er f iber);W 型光纤。 光缆:点对点光纤传输系统之间的连接通过光缆。光缆含1根光纤(称单纤),有2根光纤(称双纤),或者更多。 单、多模光纤传输设备的原理 光纤传输设备传输方式可简单的分成:多模光纤传输设备和单模光纤传输设备。

光纤种类及特点

光纤类型及特点G652光纤纤芯图片 G657光纤纤芯图片

多模光纤纤芯图片 我们常用的光纤有G652B(蓝、橙、绿、棕、灰、白、红、黑)和G657A(蓝、橙、绿、棕、灰、黄、红、紫),两种光纤主要特性的区别是光纤的弯曲半径,G652B 是R30(光纤弯曲半径不可以小于30mm),G657A是R10(光纤弯曲半径不可以小于10mm)

G652光纤的排列顺序 G657光纤的排列顺序 光纤类型知识: ITU—T建议规范分类:G.651、G.652、G.653、G.654、G.655、G.656、G.657 MMF(Multi Mode Fiber多模光纤) - OM1光纤(62.5?125um) - OM2?OM3光纤(G.651光纤)其中:OM2—50?125um;OM3—新一代多模光纤。 SMF(Single Mode Fiber单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) ◆G.651:长波长多模光纤(ITU-T G.651)50/125μm梯度多模光纤工业标准。70年代末到80年代初建立。ITU-T G.651即OM2?OM3光纤或多模光纤(50?125)。

ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ◆G.652:常规单模光纤(色散非位移单模光纤),截止波长最短,既可用于1550NM,又可用于1310NM。其特点在设计和制造时的波长在1310nm附近时的色散为零,1550nm波长时损耗最小,但色散最大。(1310nm窗口的衰减在0.3~0.4dB/km,色散系数在0~3.5ps/nm.km。1550nm窗口的衰减在0.19~ 0.25dB/km,色散系数在15~18ps/nm.km。)主要缺点是在1550波段色散系数较大,不适于2.5Gb/s以上的长距离应用。 G.652A?B是基本的单模光纤,G.652C?D是低水峰单模光纤。 ◆G.653:色散位移单模光纤。在1550nm波长左右的色散降至最低,从而使光损失降至最低。 ◆G..654:截止波长位移光纤。1550nm下衰耗系数最低(比G.652,G.653,G.655光纤约低15%),因此称为低衰耗光纤, 色散系数与G.652相同, 实际使用最少的一种光纤。主要应用于海底或地面长距离传输,比如400千米无转发器的线路。 ◆G.655:非零色散位移光纤(NZ-DSF: Non zero-Dispersion-Shifted Fiber)。G.653光纤在1550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。 第一代非零色散位移光纤,如PureMetro 光纤具有每千米色散等于或低于5ps?nm 的优点,从而使色散补偿更为简便。 第二代非零色散位移光纤,如PureGuide 色散达到每千米10ps?nm左右,使DWDM系统的容量提高了一倍。 ◆G.656:低斜率非零色散位移光纤。非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。

光缆的结构及种类

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/9118811913.html,) 光缆的结构及种类 变宝网11月21日讯 光缆是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件。它可以根据环境的不同有不同的表现形式,比如需要防水、缓冲等。 一、光缆的结构 光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。 光缆由加强芯和缆芯、护套和外护层3部分组成。缆芯结构有单芯型和多芯型两种:单芯型有充实型和管束型两种;多芯型有带状和单位式两种。外护层有金属铠装和非铠装两种。 二、光缆的种类 1.按照传输性能、距离和用途的不同,光缆可以分为用户光缆、市话光缆、长途光缆和海底光缆。 2.按照光缆内使用光纤的种类不同,光缆又可以分为单模光缆和多模光缆。 3.按照光缆内光纤纤芯的多少,光缆又可以分为单芯光缆、双芯光缆等。 4.按照加强件配置方法的不同,光缆可分为中心加强构件光缆、分散加强构件光缆、护层加强构件光缆和综合外护层光缆。 5.按照传输导体、介质状况的不同,光缆可分为无金属光缆、普通光缆、综合光缆(主要用于铁路专用网络通信线路)。 6.按照铺设方式不同,光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。

