求定积分的四种方法

求定积分的四种方法
求定积分的四种方法

定积分的四种求法

定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法

例1 用定义法求2

30x dx ?的值.

分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.

解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n

. (2)近似代替:△32()i i i S f x x n ξ??=?=? ???

(3)求和:33

111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ?????

??∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ???????????L =4

43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+?

?L =224(21)lim n n n n

→∞++==4. ∴2

30x dx ?=4..

评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.

二、微积分基本定理法

例2 求定积分2

21(21)x x dx ++?的值.

分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2

21x x ++的一个原函数是y =3

23x x x ++. 所以.2

2

1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.

三、几何意义法

例3 求定积

分1

1dx -?的值.

分析:利用定积分的意义是指曲边梯形的

面积,只要作出图形就可求出.

:1

1dx -?表示圆x 2+y 2=1在第一、二象限的上半圆的面积.

因为2S π=

半圆,又在x 轴上方. 所

以1

1dx -?=2

π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.

四、性质法

例4 求下列定积分: ⑴44tan xdx π

π-?;⑵22sin 1

x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.

解:由被积函数tan x 及22sin 1

x x x +是奇函数,所以在对称区间的积

值均为零.

所以⑴ 4

4

tan xdx π

π-?=0; ⑵22sin 1

x x dx x ππ-+?=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -?=20()a f x dx ?;②当f (x )为奇函数时,()a a f x dx -?=0.

小结

通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

参考文献:

[1]《数学分析》上册(第二版)复旦大学数学系编.高等教育出版社,

[2]《数学分析》下册(第二版)复旦大学数学系编.高等教育出版社,

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

积分不等式的若干证明技巧

题目:积分不等式的若干证明技巧 学院:数学科学学院 专业班级:数学07-4实验班 学生姓名:努尔艾拉.阿西木 指导教师:塔实甫拉提副教授 答辩日期:2011年5月10日 新疆师范大学教务处

目录 1引言 (1) 2 利用有些定义证明积分不等式 (1) 2.1利用定积分的定义证明积分不等式 (1) 2.2利用积分和及凸函数的性质证明积分不等式 (2) 3 利用函数的单调性证明积分不等式 (4) 4利用微分中值定理证明积分不等式 (4) 5利用积分中值定理证明积分不等式 (6) 6利用一些基本不等式证明积分不等式 (7) 7利用泰勒展开式证明积分不等式 (7) 8利用将单积分化为重积分的方法 (8) 9利用分部积分法来证明积分不等式 (9) 10 结论 (10) 参考文献: (11) 致谢 (12)

积分不等式的若干证明技巧 摘要:不等式是高等数学和近代数学分析的重要内容之一,它反映了各变量之间很重要的一种联系。论证不等式的方法很多,本文的目的主要是利用徽积分学原理归纳、总结“高等数学”中证明积分不等式的常用方法.由于积分具有较大的灵活性,故积分不等式的证明往往富有很强的技巧性,是理工科学生学习的一个难点,以下我们仅从讨论过程中的关键步骤出发,大致地分成若干种方法,介绍有关证题的技巧和规律。 关键词:积分不等式,积分中值定理;Rolle中值定理;Cauchy中值定理;Lagrange中值定理 Integral inequality of several proof skills Abstracts:inequality is higher mathematics and the important content of modern mathematics analysis, it reflects the one between the variables a contact is very important. Demonstrates many methods, this paper the inequality in the main purpose of the principle is to use badge integral calculus "advanced mathematics synthesized and summarized in" the commonly used method proved integral inequality. Because integral has greater flexibility, so integral inequality proof often rich strong skilled, an engineering student learning a difficulty, below we only from a critical step in discussion, starting into several ways roughly, introduces relevant papers topic the skills and law. Keywords: integral inequality, integral mean-value theorem; Rolle mid-value theorem; Cauchy mid-value theorem; Lagrange mid-value theorem 。

定积分测试题及答案

定积分测试题及答案 班级: 姓名: 分数: 一、选择题:(每小题5分) 1.0=?( ) A.0 B.1 C.π D 4π 2(2010·山东日照模考)a =??02x d x ,b =??02e x d x ,c =??02sin x d x ,则a 、b 、c 的大小关系是( ) A .a

8.函数F (x )=??0 x t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0和最小值-323 C .有最小值-323,无最大值 D .既无最大值也无最小值 9.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=??1 x 1t d t ,若f (x )

