智能变电站状态监测系统的设计研究及应用 李杰

智能变电站状态监测系统的设计研究及应用 李杰
智能变电站状态监测系统的设计研究及应用 李杰

智能变电站状态监测系统的设计研究及应用李杰

发表时间:2018-08-13T16:33:15.890Z 来源:《电力设备》2018年第8期作者:李杰

[导读] 摘要:近年来,随着科学技术的进步,智能化技术在变电站中的应用十分广泛。

(国网河南省电力公司南阳供电公司变电运维室河南南阳 473000)

摘要:近年来,随着科学技术的进步,智能化技术在变电站中的应用十分广泛。为了能够确保智能变电站的设备可以达到实时监测的水平,需要针对变电站的监测方法、监测流程等内容展开详细的研究,对设备出现异常的情况进行切实的了解与掌握。本文通过对智能变电站监测系统的设计内容进行研究,希望能够为相关人员,起到一些积极的参考作用。

关键词:变电站;智能电网;在线监测;设计

引言

智能电网是现阶段电网发展的主要方向,它结合现代化设备实现变电站信息的数字化、通信平台网络化以及信息共享标准化。智能变电站自动化在线监测系统实现对智能电网的全方位实时监控。该系统可以自动完成信息采集、测量、控制、保护、计量和检测等基本功能,同时,具备支持电网实时自动控制、智能调节、在线分析决策和协同互动等高级功能,提高智能变电站的运行稳定性和安全性。本文对智能变电站自动化在线监测系统的结构设计和实际功能进行详细分析。

1智能变电站监测系统的研究意义

在实际应用过程中,智能变电站具备可靠的运行特点,同时其低碳、环保的智能化运行方式,可以对信息展开自动的采集、测量、监测等基本操作功能,并且在这个过程中,可以实现数字化、网络化和共享化的工作流程。在电网中实现更高级的功能,这样可以进一步完善电网的运行与发展,有效提升变电站的智能化水平。设计出一套适合智能变电站的监测系统,能够及时发现变电站中潜在的一些计量异常问题,并能随即开展具体的分析工作,为智能化变电站实现电量计量的稳定可靠做出贡献,并在此基础上,可以构建一个具有通用性和互通性的合作平台,这对电力系统中在线监测技术的发展大有裨益。

2在线监测系统架构设计

2.1站控层

监测系统的站控层是整个系统的核心部分,主要提供信息化一体平台,给在线监测装置和各个综合监测单元提供通信,从而实现对监测单元的数据采集和通信控制。此外,终端监测单元对在线采集的数据信息,按照Q/GDW534标准进行分析整理并进行储存,轻松实现了对整个智能变电站状态的实时监测、数据分析以及故障诊断,然后通过CAC与上层进行数据通信。

2.2间隔层

间隔层主要按照智能变电站中设备的类别,设置相对应的监测单元,并通过协议转换功能,对过程层收集到的各种监测信息,按照IEC61850标准协议进行统一建模,实现对站控层的信息互联、数据加工、监测预警以及阈值比较等功能,如果监测装置和站控层采用统一的通信标准,则无需设置综合监测单元,可直接与终端监测单元进行通信连接。

2.3过程层

过程层主要对智能变电站中变压器、断路器等一次设备进行在线监测,然后,采用IEC61850标准协议或者Modbus等协议与间隔层进行信息互联。过程层对智能变电站中各个电气设备的状态信息进行收集和整理,并将这些信息转化成数字信号,对于不符合IEC61850标准协议的在线检测单元,则需要进行相应的数据转换,然后才能接入间隔层的综合监测单元。

2.4协调器节点硬件设计

协调器节点要负责接收终端节点的数据,并对数据进行处理和储存,同时还要负责无线局域网的建立以及与GPRS协议之间的转换。因此,LM3S9B96作为无线芯片CC2520的微控制器单元构成协调器节点,节点的硬件设计还包括电源供电模块、JTAG和GPRS无线通讯模块电路。通过节点配置,实现了ZigBee协议下的终端数据采集和无线组网通信功能,以及超低功耗,能够满足系统设计需要。电源供电模块:因为协调器节点所需用电量大并一直处于供电状态,所以节点的供电模块采用交流互感器自给供电。在母线上安装电流互感器,经过整流、滤波、稳压等处理后,提供各节点所需要的电源。模块自给供电,解决了“电池供电”需要定期更换电池的问题。

