CCD视频信号处理器AD9844A与C8051F231的模拟SPI接口设计

CCD视频信号处理器AD9844A与C8051F231的模拟SPI接口设计
CCD视频信号处理器AD9844A与C8051F231的模拟SPI接口设计

收稿日期:2009-07

作者简介:王丹丹(1977 ),女,讲师,研究方向为检测技术与自动化装置。

图1 AD 9844A 的内部结构图

CCD 视频信号处理器AD9844A 与C8051F231

的模拟SPI 接口设计

王丹丹

(武汉工程大学电气信息学院,湖北武汉430070)

摘要:介绍CCD 信号处理芯片AD9844A 与单片机C8051F231的接口设计。AD 9844A 是AD I 公司的一款片内含有12b it A /D 转换器的专用于视频信号处理的芯片,文章重点介绍了A D9844A 的可编程特性及其与单片机的软件模拟SP I 同步串口间的接口设计。

关键词:A /D 转换;CCD 信号处理;软件模拟SP I 同步串口

中图分类号:TM 930 文献标识码:B 文章编号:

1006-2394(2010)01-0050-03

Soft S PI Interface D esign B etween CCD Si gnal Processor AD9844A and C8051F231

WANG Dan dan

(W uhan Instit ute o f T echno logy ,W uhan 430070,Chi na)

Abst ract :Th is paper is about the interface bet w een MCU c8051f231and CCD signal processor AD9844A.The

AD9844A is a co m plete analog si g na l processor for CCD app lications .It features a 20MH Z si n g l e channe l architecture and 12 b itA /D converter .The purpose of th is paper is to present the prog ra mm ab l e features of the AD9844A and its so ft SPI i n terface w it h the MC U through a 3 w ire serial por.t

K ey w ords :ADC ;CCD si g nal processi n g ;soft SPI synchr onous seri a l i n terface

1 芯片介绍

1.1 CCD 信号处理器AD9844A

AD9844A 是美国ADI(Analog Dev ices Inc)公司的一款面向CCD 的完善的低功耗单通道模拟信号处理器。AD9844A 以其高精度、高速度的模数转换能力,以及它所具有的完善的性能结构,广泛的应用在工业控制、医疗仪器、科学研究等领域的高精度图像采集系统中。

AD9844A 可以工作在3种模式下,对面阵CCD 信号、模拟视频信号和普通的交流信号进行A /D 转换。AD9844A 的内部结构图如图1所示。从图中可知AD9844A 有3条输入通道:CCDI N 、AUX1、AUX2,分别为CCD 原始信号、不需要CDS (相关双采样)的

交流信号和复合视频信号的接口引脚。无论哪条通道进来的信号最后都要通过MUX 进入A /D 转换通道,通过内部寄存器的配置,AD9844A 工作在其中一

种采集通道下。本系统中,AD9844A 工作于CCD 模式下。

50 仪表技术 2010年第1期

图2 AD 9844A CCD 模式下功能模块图 AD9844是一款可编程的视频处理芯片,芯片内部寄存器的工作方式通过一个3线串口编程得到。可编程的要素包括增益调节器、黑电平调节器、输入设置和掉电模式。AD9844A 的数字接口控制输入端属于SPI 类型的同步串行接口:SL (串行接口加载脉冲)、SDATA(串行接口数据输入)、SCK (串行接口时钟)。串口选通信号SL 有效时C8051单片机经SDATA 输入控制字,实现对AD9844A 内部寄存器的初始化设置;控制字的输入时钟SCK 由C8051的时钟信号提供。模拟信号的采样、保持及转换由同步时钟发生器提供同步脉冲SHD (数据采样和保持脉冲)、SHP (参考电压输入脉冲)实现同步,而时钟DATACLK 是图像处理单元对数字视频信号的读取与AD9844A 的输出进行同步的信号。芯片3V 供电,A /D 转换参考电压为2V 。1.2 C8051F231单片机

C8051F2xx 系列单片机是一种高集成度的混合信号系统。系统集成在一块单片机芯片上,可带有一个真正的8位多通道模数转换器,或不含ADC 。每个模块有一个与8051兼容的微控制器内核,它具有8KB 的FLAS H 存储器,同时也有硬件实现的UART 和SPI 串行接口。2 接口设计

2.1 AD9844A 的基本工作过程

AD9844A 具有采样速度高达20MH z 的单通道输入体系结构,这种设计能采样并处理隔行扫描CCD 阵列后所得的输出信号(电信号序列信息)。CCD 模式下功能模块图如图2所示,输入到AD9844A 的CCD 信号先经过一个0.1 F 的耦合电容实现直流电平箝位,然后经过相关双采样(CDS)、输入箝位(input offset C la m p)、模拟增益放大器(VGA )、黑电平箝制(optica l black cla m p),最后经12b it A /D 转换器输出数字视频

信号,其转换结果输出给图像处理单元进行处理。

AD9844A 控制增益大小、偏移程度及其时序控制的实现是对其内部寄存器的工作方式进行适当设置得到的,而这一工作具体由单片机C8051F231通过一个3线串行接口对AD9844A 编程实现。CCD 器件及AD9844A 的时钟信号均由一个系统的同步时钟发生器提供。图3是系统应用图。

图3 系统应用图

2.2 C8051的软件SPI 串行外设接口

本系统采用软件模拟实现SPI 外设接口。如图4所示,单片机作为主器件,AD9844A 作为从器件,同步时钟SC K 由单片机P2.0引脚发出,P2.2引脚为数据输出脚MOSI 。单片机的从器件选择NSS 引脚被抬高,将P2.4通用I /O 管脚作为AD9844A 的片选信号即从器件选择信号。单片机启动数据传输,SCK 上提供串行时钟,同时在MOSI 线串行移出数据,这样C8051就可以实现与AD9844A 之间的通信,完成对AD9844A 内部寄存器的初始化配置。 图4 硬件接口图