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

不定积分练习题及答案

不定积分练习题 2 11sin )_________ 2 x d x -=?一、选择题、填空题:、( 2 2()(ln )_______x e f x x f x dx =?、若是的原函数,则: 3sin (ln )______x d x =?、 2 2 2 4()(tan )sec _________; 5(1,1)________; 6'()(),'()_________;1() 7(),_________;1 8()arcsin ,______() x x x e f x f x xd x d x y x x F x f x f a x b d x f e f x d x c d x x e xf x d x x c d x f x --===+== +==+=?? ??? ? ? 、已知是的一个原函数,则、在积分曲线族 中,过点的积分曲线是、则、设则、设 则____; 9'(ln )1,()________; 10()(,)(,)()______;()()()()11()sin sin ,()______; 12'()(),'()(),()_____()() ()() ()(f x x f x f x a b a b f x A B C D xf x d x x x xd x f x F x f x x f x f x d x A F x B x C x κ??=+== - = ===???、则、若在内连续,则在内必有导函数必有原函数必有界 必有极限 、若 则、若则)()()()c D F x x c ?+++ 13()[()]() ()[()]()() ()() () ()()d A d f x dx f x B f x dx f x dx d x C df x f x D df x f x c === = +????、下列各式中正确的是: (ln )14(),_______ 11() ()ln () () ln x f x f x e dx x A c B x c C c D x c x x -==++-+-+? 、设则:

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

最新定积分及应用61887

定积分及应用61887

仅供学习与交流,如有侵权请联系网站删除 谢谢24 第六章 定积分及其应用 习题6-1 1、利用定积分的定义计算下列定积分: (1) ?-2 1 xdx ; 解:①令]2,1[)(-∈=C x x f ,因此]2,1[)(-∈R x f , ②取?为]2,1[-的n 等分,此时有 ]31,)1(31[],[1n i n i x x i i i +--+-==?-,n x i 3=?=?,.,,2,1n i = ③取i i i n i x ?∈+-==31ξ,于是 )3(33)31()(],[11 1∑∑∑===+-=+-=?=?n i n i n i i i i n n n n n i x f S ξξ 2 )1(932++-=n n n , ④2 3293]2)1(93[lim ],[lim 20||||2 1 =+-=++-=?=∞→→?-?n n n S xdx n ξ. (2) ?1 0 dx e x . 解:①令]1,0[)(C e x f x ∈=,因此]1,0[)(R x f ∈, ②取?为]1,0[的n 等分,此时有 ],1[],[1n i n i x x i i i -==?-, n x i 1=?=?,.,,2,1n i =

仅供学习与交流,如有侵权请联系网站删除 谢谢24 ③取i i i n i x ?∈==ξ,于是 ∑∑∑ =====?=?n i n i n i n i n i i i e n n e x f S 11111)(],[ξξ, ④n n n n i n i n x e e e n e n S dx e 11 10||||1 0 1 11lim )1(lim ],[lim --==?=∞→=∞→→?∑?ξ 11lim )1(1 1 lim )1(01-=--=--=→∞→e e t e e n e t t n n . 2、利用定积分的几何意义,说明下列等式: (1)121 0 =?xdx ; 解:因x y 2=,1=x 及0=y 围成的三角形的面积为1, 因此由定积分的几何意义知121 0 =?xdx . (2)411 0 2π=-?dx x ; 解:因圆形122=+y x 的面积为π,那么122=+y x ,0=x 及0=y 围 成的是圆形在第一象限的部分,其面积当然为4 π,因此由定积分的几何意义知 4 11 0 2π=-?dx x . (3)0sin =?-π πxdx ;

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

积分不等式的证明及应用论文

广西科技大学毕业论文 题目:积分不等式的证明及应用 英文题目:The integral inequality proof and application.所在学院:理学院 所在专业:信息与计算科学 学号:200900901071 作者姓名:朱伟 指导老师:张明俊 二零一三年五月

摘要 积分不等式是学习高等数学中的一个重要内容,在数学分析中的应用也很广泛,也经常会在考研试卷中出现.有很多积分不等式的证明方法,一些方法综合性和技巧性也很强。利用导数和积分的相关知识去证明不等式,可以降低技巧性,使证明的思路变得简单,在此总结出可用于证明不等式的知识点。文中涉及到的知识有积分不等式、柯西不等式、拉格朗日中值定理、泰勒公式等高等数学中的内容。 【关键词】积分不等式、函数、拉格朗日中值定理、柯西不等式、泰勒公式

Abstract Mathematical analysis is an important information and calculation science specialized basic course,integral inequality is important content of mathematical analysis,using the integral inequality can solve many problems,thus the application of integral inequality is very wide.Proof of integral inequality and applications has always been a difficulty in mathematical analysis,it's proved that erected a bridge for different branches of mathematics,greatly improved our creative thinking.It's proof and application is also very cleverly,can solve some difficult problems.So,a deep understanding, to grasp the method of integral inequality proof, and its different applications in mathematical analysis,can improve our understanding of theoretical knowledge and application,at the same time also is good for our future study,to improve our thinking ability, innovation ability, and skill also has the very big help. 【Key words】Integral inequality, Probability mass function, Lagrange's mean value theorem, Cauchy inequality, Taylors formula.