7.按照结构方式不同,光缆可分为扁平结构光缆、层绞式光缆、骨架式光缆、铠装光缆和高密度用户光缆。 三、光缆的选用 光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。一般在管道中或强制通风处可选用阻燃 但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。 3.楼内垂直布缆时,可选用层绞式光缆(Distribution Cables);水平布线时,可选用可分支光缆(Breakout Cables)。 4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。 直埋光缆埋深标准 敷设地段或土质埋深(m)备注 普通土(硬土)≥1.2

浅谈现代光纤通信传输技术的应用

龙源期刊网 https://www.360docs.net/doc/9118811913.html, 浅谈现代光纤通信传输技术的应用 作者:杨华宇 来源:《数字技术与应用》2019年第06期 摘要:本文探讨了现代光纤通信传输技术的特点,分析了光纤通信技术的应用现状,研究了现代光纤通信传输技术的应用。 关键词:光纤通信传输技术;实际应用;信号传输 中图分类号:TN929.11 文献标识码:A 文章编号:1007-9416(2019)06-0043-02 1 现代光纤通信传输技术的特点 1.1 通信传输容量较大 光纤通信技术是以光波为媒介的通信传输方式,光波的电磁波比正常的无线电波的频率高,但是波长低于无线电波的波长。从中可以看出,光纤传输技术的传输频带十分的宽,这样的带宽提高了通信过程中传送数据的能力,在一定的单位时间内,传输信息数据的人员借助光纤通信技术能够传输大容量的数据。它不仅仅具有通信传输数据容量大的特点,而且其通信传输速度非常快。 1.2 节省传输成本 目前,光纤通信传输使用的材料是石英,石英比其他的通信传输介质相比,是目前损耗最低的材料,开展跨度较大的距离中继传输时,能够较少石英材料的消耗,节省整体通信系统的建设投资。其次,在光纤的建设过程中,光纤的线芯径十分的细,大约为零点一毫米,直径也很小,如此能够节省大量的金属材料,建设设计光纤时所占用的传输空间较小。另外,光纤自身的重量非常轻,比正常的电缆要轻上好几倍,质地柔软,原材料的建设成本较低。使用光纤通信传输技术能够大大地节省了建设成本,具有经济性。 1.3 抗干扰力强,保密性较强 由于光纤是绝缘性材料,所以在通信信息传输过程中不会受到外界的干扰,而致使通信数据受损,光纤通信传输技术的数据保护性强,具有很强的抗干扰力。另外,光纤通信传输的信息数据在传输过程处于光缆之中,光缆的芯径十分地细,即便通信信息传输遇到转弯处,泄露的通信信息光波也非常地微弱,难以被人截取信号,信息几乎不可能从光纤中泄漏出去。即便是泄露了信号光波,也会被光纤表面的不透明的包皮包裹着,而致使外面的人接收不到光波信号。而且,光纤在进行传输信号的过程中,不论是存在多少的光纤,也可实现无串音干扰,这保证了光纤通信传输技术使用时通信信息的高度保密性。

光缆的种类及型

GYXTW中心束管式室外光缆,内装4-12根光纤芯,并充满油膏,松套管外纵包阻水带和轧纹钢带、外护套采用优质黑色聚乙烯,在护套内平行对称设置两根圆钢丝。该光缆全截面阻水,结构紧密、外径小、重量轻、具有良好的机械性能,低损耗、低色散、适用于数字或模拟传输通信系统的架空、管道和直埋敷设。产品优点:1、尺寸小、重量轻、使光缆具有优越的抗弯性能,方便施工作业;2、钢带铠装层增强了光缆抗侧压,防潮性能;3、两根钢丝加强件,抗拉性能好; 4、双面涂塑钢带(PSP)提高光缆的防透潮能力独特的工艺控制与优质材料的选配,使光缆具有卓越的机械性能和环境性能. 光缆技术参数: 1、参数项目参数:光缆芯数4-12芯,光缆外径mm 2、光纤纤芯直径单模9/125um;多模62/125um或50/125um,抗拉力(N)短期≥1500 ,抗侧压≥1000 ,允许弯曲半径(动态)20倍光缆外径 3、温度特性-40℃~+60℃,重量(kg/km)100-120 4、纵向阻水性能1米高水柱24h后3m试样无水渗出 5、特征重量轻、适用于架空、管道敷设。 光缆敷设方式(主要): 架空、管道 ■适用温度范围 -40℃~+60℃ ■技术参数