3 软件设计

在本系统中,AD9844A 工作于CCD 模式,如表1内部寄存器图表所示,内部操作寄存器、VGA 增益寄存器、箝位电压及采样增益寄存器的设置均为默认值。本设计所要做的是配置控制寄存器,选择同步时钟的极性,实现与时钟发生器的时钟同步,即采样时钟

SHP /S H D 为高电平触发采样周期,箝位时钟CLP 为低电平有效,数据输出时钟DATACLK 为下降沿触发。

51 2010年第1期 仪表技术

表1 内部寄存器图表

寄存器名称

地址

数据位

A0

A1A2D0

D1

D2

D3

D4D5D6D7D8D9D10操作000通道选择CCD /AUX 掉电模式

软件补偿

箝位控制

1

00VGA 增益100LSB M SB

X 箝位电压010LSB M SB

X X X 控制11000

CDS 增益

SHP /SHD /DATA /CLP

时钟极性选择

00三态X 采样增益

1

LSB

M SB

X

X

X

X

X

图5 串行接口写操作

图5为向内部寄存器写数据的时序,需要注意的是:RNW 为低电平时写数据,为高电平时读数据;TEST b it 为内部测试位,必须设置为低电平;只有在SL 为低电平时串口数据配置才有效,系统配置更新发生在SL 上升沿之后;在读数据时,SDATA 在SCK 的第5个下降沿后有效,在每个SC K 的下降沿时变换。以下就是通信程序:

SCK EQU P2.0 M OSI EQU P2.2SL EQU P2.4

;P2.0、P2.2、P2.4设置为推挽输出ADCONFI G:M OV A,#60h

;SDATA 的前8位输出寄存器地址、RN W 位、TE ST 位、数据位的低3位

M OV R6,#08SETB SCK SETB SL CLR SL

LOOP1:

CLR SCK RLC A M OV M OS I ,C SETB SCK DJ NZ R6,LOOP1M OV A,#50h

;SDATA 的后8位输出数据位的高8位,设置时钟极性,控制寄存器D4位及D5位为1

M OV R6,#08

LOOP2:

CLR SCK RLC A M OV M OS I ,C SETB SCK DJ NZ R6,LOOP2CLR SCK SETB SL

5 结束语

本文介绍了一种专用于CCD 图像处理的芯片AD9844A 及其与单片机的串行接口设计。读者可以

根据自己的需要选用其他的ADC 来实现上述的接口设计。使用这种方案后,在实现采集数据量相当大的图像处理系统或是处理一些高速数据采集系统时,可以大大降低系统软硬件控制复杂度。参考文献:

[1]李刚,林凌.与8051兼容的高性能、高速单片机

c8051Fxxx[M ].北京:北京航空航天大学出版社,2001.

(许雪军编发)

(上接第49页)3 结束语

本文提出了一种可重构智能仪器的设计思想并设计了三个功能模块,将其配置文件都下载到GW 48EDA 系统试验箱中,通过切换不同的按键,给FPGA 配置不同的配置程序,完成了FPGA 硬件功能的测试,从而实现了所要求的功能,验证了该方案的可行性。参考文献:

[1]徐惠萍.可重构技术综述[J].甘肃科技,2007(10):158-159.

[2]温淑鸿,崔慧娟.A LTERA FPGA 在微处理器系统中的应用

配置[J].电子技术应用,2005(1):67-68.

(丁云编发)

52 仪表技术

2010年第1期

SPI接口设计与实现

SPI接口设计与实现 SPI(SerialPeripheralInterface)总线是一种同步串行外设接口,它 可以使MCU与各种外围设备以串行方式进行通信以交换信息。SPI总线应用广泛,已经成为很多器件的标准配置,可以直接和各个厂家生产的 多种标准外围器件直接接口。其它常用的串行接口还有I2C、UART这 两种接口,这三种接口互有优缺点。与I2C接口相比,SPI接口速度更快、协议更简单、并且是全双工的,但连线也相对多一些。与UART接口相比,SPI更灵活,因为其使用主设备的时钟进行同步,所以两个比特之间 的时间间隔可以是任意的。在点对点的通信中,SPI接口不需要进行寻 址操作,且为全双工通信,显得简单高效。 1SPI总线工作原理 SPI总线一般以主/从模式工作,通常有一个主设备和一个或多个从设备,数据传输由主机控制,典型SPI结构框图如图1所示。SPI总线包含四条信号线,分别是sclk、miso、mosi和cs,其中,sclk为数据传输时钟,由主机产生;miso是从机输出,主机输入数据线;mosi是主机输出, 从机输入数据线;cs是从设备片选信号,由主机控制,当连接多个从设备时,通过该信号选择不同的从设备。SPI总线是按字节发送数据的,主机和从机内部都包含一个8位串行移位寄存器,在时钟信号控制下,寄存 器内的数据由高到低输出至各自的数据线,8个时钟后,两个寄存器内的数据就被交换了。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机 的传输。当主机发送一个连续的数据流时,可以进行多字节传输,在这 种传输方式下,从机的片选端必须在整个传输过程中保持低电平。 根据串行同步时钟极性和相位不同,SPI有四种工作方式。时钟极性(CPOL)为0时,同步时钟的空闲状态为低电平,为1时,同步时钟的空闲 状态为高电平。时钟相位(CPHA)为0时,在同步时钟的第一个跳变沿采 样数据,为1时,在同步时钟的第二个跳变沿采样数据。因为主设备时