2.5ZigBee组网

ZigBee无线局域网包括信标和非信标两种工作模式。本设计采用非信标的模式,允许终端设备进行周期性休眠,而协调器和路由器设备则处于长期工作状态。终端设备大多数时间都处于休眠模式,周期性醒来与路由器一并把数据传送给协调器,最大限度地节约终端节点的功耗。ZigBee网络的组建主要包括两个基本步骤:先是协调器初始化,然后是路由器节点或者终端节点加入网络。

3智能变电站状态监测系统的应用

3.1变电站状态检修

状态检修应该包括状态信息采集、状态诊断方法和检修策略应用。状态信息采集的内容是应用体系的整体输入,检修策略是应用系统的输出,状态诊断方法合理建立分析模型,从而科学客观地进行变电站运行的状态,这也是数字化变电站状态检修的重要内容,也是一项工作难点。智能化一次设备的被检测信号回路和操作驱动回路的设计采用了光电技术,使用了微处理器,对常规的继电器和控制回路进行了简化,传统的导线连接也被数字公共信号网络和数字程控器取代。网络化的二次设备能够通过网络进行数据和资源的共享,常规的功能装置变成了灵活地功能模块,模块的设计制造全部标准化,模块之间使用网络通信。数字化变电站为了能够进行设备的实时状态监测,需要建设自动化的运行管理系统,自动记录设备运行状态和数据,能够进行故障检测和分析,并且发出警报。

3.2变电站设备的状态监测

技术发展的走向必然是状态检修,而且现在的电网正在从定期维修向状态检修过渡。定期维修是预防故障,状态检修是要在设备实时监测的基础上进行设备运行状态的判断和检修。电气设备状态检修工作内容主要有在线监测、故障判断、实施维修。要想顺利进行状态检修工作必须要研究电气设备的各种运行状态和故障模型,对设备运行中的数据和参数、检修情况等进行了解,对设备状态进行客观的评价。对电力变压器的状态监测可以通过分析故障模式进行,变压器和有载开关的在线监测是重点部分。变压器的在线状态监测内容主要有油中气体测量与分析、有载开关的触头磨损等。变压器在运行过程中会遇到老化的问题,设备的机械强度会变弱,材料老化收缩,变压器的有些运行方式会产热过多,会导致介质失效,可能会导致更为严重的后果。铁心温度测量、绕组温度多点测量、内部局部放电量检测等

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

智能变电站辅助系统综合监控平台介绍

智能变电站辅助系统综合 监控平台介绍 Prepared on 24 November 2020

智能变电站辅助系统综合监控平台 一、系统概述 智能变电站辅助系统综合监控平台以“智能感知和智能控制”为核心,通过各种物联网技术,对全站主要电气设备、关键设备安装地点以及周围环境进行全天候状态监视和智能控制,完成环境、视频、火灾消防、采暖通风、照明、SF6、安全防范、门禁、变压器、配电、UPS等子系统的数据采集和监控,实现集中管理和一体化集成联动,为变电站的安全生产提供可靠的保障,从而解决了变电站安全运营的“在控”、“可控”和“易控”等问题。 二、系统组成 (一)、系统架构 (二)、系统网络拓扑

交换机服务器 站端后台机 网络视频服务器 门禁 摄像摄像头 户外刀闸温 蓄电池在线监测开关柜温度监测 电缆沟/接头温度监测SF6监测 空调仪表 电压UPS 温湿度电流烟感 电容器打火红外对射 门磁 非法入侵玻璃破碎电子围栏 水浸 空调 风机灯光 警笛 警灯 联动 协议转换器协议转换器协议转换器 消防系统 安防系统 其他子系统 TCP/IP 网络 上级监控平台 采集/控制主机 智能变电站辅助系统综合监控平台将各种子系统通过以太网或 RS232/485接口进行连接,包括前端的摄像机、各种传感器、中心机房的存储设备、服务器等,并通过软件平台进行集成和集中监视控制,形成一套辅助系统综合监控平台。 (三)、核心硬件设备:智能配电一体化监控装置 PDAS-100系列智能配电一体化监控装置,大批量应用在变电站、开闭所 和基站,实践证明产品质量的可靠性,能够兼容并利用现有绝大部分设备,有效保护客户的已有投资。能够实现大部分的传感器解析和设备控制,以及设备内部的联动控制,脱机实现联动、报警以及记录等功能。工业级设计,通过EMC4级和国网指定结构检测。 智能配电一体化监控装置是针对电力配电房的电缆温度以及母线温度无 线检测,变压器运行情况以及油温检测、配电、环境、有害气体以及可燃气体