常用光缆规格:光缆内光纤规格分为单模与多模。单模光缆和多模光缆中还可以分为2芯光缆,4芯光缆、6芯光缆、8芯光缆、12芯光缆、24芯光缆、36芯光缆,48芯光缆、56芯光缆,72芯光缆、96芯光缆、144芯光缆等可以根据客户的需求

选用不同芯数的光缆。 光缆选用的参考要点:光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用来选择光缆的外护套、结构,在选用时应该注意以下几点: 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根和多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应该注意其阻燃、毒和烟的特性。一般在管道中和强制通风处可选用阻燃但有烟的类型,暴露的环境中应选用阻燃、无烟和无毒的类型。 3.楼内垂直布线时,可选用层绞式光缆(Distribution Cables);水平布线式,可选用可分支光缆(Breakout Cables)。 4.传输距离在2Km以内的,可选用多模光线,超过2Km可用中继或选用单模光缆。

光缆的种类与结构

光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)内光缆——适用于室内布放的光缆。 (4)设备内光缆——用于设备内布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图所示。

光纤传输技术复习要点

《光纤传输技术》复习要点 第1章 PCM30/32帧结构(帧时隙数、话路时隙和时隙数、同步时隙、信令时隙),帧周期、帧速率、时隙速率等,话路与时隙的对应关系,帧同步码和复帧同步码的重复周期;我国采用的PDH复接等级和系列(表1.1中“系列2”),相邻等级的复用关系;数字复接的基本原理(时分复用),按位置分类的3类复接方式(按位、按字节、按帧),PDH的基本按时钟关系分类的3类复接方式(同步、异步、准同步);复接过程中缓存器的作用和容量计算(公式1-1,注意公式中各个参量的物理意义计算方法);准同步复接过程包含码速调整和同步复接2个步骤。 第2章 SDH最核心的特点(同步复用、标准的光接口和强大的网管能力),SDH的主要缺陷(频带利用率不及PDH、指针调整机理复杂、软件大量应用影响系统安全性);SDH的NNI标准速率及等级(STM-N模块速率等级、各等级电信号和光信号速率);STM-N二维帧结构(9行、270N列),STM-N帧的字节长度,帧频率和帧周期(8000Hz,125μs),SDH帧大致分为3个区域(名称、作用、各自在帧中的位置以及信号速率的计算);SDH段开销的分类(复用段开销和再生段开销),两种段开销在帧中的位置以及RSOH、MSOH速率的计算;再生段和复用段开销中J0、B1、B2、K1、K2等字节的作用,BIP-x的原理及计算方法, BIP-x方法的优点。 第3章 业务信号复用成STM-N帧3个步骤:映射、定位、复用(注意次序),SDH基本复用映射结构,我国的基本复用映射结构(图3.2);SDH基本复用单元(重点是容器、虚容器),它们之间的相互关系,我国规定的3种SDH容器,这3种容器接口在带宽利用率和应用灵活性方面的特点;映射的本质是什么?如何解决映射中信号与虚容器帧之间的速率差?异步映射中的2种码速调整方法(正码速调整,正∕零∕负码速调整)及适用场合;通道开销的分类(高阶通道开销和低阶通道开销),高阶通道和低阶通道开销中的几个重要字节(J1、J2、B3、V5的b1~b2等)的作用;SDH的两类指针(AU指针和TU指针),指针的作用;AU-4指针(AU-4 PTR)的组成,新数据标志NDF的作用与判读,AU-4 PTR偏移量首地址位置(行、列)与指针值之间的关系,AU-4 PTR偏移单位(3个字节),AU-4 PTR取值范围(0~782);AU-4指针调整规则;发送端根据VC-4帧速率与AUG帧速率的相对关系决定指针调整方向;根据指针调整规则写出发送端AU-4指针值,根据接收端解释规则如何写出接收端AU-4指针值;SDH基本复用方式(按字节间插复用)。 第4章 多业务传送平台(MSTP)的技术基础、应用领域,目前承担的主要业务;MSTP的关键技术;SDH 传送数据业务的3种主要封装技术;基于LAPS协议的EoS的数据帧封装;PPP/HDLC、LAPS的帧定界方法, LAPS协议封装中的透明性操作(发送端和接收端分别如何操作);GFP帧定界方式;3种主要封装技术主要性能比较;级联的基本概念,两种级联方式,两种级联方式的表示方法,共同点和不同点;利用虚级联实现各种速率以太网信号的映射;LCAS的作用以及与虚级联的关系;LCAS的基本思想,LCAS 是如何保证收发两端容量变化的同步。