常用视频信号接口与处理方法总结

常用视频信号接口与处理方法总结 刘学满2010-4-13 视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号) 单端/ 差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压范围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此 需要 注意以下几个事项: 1)阻抗匹配:通常为75Ω ,包括发送端,接收端以及传输路径上的阻抗。

2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来 看,分隔成小的地平面后,实际上会造成环流( AD9883资料中有叙述) 。因此大部分 情况下,还是用同一个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必 要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/ 缓冲器之后的延时也相差不 多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D 是否支持交流耦合方式输入 2)A/D 内部是否有信号增益调整功能 3)是否支持差分输入 4)A/D 内部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式( 24bit RGB ,YCbCr)

6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D 转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D 芯片有关offset 和gain 的寄存器,经过此番调 整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL 在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A 输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规范要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit 兼容,要注意最高2 位和最低2 位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C 信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656 或者BT601 格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601 格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I 2C寄存器配置不同。6.缓冲器/放大器/ 选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/ 放大/ 选择/ 分配等处理。 在这些电路设计时,着重需要考虑的问题: 1)输入信号的电压辐值,芯片供电范围是否能满足要求,是否需要加75Ω电阻。 2)期望信号放大多少倍输出。

视频信号测试与测量

1. 理解复合视频信号 复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。构成复合信号的三个主要成分如下: ● 亮度信号——包含视频图像的强度(亮度或暗度)信息 ● 色彩信号——包含视频图像的色彩信息 ● 同步信号——控制在电视显示屏等显示器上信号的扫描 单色复合信号是由两个成分组成的:亮度和同步。图1显示了这个信号(通常成为Y信号)。 图1:单色复合视频信号(亮度从白过渡到黑) 色彩信号通常被称为C信号,在图2中示出。 图2:彩色条的色彩信息信号(包括颜色突发) 复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。 CVBS = Y + C

图3:彩色条的彩色复合视频信号两个组成部分Y与C可以作为两个独立信号分开传输。这两个信号合称为Y/C或S视频。 2. 视频信号组成 单一水平视频行信号由水平同步信号、后沿、活动象素场以及前沿组成,如图4所示。 图4:视频信号组成 水平同步(HSYNC)信号示每条新的视频行的开始。其后是后沿,用来作为从浮地(交流耦合)视频信号去除直流分量的参考电平。这是通过单色信号的钳制间隔实现的,它出现在后沿中。对于合成彩色信号,钳制发生在水平同步脉冲中,由于大部分后沿用于色彩突发,它提供了信号色彩成分解码信息。在MAX帮助中,视频信号的所有设置参数都有较清楚的描述。 色彩信息可以包含在单色视频信号中。复合色彩信号包含标准单色信号(RS-170或CCIR),并加入了以下成分: ● 色彩突发:位于后沿,这是提供后续色彩信息相位和幅值参考的高频场。

● 色彩信号:这是实际的色彩信息。它由两个以色彩突发频率调制到载波的象限成分组成。这些组成部分的相位和幅值决定了每个象素的色彩内容。 视频信号的另一方面是垂直同步(VSYNC)脉冲。这实际上是在场之间发生的脉冲序列,用于通知显示器,完成垂直重跟踪,准备扫描下一场。在每个场中都有几行是不包含活动视频信息的。有些只包含HSYNC脉冲,而其他包含均衡与VSYNC脉冲序列。这些脉冲是在早期的广播电视中定义的,所以从那以后构成了标准的一部分,虽然之后的硬件技术能够避免部分附加脉冲的使用。在图5中给出了复合RS-170交叉信号,其中包括垂直同步脉冲,为了简单起见,下面给出了一个6行帧: 图5:VSYNC脉冲 应当理解对于从模拟相机得到的图片,其垂直尺寸(以象素为单位)是由帧接收器对水平视频行采样的速率所决定的。而这个速率是由垂直行速率合相机的体系结构所决定的。相机CCD阵列的结构决定了每个象素的大小。为了避免图像失真,您必须对水平方向,以一定速率进行采样,将水平的活动视频场分割为正确的象素点数。下面是RS-170标准的实例: 感兴趣参数: ● 行/帧数:525(其中包括用于显示的485线;其余是每两个场之间的VSYNC行) ● 行频率:15.734 kHz ● 行持续时间:63.556微秒 ● 活动水平持续时间:52.66微秒 ● 活动象素/行数:640 现在,我们可以进行一些计算: ● 象素时钟频率(每个象素达到帧接收器的频率):640象素/行/ 52.66 e-6 秒/行= 12.15 e6 象素/行(12.15 MHz) ● 活动视频的象素行长度+ 定时信息(称为HCOUNT):63.556 e-6 秒* 12.15 e6 象素/秒= 772 象素/行