智能变电站综合监控系统解决方案

智能变电站综合监控系统解决方案 变电站作为电网“大动脉”的枢纽,在国家电网中具有举足轻重的作用。保证变电站的安全、可靠、稳定运行,实行对智能变电站的高效管理,对于打造坚如磐石、固若金汤的“坚强智电网”具有重要的意义。为了提升电力调度自动化以及电力生产安全管理水平,继遥测、遥信、遥控、遥调之后,遥视系统与其他安防技术的整合应用成为智能变电站建设的热点,并成为智能变电站智能辅助系统的重要组成部分。为了满足智能变电站电力调度自动化、安全管理的应用需求,朗驰推出了具有先进性、实用性、智能性、兼容性、可扩展性等特点的智能变电站综合监控系统解决方案。 变电站视频监控需求分析 变电站监控系统所承担的任务主要有两个方面:一是安全防范;二是保障变电站设备的正常运行。安全防范方面,主要是通过在围墙、大门等区域安装摄像机、防盗探测器来防止非法闯入,保障变电站空间范围内的建筑、设备的安全,防盗、防火。在重点部位,摄像机实现24小时不间断全天候录像,并与报警系统、消防系统等实现联动。变电站设备运行保障主要是通过摄像机、灯光联动来监视主变压器等重要设备,监视场地和高压配电间设备的运行状态,通过图像监控结合远程和本地人员操作经验的优势,避免误操作。同时,监控系统对主控室设备仪表盘、操作刀闸等设备进行监控,并配合其他系统(如变电站综合自动化系统等)的工作。在发生突发事件之后,通过与主站的双向音视频交流而进行事件应急处理。 变电站综合监控系统解决方案 变电站综合监控系统主要由视频监控系统、安全防范系统、综合监管平台、网络传输系统等构成。根据变电站综合监控系统的硬件组成,同时结合变电站综合监控应用的实际需求与特点,我们将整个变电站综合监控系统分为4个系统层次,既前端设备层、传输网络层、系统控制层与系统应用层,同时层与层之间采用标准的TCP/IP协议进行通讯,不受网络平台的限制。其系统结构如图一所示。 图一变电站综合监控系统架构图 1、视频监控子系统 在每个前端变电站根据现场需要,在变电站室外和门口处安装相应高速球型摄像机(保证报警时能快速响应进行联动录像),实现对变电站区域内场景情况的远程监视、监听。 在变电站室内(主要是主变室、高压室、地压室等),根据实际情况,可选定点彩色一体化摄像机用于对进出变电站人员进行监视;可根据远程管理人员的命令改变摄像机镜头的方位、角度、焦距等,用于对变电站内设备运行情况、现场环境进行监视。通过摄像机、拾音器采集来的音视频模拟信号接入网络视频编码器,网络视频编码器将摄像机采集的视频信号转化成数字格式的压缩码流后,通过以太网口接入其专用的网络进行传输。前端编码采用目

变电站在线监测配置方案

变电站状态监测系统解决方案 许继昌南通信设备有限公司 2011.11

目录 1、配置表 (1) 2、系统整体方案 (1) 3、产品介绍 (2) 3.1GIS监测相关装置 (3) 3.2变压器监测相关装置 (6) 3.3开关柜监测装置 (10) 3.4避雷器在线监测系统 (14) 3.5站内状态监测主站系统 (14)