光纤传输原理

光纤,不仅可用来传输模拟信号和数字信号,而且

: 综合布线系统中使用的光纤为玻璃多模850nm波长的 其纤芯和包层由两种光学性能不同的介质构成。内部的介质对光的折射率比环绕它的介质的折射率高。由物理学可知,在两种介质的界面上,当光从折射率高的一侧射入折射率高的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。只有那些初始入射角偏小的光线才有折射发生,并且在很短距离内就被外层物质吸收干净。

4、光纤传输的特点优势及传输原理 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。

光纤结构和基本原理

光纤基本结构及原理 2011-08-16 12:04 2.6.1 光纤通信的概念与基本原理 多种多样的通信业务迫切需要建立高速率的信息传输网。在传输网,特别是骨干网中,高速数字通信的速率已迈向每秒G(109)比特级,正在向T(1012)比特级迈进。要实现这样高速的数字通信,依靠无线媒质或是以传统电缆为代表的有线媒质均是不可想象的。这一难题直到光纤作为一种传输媒质被人们发现之后才得以破解。光纤的潜在容量可达数百T,要比传统电缆的容量至少高出5个数量级。 纵观通信发展史,不难发现,人们一直在不断开拓电磁波的各个频段,把如何利用电磁波作为通信技术的重要研究方向。在大学物理课程中我们已经学到,光可以看作是可见光波段的电磁波。因此,开发光波作为通信的载体与介质是很自然的。在光通信的发展历史中,两大主要的技术难点是光源和传输介质。在上世纪60年代,美国开发了第一台激光器,相对于其他普通光源,激光器具有亮度高、谱线窄、方向性好的特点,可以产生理想的光载波。另一方面,激光如果在大气中传播,会受到变幻无常的气候条件的影响。因此人们设想利用可以导光的玻璃纤维——光纤进行长距离的光波传输。1970年,美国康宁公司首次研制成功损耗为20dB/1km的石英玻璃光纤,达到了实用水平。目前实用的光纤直径很小,既柔软又具有相当的强度,是一种理想的传输媒质。目前,在朗迅(Lucent)、北电(Nortel)、阿尔卡特(Alcatel )、西门子(Siemens)等公司的实验室中,光纤传输技术已经达到数千公里无中继的先进水平。 光纤通信的定义:光纤通信是以光波为载频,光导纤维为传输媒介的一种通信方式。光纤通信一般在发送方对信息的数字编码进行强度调制,在接收端以直接检波的方式来完成光/电变换。 2.6.2 光纤的工作窗口 1.工作窗口的定义 光波可以看作是电磁波,不同的光波就会有不同的波长与频率。我们知道,透明的彩色玻璃之所以有颜色,是因为它只允许一种颜色的光波通过,而其他颜色的光波通过较少。石英光纤也具有类似的选择特性,对特定波长的光波的传输损耗要明显小于其它波长的光波,

光纤的分类与特点

光纤的分类与特点 姓名:吴卉班级:国际学院09级08班学号:09212965 光纤的简介 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。在通讯中,光纤指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。 利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。 另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。 就在刚刚公布的2009年度诺贝尔物理学奖获得者中,有“光纤之父”的华裔科学家高锟,凭借在光纤领域的卓著研究而获得此殊荣。 光纤的分类及其特点 光纤主要是从工作波长、折射率分布、传输模式、原材料和制造方法上进行分类的。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。 红外光纤主要用于光能传送。例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。 (2)折射率分布:突变型和渐变型光纤。 突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