各种视频信号接口及定义

各种视频信号接口及定义 1.复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在一个传输信号中包含了亮度、色度和同步信号。 由于彩色编码的不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz(NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成亮度和色度的相互干扰,使得复合视频成为最差的视频信号。 复合视频信号一般用RCA插头连接,就是通常说的莲花插头,见图1。欧洲也用SCART接口,老式的视频设备也有用BNC插头连接。 2.S视频信号(S-Video) S视频信号俗称S端子信号,它同时传送两路信号:亮度信号Y和色度信号C。由于将亮度和色度分离,所以图象质量优于复合视频信号,色度对亮度的串扰现象也消失。由于S 视频信号亮度带宽没有改变,色度信号仍须解调,所以其图象质量的提高是有限的,但肯定解决了亮色串扰,消除图象的爬行现象。S端子用四芯插头,见图2。欧洲也用SCART插头,老式的视频设备也有用两个BNC插头连接,计算机显卡也有用七芯插头,其外形与S端子一样,只是又包含了复合视频信号。 3.隔行色差信号(Y、Cr、Cb) 隔行色差信号含义与逐行色差信号相同,只是对应的是逐行扫描信号,包含在Y里的行同步信号频率为31KHz,而前述的几种视频信号行频只有15KHz。逐行色差信号须配具有逐行显示功能的设备,图象质量高于隔行色差信号,主要表现在图象更稳定。逐行色差所用端子与隔行色差相同,只是C换成P。 4.RGB信号 我们知道图象中的各种色彩都是由R、G、B三基色组成,显象管电子枪是R、G、B三枪组成,投影机三片液晶板也是R、G、B三色。R、G、B三路信号中,行、场的同步信号加在G信号中,RGB信号的带宽可以到几十兆,只要显示设备能兼容。所以RGB信号又优于色差信号,是最好最直接的显示信号。RGB信号同样也分为逐行和隔行,逐行信号要优于隔行信号。RGB信号所用端子为RCA插头,欧洲用SCART插头,老式设备用BNC插头。5.RGB+S信号 此信号就是在前述的RGB信号基础上,把加在G信号中的同步信号拿出来,再加一个复合同步信号,共四路信号传输。复合同步信号中包含了水平同步和垂直同步信号。此信号在老式设备中用的较多,一般用BNC插头。 6.RGB+Hs、Vs信号 这个信号是在上述信号基础上把复合同步信号分成水平同步信号和垂直同步信号,在老式三枪投影机用的较多,一般用BNC插头。现在17寸以上的高端显示器也此输入端子。电脑显示用的15针D型VGA插座,就是这5根线起作用。老式的EGA和CGA显示器行频只有15KHz,用的是9针D型接口。现代视听设备逐行扫描的RGB+Hs、Vs信号是以VGA端子输出的,是视频信号的最高级,与电脑640×480分辨率是兼容的。

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

视频信号的基础知识

一、视频信号的结构与使用 ?图象采集卡是对模拟视频信号采样并作A/D转换而成为数字信号的,为了获得正确的数字信号,对模拟视频信号有一个大概的了解是十分重要的,尤其在一些特殊的应用领域,例如: ?实时处理 ?多路视频输入 ?非标准视频采集 ?立体视觉 ?序列图象分析 ?运动图象 ?等都对摄象机的同步连接;多路切换;图象处理与视频信号的同步配合;图象窗口的选择;亮度与对比度的调节有着特殊的要求,为了满足这些要求,把视频信号的结构了解清楚后,会对用户很快构成并调试好自己的图象处理系统;设计好自己的软件;充分提高CPU处理图象的效率等带来很大的好处

1-1、视频信号的概述 ?视频信号最初是用于广播电视的,也就是说是要经过传输,尤其是无线传输而送到观众接收机上,由于图象的信息量是如此巨大,如果不对视频信号作一定的处理,就会占据无线通讯很宽的宝贵频带,为此对全电视信号在清晰度、闪烁性、叠加彩色后的与黑白图象的兼容性、所占用的带宽等方方面面作了精心的权衡与安排,研究设计出目前的黑白/彩色全电视信号标准。例如隔行扫描就是考虑到带宽、抗闪烁、清晰度等方面而巧妙设计的;PAL或NTSC的彩色图象制式就是考虑到人眼对颜色的着色特性,与原黑白视频的兼容性,在不影响黑白灰度信息的前提下,而将彩色信息调制后插入黑白全电视信号频谱的缝隙之中的。而所谓的不影响仅仅是理论上的,由于技术上的局限性,在接收端将黑白信息与彩色信息分离时,在大多数情况下会大大影响黑白信息的分辨率。视频信号的这些特性在广播电视中带来了巨大的好处,但在图象处理的使用场合又会带来很大的不便与缺陷。

1-2、黑白全电视信号及采集 ?摄象机获取图象形成视频信号是用扫描的方式逐行顺序进行的,从景物的左上角开始扫描第一行,然后向下移动扫描第二行,直至这场扫描完312行(PAL制),到第313行的一半时,这一场结束,形成了一幅奇场图象;从图象的最上部中间开始第313行的后半部扫描,见图一,开始第二场即偶场的扫描,第二场的每一行夹在第一场的相邻行中间,直至625行结束,第二场图象结束,形成了一幅偶场图象,同时相邻行由奇场和偶场图象交叉形成了一帧图象。帧图象、奇偶场图象之间的关系见图二。从图一和图二可以看出,在水平方向一行中的像素从左到右是以纳秒级的速度顺序出现的,而一帧图象的上下二个相邻象素的相隔时间为一场的场周期,可达几十毫秒。这种隔行方式,在同样的分辨率、没有因人眼惰性有限而带来太大的闪烁性的情况下,视频信号的频带带宽几乎减低了一倍,节省了宝贵的通信资源。