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)221x y = 与822=+y x (两部分都要计算) 2)x y 1= 与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3cos =,t a y 3sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积

2、求对数螺线θρae =()πθπ≤≤-及射线πθ=所围成的图形的面积 3、求由曲线x y sin =和它在2π =x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -= 33 3上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3cos =,t a y 3sin =的全长

8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm ) 成正比,即:kS =→F (k 是比例常数),如果把弹簧原长拉伸6cm , 计算所作的功 9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边 与水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022>=p px y 与直线p y x 2 3=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用 【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分 不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。 【关键词】积分不等式 Schwarz 不等式 Ho .. lder 不等式 Gronwall 不等式 Young 不等式 1 引言 在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如2 1 0x e dx -?),这时我们只能用其它方法对积分值进行估计,或近似计 算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1 '20()f x dx ?),因此我们希 望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式. ? ? ≤ 2 1 2 1 ln ln xdx x xdx x , ()() 2 2 ()cos ()sin 1b b a a f x kxdx f x kxdx +≤? ? 都是积分不等 式. 2积分不等式的证明方法 2.1 定义法 我们根据定积分的定义,把积分区间n 等分,得出积分和,再由离散型式子,得出积分和之间的大小关系,再令∞→n ,取极限即可. 例1设函数)(x f 在区间 []0,1上可积 .试证明有不等式1 12 00 ()()f x dx f x dx ≤ ?? . 证 先用Jensen 不等式法证明不等式 : 对 R x x x n ∈?,,,21 , 有不等式

专升本高等数学 第五章定积分及其应用

第五章 定积分 【考试要求】 1.理解定积分的概念和几何意义,了解可积的条件. 2.掌握定积分的基本性质. 3.理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法. 4.掌握牛顿——莱布尼茨公式. 5.掌握定积分的换元积分法与分部积分法. 6.理解无穷区间广义积分的概念,掌握其计算方法. 7.掌握直角坐标系下用定积分计算平面图形的面积. 【考试内容】 一、定积分的相关概念 1.定积分的定义 设函数 ()f x 在[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=, 把区间[,]a b 分成n 个小区间01[,]x x ,12[,]x x ,,1[,]n n x x -, 各个小区间的长度依次为1 10x x x ?=-,221x x x ?=-,,1n n n x x x -?=-.在 每个小区间1[,]i i x x -上任取一点i ξ (1i i i x x ξ-≤≤) ,作函数值()i f ξ与小区间长度i x ?的乘积()i i f x ξ? (1,2, ,i n =),并作出和1 ()n i i i S f x ξ==?∑. 记 12max{,,,}n x x x λ=???,如果不论对[,]a b 怎样划分,也不论在小区间 1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么称这个极 限I 为函数 ()f x 在区间[,]a b 上的定积分(简称积分),记作 ()b a f x dx ?,即

1 ()lim ()n b i i a i f x dx I f x λξ→===?∑? , 其中 ()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限, b 叫做积分上限,[,]a b 叫做积分区间. 说明:定积分的值只与被积函数及积分区间有关,而与积分变量的记法无关,也就是说 ()()()b b b a a a f x dx f t dt f u du ==? ??. 2.定积分存在的充分条件(可积的条件) (1)设 ()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上可积. (2)设 ()f x 在区间[,]a b 上有界,且只有有限个间断点,则()f x 在区间[,]a b 上可积. 说明:由以上两个充分条件可知,函数()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上 一定可积;若 ()f x 在[,]a b 上可积,则()f x 在区间[,]a b 上不一定连续,故函数() f x 在区间[,]a b 上连续是 ()f x 在[,]a b 上可积的充分非必要条件. 3.定积分的几何意义 在区间[,]a b 上函数 ()0f x ≥时,定积分()b a f x dx ?在几何上表示由曲线 ()y f x =、两条直线x a =、x b =与x 轴所围成的曲边梯形的面积. 在区间[,]a b 上 ()0f x ≤时,由曲线()y f x =、两条直线x a =、x b =与x 轴 所围成的曲边梯形位于x 轴的下方,定积分()b a f x dx ? 在几何上表示上述曲边梯形面积的 负值. 在区间[,]a b 上 ()f x 既取得正值又取得负值时,函数()f x 的图形某些部分在x 轴 的上方,而其他部分在x 轴的下方,此时定积分 ()b a f x dx ? 表示x 轴上方图形的面积减去 x 轴下方面积所得之差. 二、定积分的性质