1、配置表 根据110kV及以上变电站设备配置监测设备如下: 2、系统整体方案 设备状态监测和诊断的关键是在线监测技术,在线监测技术是实现智能设备状态可视化的必要手段,是状态维修的实现基础,为其提供了实时连续的监测数据和分析依据。有效的在线监测系统可以随时掌握设备的技术状况和劣化程度,避免突发性事故和控制渐发故障的发生,从而提高高压电气设备的利用率,有助于从周期性、预防性维修向状态检修的转变,改善资产管理和设备寿命评估,加强故障原因分析。 在线监测、故障诊断、实施维修整个一系列过程构成了电气设备状态检修工作的内涵。因此,积极发展和应用变电站设备在线监测系统的最终目的就是为了以状态检修取代目前的定期维修,为其提供了分析诊断的依据,是状态维修策略不可或缺的组成部分。智能变电站监测总体方案如下图:

IEC61850-8-1 IEC61850-8-1 智能组件 柜 变电站状态监测典型方案架构 状态监测系统系统结构 1)状态监测系统结构应为网络拓扑的结构形式,变电站内状态监测系统向上作为远方主站的网络终端,同时又相对独立,站内自成系统,层与层之间应相对独立,采用分层、分布、开放式网络系统实现各设备间连接。 2)站控层由状态监测系统综合平台组成,提供站内运行的人机界面,实现监视查看间隔层和过程层设备等功能,形成全站状态监测中心,并与远方主站状态监测系统进行通信。 3)间隔层由计算机网络连接的若干个综合数据集成单元组成(针对专业性较强,数据分析较为复杂的监测项目)。过程层由若干个监测功能组IED及状态监测传感器组成。 站控层综合数据单元均与过程层监测功能组主IED整合为状态监测IED,以减少装置数量,节约场地布置空间。过程层传感器由一次厂家成套。 4)状态监测IED采用IEC61850协议与站控层综合平台通信,各监测IED的评价结果通过站控层网络传输至综合平台,综合平台汇总并综合分析,监测数据文件仅在召唤时传送。 5)站控层综合平台设备与状态监测IED连接采用以太网,通信速率满足技术要求。 6)状态监测IED与过程层传感器的连接采用现场总线,通信速率满足技术要求。

变电设备状态维护—局部放电紫外检测技术

变电设备状态维护—局部放电紫外检测技术 由于电力需求日益增加,使得电力设备所使用的绝缘材料所承受的电气压力与日俱增,设备使用的寿命往往取决于绝缘材料的绝缘强度。电力设备由于运转操作、使用年数、使用频度及使用环境等影响,会逐年发生裂化,进而发生故障或事故,世界各国都投入大量的人力从事设备维护及研究故障预测的诊断技术。 早期变电所设备维护采用事后维护,即发生故障后才进行修理。后来发展为预防维护,即事先安排一定时间进行大修或更换零件,以防止突发事故。近而采用预知维护,从设备外部发觉异常征兆,事先预知其严重性,在未发生故障前予以处理。 变电设备维护检测方法 一, 方法簡介 变电设备是由机械、电气、化学等系统组合而成,因此用多项试验来分析设备的异常情况。一般变电设备预知诊断维护技术都先利用不停电方式检测设备有无异常,如发现异常状况再进一步作停电检测。电力公司现行不停电检测方式(Non-outage Tests)包括: 1, 红外线测温(Infra-red Emissions); 2,部分放电检测(Partial Discharge); 3, 油中气体分析(Dissolved Gas Oil Analysis); 4, 震动分析(Vibration Analysis); 5, 有载分接头切换器检测(Tap Changer/ Selector Condition); 6, 箱体状态(Tank Condition); 7, 油中含水量分析(Water Content Analysis); 8, 紫外线电晕检测(Ultraviolet Emissions)。 总体而言,变电设备不停电预知诊断监测系统的技术障碍在过去几年来已经逐渐克服,而且价格也逐渐降低,然而准确性与成本效益仍然是各电力公司考虑的主要因素。 变电设备维护方式也可分为两种,一种为定期维护(Time Based Maintenance, TBM),也是传统维护作业方式,依据设备制造商或电力公司规定的维护周期,定期实施维护作业,人力花费较多且要安排停电作业;另一种方式为状态维护(Condition Based Maintenance, CBM),可在不停电情况监测设备运转状态,如果发现异常,及时实施维护工作,可减少工作停电及维护人力,有效防范事故发生。 二、不停电预知维护目的: 1,评估设备使用状况 2,减少维护费用 3,预估设备使用寿命 4,提升工作人员安全 5,收集第一手资料,积累数据 三、不停电预知维护技术: 1,应用多重技术(Multi-Technology ) 2,资讯整合技术(Information Integration)