基于CPLD的SPI接口设计

基于CPLD 的SP I 接口设计 D esign i ng SP I I n terface ba sed on CPLD 何永泰 (楚雄师范学院 楚雄 675000) 【摘 要】 根据SP I 同步串行接口的通信协议,介绍了在X ilinx Coo lR unnct XPLA 3CPLD 中利用V HDL 语言实现SP I 接口的设计原理和编程思想,通过用此接口,使得那些没有SP I 接口功能的微处理器和微控制器,也能通过SP I 接口与外围设备进行数据交换。 【关键词】 SP I 接口,CPLD ,接口扩展,接口设计,串行接口 ABSTRACT A cco rding to comm un icati on p ro toco l of SP I synch ronou s serial in terface ,th is paper p resen ts the design theo ry and p rogramm ing idea of i m p lem en ting SP I in terface w ith V HDL language in X ilinx Coo lR unner XPLA 3CPLD .T h is in terface can be u sed to data exchange w ith peri pheral apparatu s fo r m icrop rocesso r and m icrocon tro ller w h ich have no t SP I in terface functi on .KEYWOR D S SP I in terface ,CPLD ,in terface expan si on ,in terface design ,serial in terface 1 SP I 总线接口协议 SP I (Seri on Perp heral In terface )总线接口是一个 全双工,同步串行数据接口。许多微处理器,微控制器和外部设备具有这个接口。它能够实现在微控制器之间或微控制器与外部设备之间通信。SP I 总线通常有4条线组成,即:串行时钟线(SCK )、主机输出从机输入 线(M O S I )、 主机输入从机输出线(M ISO )和从机选择线SS N 。SCK 靠主机和数据流来驱动。M O S I 数据线从主机输出数据作为从机的输入数据。M ISO 数据线传送从机输出的数据作为主机的输入数据。在大多数情况下,使用一个SP I 作为主机,它控制数据向1个或几个从机传送。主机驱动数据从它的SCK 和M O S I 端到各从机的SCK 和M O S I 端,被选择的从机驱动数据从它的M ISO 端到主机的M ISO 端。SS N 控制线用于从机选择控制。 SCK 的相位和极性能改变SP I 的数据格式,时钟极性CPOL =‘0’,串行数据的移位操作由时钟正脉冲触发,时钟极性CPOL =‘1’,串行数据的移位操作由负脉冲触发;时钟相位CPHA =‘0’, 串行数据的移位 图1 CPHA =‘0’时SP I 的数据转换时序图 操作由时钟脉冲前沿触发,时钟相位CPHA =‘1’,串行数据的移位操作由时钟脉冲后沿触发。时钟相位CPHA =‘0’时SP I 的数据转换时序图如图1所示。 在图1中SCK 信号在第一个SCK 周期中的前半周期无效,在这种模式中,SS 的下降沿示意数据传送的开始,因此,SS 在连续串行字节之间必须被取反和重新申明。时钟相位CPHA =‘1’时SP I 的数据转换时序图如图2所示。 在图2中SCK 信号从无效电平到有效电平的第一边沿意味着在这种模式下数据传送的开始,SS 信号能保持有效的低电平在连续串行字节之间,这种模式用于只有一个主机和一个从机的系统中。 在SP I 传送数据时,8位数据从一个SP I 接口移出时,另一个SP I 接口也开始移出8位数据,这样主机的8位移位寄存器和从机的8位移位寄存器可以被看作是16移位寄存器,16位移位寄存器移动8个位置就实现了在主机和从机之间交换数据。基于CPLD 的SP I 接口设计中,从SP I 总线上接收的数据被保存在一个接收寄存器中,发送的数据被写到一个发送寄存器中 。 图2 CPHA =‘1’时SP I 的数据转换时序图 3 20040414收到,20040724改回 33 何永泰,男,1970年生,讲师,在读硕士,研究方向:电子工程设计。 ? 72?第17卷 第10期 电脑开发与应用 (总497)

视频信号格式

视频端口/视频信号格式(2008-12-19 10:07:59) Y”表示明亮度(Luminance或Luma),C色度(Chrominance或Chroma), YPbPr是将模拟的Y、PB、PR信号分开,使用三条线缆来独立传输,保障了色彩还原的准确性,YPbPr表示逐行扫描色差输出.YPbPr接口可以看做是S端子的扩展,与S端子相比,要多传输PB、PR两种信号,避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,保障了色彩还原的准确,目前几乎所有大屏幕电视都支持色差输入。 YCbCr表示隔行分量端子. 所说的Y Cb Cr和Y Pb Pr只是为了方便新人快速区分国产电视上隔/逐行接口而已. Cb Cr 就是本来理论上的分量/色差的标识, C代表分量(是component的缩写)Cr、Cb分别对应r(红)、b(蓝)分量信号,Y除了g(绿)分量信号,还叠加了亮度信号. 至于Y Pb Pr,是后来为了强调逐行概念,显示其飞跃性的变化,这个概念,有一定知识背景的人很容易理解,但普通用户只会更糊涂 YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL)。YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是通过RGB输入信号来创建的,方法是将RGB信号的特定部分叠加到一起。“色度”则定义了颜色的两个方面—色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB 信号亮度值之同的差异。 *****U,V分别是与蓝,红的色差.范围是16-240 一、高频或射频信号 https://www.360docs.net/doc/913335156.html,/cword/3153.shtml 视频端口是背投电视和信号源(比如影碟机)连接的接口,通过这些端口,可以将电影等图像在背投设备上播放。视频端子有不同类型,购买背投电视时尽量挑接口齐全的产品,尤其是最常见的接口,这样可以更方便的和各种设备连接。目前最基本的视频端子是复合视频端子(也叫AV端子)、S端子;另外常见的还有色差端子、VGA端子、DV I端子、HDMI端口。 复合视频端子

SPI接口详细说明

SPI 串行外设接口总线,最早由Motorola提出,出现在其M68系列单片机中,由于其简单实用,又不牵涉到专利问题,因此许多厂家的设备都支持该接口,广泛应用于外设控制领域。 SPI接口是一种事实标准,并没有标准协议,大部分厂家都是参照Motorola的SPI接口定义来设计的。但正因为没有确切的版本协议,不同家产品的SPI接口在技术上存在一定的差别,容易引起歧义,有的甚至无法直接互连(需要软件进行必要的修改)。 虽然SPI接口的内容非常简单,但本文仍将就其中的一些容易忽视的问题进行讨论。 SPI ( Serial Peripheral Interface ) SPI接口是Motorola 首先提出的全双工三线同步串行外围接口,采用主从模式(Master Slave)架构;支持多slave模式应用,一般仅支持单Master。 时钟由Master控制,在时钟移位脉冲下,数据按位传输,高位在前,低位在后(MSB first);SPI 接口有2根单向数据线,为全双工通信,目前应用中的数据速率可达几Mbps的水平。 SPI接口信号线 SPI接口共有4根信号线,分别是:设备选择线、时钟线、串行输出数据线、串行输入数据线。 设备选择线SS-(Slave select,或CS-)