高数 定积分的应用

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均 值等)。 教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面 面积为已知的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6.1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) ( 是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以

[a , b ]为积分区间的定积分: ?=b a dx x f A )( . 一般情况下, 为求某一量U , 先将此量分布在某一区间[a , b ]上, 分布在[a , x ]上的量用函数U (x )表示, 再求这一量的元素dU (x ), 设dU (x )=u (x )dx , 然后以u (x )dx 为被积表达式, 以[a , b ]为积分区间求定积分即得 ?=b a dx x f U )(. 用这一方法求一量的值的方法称为微元法(或元素法). §6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.

数学分析(2):定积分计算与应用

数学分析(2):定积分计算与应用 1、4 01cos 2x dx x π +? 2 、 ln 0? 3 、 (211x dx -+? 4 、1? 5、32122dx x x -? 6、21(1)dx x x +∞+? 7、 21arctan x dx x +∞? 8 、10? 9、120ln(1)1x I dx x +=+? 10 、设1 20()3()f x x f x dx =,求()f x . 11、设21,0(),0x x x f x e x -?+<=?≥? ,求30(2)f x dx -? 12、求由曲线x y xe =与直线y ex =所围成的图形的面积. 13 、求曲线y =l ,使该曲线与切线l 及直线0,2x x ==所围成平面图形面积最小. 14 、求函数2 y = 1[2上的平均值. 15、设平面图形A 由222x y x +≤与y x ≥所确定,求图形A 绕直线2x =旋转一周所得旋转体的体积 16、求摆线1cos sin x t y t t =-?? =-?一拱()02t π≤≤的弧长.

17、设有曲线y =x 轴围成的平面图形绕x 轴旋转一周所得到的旋转体的表面积. 18、设xOy 平面上有正方形{(,)01,01}D x y x y =≤≤≤≤及直线:l x y t +=.(0)t ≥ 若()s t 表示正方形D 位于直线l 左下方部分的面积,试求 0()(0)x S t dt x ≥?. 19、设()0sin x t f x dt t π=-?,计算()0f x dx π?. 20、设()f x 在[]0,a 上具有连续的导数,且(0)0f =. 证明:20()2 a Ma f x dx ≤?,其中{}'max ()a x b M f x ≤≤=. 21、设()f x 在[0,1]上有二阶连续导数,证明: 1 10011()[(0)(1)](1)()22f x dx f f x x f x dx ''=+--??

定积分练习题及答案(基础)

第六章 定积分练习题及答案 一、填空题 (1) 根据定积分的几何意义,?-=+2 1)32(dx x 12 =-?dx x 2 024π ,=?π0 cos xdx ____0____ (2)设?-=1110)(2dx x f ,则?-=1 1)(dx x f _____5____, ?-=1 1)(dx x f ____-5___,?-=+1 1]1)(2[51dx x f 512 . (3) =?102sin dx x dx d 0 (4) =?2 2sin x dt t dx d 4sin 2x x 二、选择题 (1) 定积分?12 21ln xdx x 值的符号为 (B ) .A 大于零 .B 小于零 .C 等于零 .D 不能确定

三、计算题 1.估计积分的值:dx x x ?-+3 121 解:设1)(2+=x x x f ,先求)(x f 在]3,1[-上的最大、最小值, ,) 1()1)(1()1(21)(222222++-=+-+='x x x x x x x f 由0)(='x f 得)3,1(-内驻点1=x ,由3.0)3(,5.0)1(,5.0)1(==-=-f f f 知,2 1)(21≤≤- x f 由定积分性质得 221)()21(2313131=≤≤-=-???---dx dx x f dx 2.已知函数)(x f 连续,且?- =10)()(dx x f x x f ,求函数)(x f . 解:设 a dx x f =?10)(,则a x x f -=)(,于是 a adx xdx dx a x dx x f a -=-=-==????2 1)()(1 0101010, 得41=a ,所以4 1)(+=x x f . 3. dx x x x ?++1 31 222) 1(21 解:原式=dx x x dx x x x x )111()1(1213 121312222++=+++?? 3112+-= π 4. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 5. ?--1 12d x x x 解:原式=dx x x dx x x )()(1 020 12??-+-- 16 165]3121[]2131[10320123=+=-+-=-x x x x 6. ?-1 02dx xe x

积分不等式的证明方法

摘要 在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结. 关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

ABSTRACT When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality,integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized. Key words: Integral Inequality, Definite Integral,Mean Value Theorem, Cauchy-Schwarz Inequality, Monotonicty

相关文档
最新文档