光纤光缆活动连接器的基本结构及光纤熔接机的种类

光纤光缆活动连接器基本上是采用某种机械和光学结构,使两根光纤的纤芯对准,保证90%以上的光能够通过,目前有代表性并且正在使用的有以下几种。 1.套管结构 这种连接器由插针和套筒组成。插针为一精密套管,光纤固定在插针里面。套筒也是一个加工精密的套管(有开口和不开口两种),两个插针在套筒中对接并保证两根光纤的对准。其原理是:当插针的外同轴度、插针的外圆柱面和端面以及套筒的内孔加工得非常精密时,两根插针在套筒中对接,就实现了两根光纤对准。 由于这种结构设计合理,加工技术能够达到要求的精度,因而得到了广泛应用。FC,SC等型号的连接器均采用这种结构。 2.双锥结构 这种连接器的特点是利用锥面定位。插针的外端面加工成圆锥面,基座的内孔也加工成双圆锥面。两个插针插入基座的内孔实现纤芯的对接。插针和基座的加工精度极高,锥面与锥面的结合既要保证纤芯的对准,还要保汪光纤端面问的间距恰好符合要求。它的捕针和基座采用聚合物压成型,精度和一致性都很好。这种结构由AT&T创赢和采用。 3. v形槽结构 它的对中原理是将两个插针放人V形槽基座中,再用盖板将插针压紧,使纤芯对准。这种结构可以达到较高的精度。其缺点是结构复杂,零件数量多,除荷兰菲利浦公司之外,其他国家不采用。 4. 球面定心结构 这种结构由两部分组成,一部分是装有精密钢球的基座,另一部分是装有圆锥面(相当于车灯的反光镜)的插针。钢球开有一个通孔,通7L的内径比插针的外径大。当两根插针插入基座时,球面与锥面接合将纤芯对准,并保证纤芯之间的问距控制在要求的范围内,这种设计思想是巧妙的。fH零件形状复杂,加工调整难度大。目前只有法国采用这种结构。

光纤通信基础复习题及答案

光纤通信基础复习题及答案 1.光通信的发展大致经历几个阶段? 光通信的发展大致经历如下三个阶段 可视光通信阶段:我国古代的烽火台,近代战争中的信号弹、信号树,舰船使用的灯塔、灯光信号、旗语等,都属于可视光通信。 大气激光通信阶段:光通信技术的发展应该说始于激光器的诞生。1960年美国人梅曼发明了第一台红宝石激光器,使人们开始对激光大气通信进行研究。激光大气通信是将地球周围的大气层作为传输介质,这一点与可视光通信相同。但是,激光在大气层中传输会被严重的吸收并产生严重的色散作用,而且,还易受天气变化的影响。使得激光大气通信在通信距离、稳定性及可靠性等方面受到限制。 光纤通信阶段:早在1950年,就有人对光在光纤中的传播问题开始了理论研究。1951年发明了医用光导纤维。但是,那时的光纤损耗太大,达到1000 ,即一般的光源在光纤中只能传输几厘米。用于长距离的光纤通信几乎是不可能。1970年,美国康宁公司果然研制出了损耗为20的光纤,使光纤远距离通信成为可能。自此,光纤通信技术研究开发工作获得长足进步,目前,光纤的损耗已达到0.5(1.3μm)0.2(1.55μm)的水平。 2. 光纤通信技术的发展大致经历几个阶段? 第一阶段(1966~1976)为开发时期. 波长: λ= 0.85, 光纤种类: 多模石英光纤, 通信速率: 34~45, 中继距离: 10. 第二阶段(1976~1986)为大力发展和推广应用时期.

波长: λ= 1.30, 光纤种类: 单模石英光纤, 通信速率: 140~565, 中继距离: 50~100. 第三阶段(1986~1996)以超大容量超长距离为目标,全面推广及开展新技研究时期. 波长:λ= 1.55, 光纤种类: 单模石英光纤, 通信速率: 2.5~10, 中继距离: 100~150. 3.光通信基本概念: 光通信:利用光波进行信息传输的一种通信方式。 光纤通信:利用光导纤维作为光波传输介质的一种通信方式。 光波导:传输光波的介质。例如光纤。 光纤通信的三个窗口: 0.85 1.30 1.55. 4.推导光纤数值孔径公式 称之为光纤的数值孔径。是反映光纤扑捉光线能力大小的一个参数。 = √n12- n22 图2-3 光波在光纤子午截面内的传播 由图可知:

相关文档
最新文档