SS-线用于选择激活某Slave设备,低有效,由Master驱动输出。只有当SS-信号线为低电平时,对应Slave设备的SPI接口才处于工作状态。 SCLK:同步时钟信号线, SCLK用来同步主从设备的数据传输,由Master驱动输出,Slave设备按SCK的步调接收或发送数据。 串行数据线: SPI接口数据线是单向的,共有两根数据线,分别承担Master到Slave、Slave到Master的数据传输;但是不同厂家的数据线命名有差别。 Motorola的经典命名是MOSI和MISO,这是站在信号线的角度来命名的。 MOSI:When master, out line; when slave, in line MISO:When master, in line; when slave, out line 比如MOSI,该线上数据一定是Master流向Slave的。因此在电路板上,Master的MOSI引脚应与Slave的MOSI引脚连接在一起。双方的MISO也应该连在一起,而不是一方的MOSI连接另一方的MISO。 不过,也有一些产家(比如Microchip)是按照类似SDI,SDO的方式来命名,这是站在器件的角度根据数据流向来定义的。 SDI:串行数据输入 SDO:串行数据输出 这种情况下,当Master与Slave连接时,就应该用一方的SDO连接另一个方的SDI。 由于SPI接口数据线是单向的,故电路设计时,数据线连接一定要正确,必然是一方的输出连接另一方的输入。 其实这个问题本来很简单的,但由于不同厂家产品的命名习惯可能不同,因此还需小心,以免低级出错。 数据传输的时序模式

常用视频信号接口与处理方法总结材料

常用视频信号接口与处理方法总结 学满2010-4-13 一、视频接口概述 视频接口,从颜色空间、数字/模拟、分离/复合(适用于模拟信号)、并行/串行(适用于数字信号)、单端/差分等类别可以分为如下几种,见下表:

二、模拟视频信号接口 1.接口设计 模拟信号由于其电压围很小,如果接口电路设计不当,很可能造成最终的信号质量下降。因此需要注意以下几个事项: 1)阻抗匹配:通常为75Ω,包括发送端,接收端以及传输路径上的阻抗。 2)隔直电容:为了防止不同设备间地电压差对信号造成的影响,此电容不宜过大或者过小。 3)滤波网络:尽可能地消除低频和高频纹波。 4)地平面:根据理论,地平面分隔可以防止数字信号对模拟地干扰,但从实际经验来看,分隔成小的地平面后,实际上会造成环流(AD9883资料中有叙述)。因此大部分情况下,还是用同一 个地。多层地平面,以及多打过孔,保持地电平的稳定是非常必要的。 5)PCB走线:等长是需要的,而且要确保三个器件经过不同的选择器/缓冲器之后的延时也相差不多,否则很难保证采样相位。 6)ESD保护:如果视频接口经常插拔,就需要加ESD保护二极管。 2.视频ADC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)A/D是否支持交流耦合方式输入

2)A/D部是否有信号增益调整功能 3)是否支持差分输入 4)A/D部是否有PLL等器件,采样相位是否可调整 5)A/D输出的信号格式(24bit RGB,YCbCr) 6)是否支持SOG或者SOY等同步信号输入 模拟信号在A/D转换时,通常需要进行一些调整,以达到最佳显示效果: 1)调整黑电平位置和最大辐值,通常可以配置A/D芯片有关offset和gain的寄存器,经过此番调整之后,实际上是校准了RGB三色,同时提高了灰度等级。 2)调整PLL锁相环,以达到合适的采样频率,并保证PLL在各种温度条件下均能稳定工作。 3)调整采样起始点和终止点,确保有效信号不丢失。 4)调整采样相位,使最终显示画质更清晰。 3.视频DAC 完成模拟信号到数字信号的转换,在使用过程中需要注意的主要问题有: 1)D/A输出时,驱动方式是电压型的,还是电流型的?带负载与不带负载的电压是多少?是否合乎规要求。如果不合适,必要时加缓冲器或者放大器输出。 2)D/A的输入接口是多少位的?如果是8bit/10bit兼容,要注意最高2位和最低2位的接法。 3)输出同步信号是什么格式?是否需要输出CS或者SOG? 4.解码器 这里说的解码器是指针对CVBS(PAL、NTSC)或者Y/C信号的亮度色度解调和分离用的解码器,解码器输出的通常为BT656或者BT601格式的数字信号,此信号仍为隔行信号。 解码器使用中,接口部分设计与ADC相类似,对输入信号格式,输出信号格式的寄存器配置有一些差异,如果输入格式设置不当,虽然能输出信号,但显示不正确。 5.编码器 视频编码器特指从BT656/BT601格式转到CVBS/YC信号的转换器,一方面完成数字到模拟信号的转换,另一方面是完成亮度信号与色度信号的调制、复合。 解码器使用中,接口部分设计与DAC相类似,主要的不同也在于I2C寄存器配置不同。 6.缓冲器/放大器/选择器/分配器 模拟视频信号在传输和处理的过程中,通常需要一些缓冲/放大/选择/分配等处理。 在这些电路设计时,着重需要考虑的问题:

第11章-数模与模数转换器-习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=- = 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+ =)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 图题11-3 D 3 D 2 D 1 D 0 V O 0 0 0 1 -0.625V 0 0 1 1 -0.625V -1.25V=1.875 0 1 0 0 -2.5V 0 1 0 1 -0.625V -2.5V=3.125V 1 1 0 -2.5V -1.25=3.75 0 1 1 1 -0.625V - 2.5V - 1.25=4.375V 1 5V

【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.1516501012 54 ===)( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为10011001,该转换器输出电压V O 是多少? 解:V V V V O 988.2153256510011001258 ≈==)( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~24 0==-=- =)()(

常用视频接口S端子

常用视频接口S端子、DVI、色差、D端子、HDMI解释 VGA输入接口:VGA 接口采用非对称分布的15pin 连接方式,其工作原理:是将显存内以数字格式存储的图像( 帧) 信号在RAMDAC 里经过模拟调制成模拟高频信号,然后再输出到等离子成像,这样VGA信号在输入端(LED显示屏内) ,就不必像其它视频信号那样还要经过矩阵解码电路的换算。从前面的视频成像原理可知VGA的视频传输过程是最短的,所以VGA 接口拥有许多的优点,如无串扰无电路合成分离损耗等。 DVI输入接口:DVI接口主要用于与具有数字显示输出功能的计算机显卡相连接,显示计算机的RGB信号。DVI(Digital Visual Interface)数字显示接口,是由1998年9月,在Intel开发者论坛上成立的数字显示工作小组(Digital Display Working Group简称DDWG),所制定的数字显示接口标准。 DVI数字端子比标准VGA端子信号要好,数字接口保证了全部内容采用数字格式传输,保证了主机到监视器的传输过程中数据的完整性(无干扰信号引入),可以得到更清晰的图像。 标准视频输入(RCA)接口:也称A V 接口,通常都是成对的白色的音频接口和黄色的视频接口,它通常采用RCA(俗称莲花头)进行连接,使用时只需要将带莲花头的标准A V 线缆与相应接口连接起来即可。A V接口实现了音频和视频的分离传输,这就避免了因为音/视频混合干扰而导致的图像质量下降,但由于A V 接口传输的仍然是一种亮度/色度(Y/C)混合的视频信号,仍然需要显示设备对其进行亮/ 色分离和色度解码才能成像,这种先混合再分离的过程必然会造成色彩信号的损失,色度信号和亮度信号也会有很大的机会相互干扰从而影响最终输出的图像质量。 A V还具有一定生命力,但由于它本身Y/C混合这一不可克服的缺点因此无法在一些追求视觉极限的场合中使用。 S视频输入:S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在A V接口的基础上将色度信号C 和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4芯(不含音效) 或者扩展的7芯( 含音效)。带S-Video接口的显卡和视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同A V 接口相比由于它不再进行Y/C混合传输因此也就无需再进行亮色分离和解码工作,而且使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口。 视频色差输入接口:目前可以在一些专业级视频工作站/编辑卡专业级视频设备或高档影碟机等家电上看到有YUV YCbCr Y/B-Y/B-Y等标记的接口标识,虽然其标记方法和接头外形各异但都是指的同一种接口色差端口( 也称分量视频接口) 。它通常采用YPbPr 和YCbCr两种标识,前

《单片机原理及接口技术(第2版)张毅刚》第11章习题及答案

《单片机原理及接口技术》(第2版)人民邮电出版社 第11章 AT89S51单片机与DAC、ADC的接口 思考题及习题11 1.对于电流输出的D/A转换器,为了得到电压输出,应使用。 答:I/V转换电路 2.使用双缓冲同步方式的D/A转换器,可实现多路模拟信号的输出。 答:同步 3.下列说法是否正确。 A.“转换速度”这一指标仅适用于A/D转换器,D/A转换器不用考虑“转换速度” 问题。 B.ADC0809可以利用“转换结束”信号EOC向AT89S51单片机发出中断请求。 C.输出模拟量的最小变化量称为A/D转换器的分辨率。 D.对于周期性的干扰电压,可使用双积分型A/D转换器,并选择合适的积分元件,可以将该周期性的干扰电压带来的转换误差消除。 答:(1)错,D/A转换器也要考虑“转换速度”或“转换时间”问题,即建立时间(转换时间);(2)对;(3)错,是D/A转换器的分辨率;(4)对。 4.D/A转换器的主要性能指标都有哪些?设某DAC为二进制12位,满量程输出电压为5V,它的分辨率是多少? 答:D/A转换器的主要技术指标如下: 分辨率:D/A转换器的分辨率指输入的单位数字量变化引起的模拟量输出的变化,是对输入量变化敏感程度的描述。 建立时间:建立时间是描述D/A转换速度快慢的一个参数,用于表明转换速度。其值为从输入数字量到输出达到终位误差±(1/2)GB(最低有效位)时所需的时间。 转换精度:理想情况下,精度与分辨率基本一致,位数越多精度越高。严格讲精度与分辨率并不完全一致。只要位数相同,分辨率则相同.但相同位数的不同转换器精度会有所不同。 当DAC为二进制12位,满量程输出电压为5V时,分辨率为1.22 mV

spi_和接口设计

SPI 接口的设计 第二章介绍了模数转换器的可编程控制架构,其中可编程控制功能的实现需要分成两部分:一部分为SPI 接口电路,以及其根据部寄存器存储的数据产生的控制信号;另一部分是具体的电路受控模块。本章将介绍接口与数字逻辑电路的设计,包括应用于本模数转换器的SPI 接口与数字逻辑电路的设计、综合以及仿真验证。 3.1 数据通信接口 3.1.1 串行通信 基本的通信方式有两种:并行通信和串行通信。并行通信是指数据以成组的方式,在多条并行信道上同时进行传输。 串行通信指要传送的数据或信息按一定的格式编码,然后在单根线上,按位的先后顺序进行传送。接收数据时,每次从单根线上按位接收信息,再把它们拼成一个字符,送给CPU (Central Processing Unit )做进一步的处理。收发双方必须保持字符同步,以使接收方能从接收的数据比特流中正确区分出与发送方相同的一个一个字符。串行通信只需要一条传输信道,易于实现,是目前主要采用的一种通信方式,它具有通信线少以及传送距离远等优点。 串行通信时,按数据的传送的方向可以分为单工、半双工和全双工等三种方式。 (1)单工(Simplex ):数据线仅能向一个方向传输数据,两个设备进行通信时,一边只能发送数据,另一边只能接收数据。 (2)半双工(Half Duplex ):数据可在两个设备间向任一个方向传输,但因为只有一根传输线,故同一时间只能向一个方向传输数据,不能同时收发。 (3)全双工(Full Duplex ):对数据的两个传输方向采用不同的通路,可以同时发送和接收数据, 串行通信有两种基本工作方式:异步方式和同步方式。采用异步方式(Asynchronous )时,数据发送的格式如图3-1所示。不发送数据时,数据信号线呈现高电平,处于空闲状态。当有数据要发送时,数据信号线变成低电平,并持续一位的时间,用于表示字符的开始,称为起始位。起始位之后,在信号线上依次出现待发送的每一位字符数据,最低有效位0D 最先出现。采用不同的编码方案,待发送的每个字符的位数就不同。当字符用ASCII 码表示时,数据位占7位(60~D D )。在数据位的后面有一个奇偶校验位,其后有停止位,用于指示字符的结束。停止位可以是一位也可以是一位半或两位。可见,用异步方式发送一个7位的ASCII 码字符时,实际需发送10位、10.5位或11位信息。如

模拟视频与数字视频的区别

模拟视频与数字视频的区别 视频信号可分为模拟视频信号和数字视频信号两大类。 模拟视频是指每一帧图像是实时获取的自然景物的真实图像信号。我们在日常生活中看到的电视、电影都属于模拟视频的范畴。模拟视频信号具有成本低和还原性好等优点,视频画面往往会给人一种身临其境的感觉。但它的最大缺点是不论被记录的图像信号有多好,经过长时间的存放之后,信号和画面的质量将大大的降低;或者经过多次复制之后,画面的失真就会很明显。 数字视频信号是基于数字技术以及其他更为拓展的图像显示标准的视频信息,数字视频与模拟视频相比有以下特点: (1)数字视频可以可以不失真的进行无数次复制,而模拟视频信号每转录一次,就会有一次误差积累,产生信号失真。 (2)模拟视频长时间存放后视频质量会降低,而数字视频便于长时间的存放。 (3)可以对数字视频进行非线性编辑,并可增加特技效果等。 (4)数字视频数据量大,在存储与传输的过程中必须进行压缩编码。 随着数字视频应用范围不断发展,它的功效也越来越明显。 -------------------------------------------------------------------------------- 模拟摄像机 模拟摄像机所输出的信号形式为标准的模拟量视频信号,需要配专用的图像采集卡才能转化为计算机可以处理的数字信息。模拟摄像机一般用于电视摄像和监控领域,具有通用性好、成本低的特点,但一般分辨率较低、采集速度慢,而且在图像传输中容易受到噪声干扰,导致图像质量下降,所以只能用于对图像质量要求不高的机器视觉系统。常用的摄像机输出信号格式有: pal(黑白为ccir),中国电视标准,625行,50场 ntsc(黑白为eia),日本电视标准,525行,60场 secam s-video 分量传输 模拟跟数字的区别还是比较大的: 1、前端。 模拟:只有模拟摄象机即可,视频没有经过压缩,图象质量好,但占用资源极多,存储和检索不方便,反复查看录像会造成录像效果越来越差。

第十一章 模拟量混合模块

第十一章模拟量混合模块 本章介绍了PACSystems RX3i控制器的下列模拟量混合模板。 模拟量模板,4 输入/2 输出,电流/ 电压:IC694ALG442 模拟量电流/电压输入/输出模板,IC694ALG422,提供了四个差分的输入通道和两个单端输出通道。每个通道都能用ME软件设置下面范围之一: . 0 至+10 V (单极的), 默认. . -10 至+10 V (双极的) . 0 至20 mA . 4 至20 mA 输入通道也可以被设定为4 - 20 mA增强模式。该模板可以被安装在RX3i系统的任意输入输出槽内。

模板特性 输出可以被设定为保持最后状态(如果系统电源中断),或者被重新设置到输出范围的最低端值。 输出也可以被设置为在应用程序命令的斜坡模式下运行。在斜坡模式下,输出通道经过一段时间内达到一个新的值,而不是立即获得这个新值。所有输入通道的高低警报界限都可以设置,并且每一个输出通道的开路故障(电流输出模式)都可被报告给CPU。 隔离的+24V DC 电源I 该模板必须从外部获得24 VDC的电源。如果模板被安装在RX3i的通用底板上,外部电源可以通过底板左侧的TB1连接器连接,或者直接连接到模板接线盒上。如果模板安装在一个扩展底板上,外部电源就必须连接到模板接线盒上。 发光二极管 Module OK(模板就绪)指示模板状态。Module P/S指示外部+24 VDC电源存在,并且高于最低指定标准电压值。两个二极管都从+5 VDC底板总线获取电源。 技术指标: ALG442

2.在严重射频干扰的情况下(IEC 801–3, 10V/m),精确度可能会下降+/-4%FS.

相关文档
最新文档