智能变电站与常规变电站的区别

智能变电站与常规变电站的区别 一、了解智能变电站 1、背景 伴随着工业控制信息交换标准化需求和技术的发展,国外提出了以“一个世界,一种技术,一种标准”为理念的新的信息交换标准:IEC61850标准。在国内,现有信息交换技术在变电站自动化领域体现出来的种种弊端严重制约了生产管理新技术的提高,因此,采用IEC61850实现信息交换标准化已经成为国内电力自动化业界的一致共识,同时,国家电网公司又提出了“建设数字化电网,打造信息化企业”的战略方针,如何提高变电站及其他电网节点的数字化程度成为打造信息化企业的重要工作之一。数字化变电站就是在这样的背景下提出来的。因此,数字化变电站是变电站自动化发展及电网发展的结果。 如今,我国微机保护在原理和技术上已相当成熟,常规变电站发

生事故的主要原因在于电缆老化接地造成误动、CT特性恶化和特性不一致引起故障、季节性切换压板易出错等。这些问题在智能(数字)化变电站中都能得到根本性的解决。另外,微机技术和信息、通讯技术、网络技术的迅速发展和现有的成熟技术也促成了数字化技术在电力行业内的应用进程。这几年国内智能化一次设备产品质量提升非常快,从一些试运行站的近期反馈情况可以看出,智能化一次设备已经从初期的不稳定达到了基本满足现场应用的水平。工业以太网是随着微机保护开始应用于电力系统的,更是成为近几年的变电站自动化系统的主流通信方式。在大量的工程实践证明站控层与间隔层之间的以太网通信的可靠性不存在任何问题。而间隔层与过程层的通信对实时性、可靠性提出了更高的要求,但通过近两年的研究与实践,这一难点问题也已经解决。可以说原来制约数字化变电站发展的因素目前已经得到逐一排除。 智能(数字)化变电站按照变电站自动化系统所要完成的控制、监视和保护三大功能提出了变电站内功能分层的概念:无论从逻辑概念上还是从物理概念上都可将变电站的功能分为三层,即站级层、间隔层和过程层。智能(数字)化变电站作为变电站的发展方向,主要解决现有变电站可能存在的以下问题:传统互感器的绝缘、饱和、谐振等;长距离电缆、屏间电缆;通信标准等。 智能(数字)化变电站与传统变电站相比,主要需对过程层和间隔层设备进行升级,将一次系统的模拟量和开关量就地数字化,用光纤代替现有的电缆连接,实现过程层设备与间隔层设备之间的通

变电站智能运检关键技术及应用

变电站智能运检关键技术及应用 摘要:“十三五”期间,电网规模将迎来爆发式增长,电网运行安全性要求也越来越高,依靠人力为主的传统运维检修模式导致运维能力提升有限,已经无法满足 迅猛增长的电网运维工作需求;同时传统的运维检修模式无法实现资源的优化配置,运检资源分配随意性较大,制约了运检效率的进一步提高。通过现代科技提 升变电站运检智能化水平,可有效提升设备可靠性和提高劳动生产率,是提高电 网安全稳定和缓解人力资源紧张的有效手段。 关键词:变电站;智能运检;技术 1运维平台 1.1 在线监视 建立变电站二次系统全景信息模型,应用纤芯自动搜索算法实现虚、实对应 的二次设备全景可视化展示技术,将智能变电站信息数字化、抽象化转变为可视 化的全景模式。在线监视应能实现如下功能:1)对全站二次设备运行工况、通 信状态的实时监视与预警。2)对全站二次设备告警信息、变位信息、压板状态 等各种信息的全景展示。3)对全站二次设备间通信链路状态的实时监视与可视 化展示。4)对全站二次设备虚回路、虚端子的实时监视与可视化展示。5)对保 护装置等间隔层设备温度、电压以及保护遥测的实时监视与展示。6)对保护装 置面板指示灯状态的正确反映。 1.2 状态评估及监视预警 电力二次设备“趋势性 + 损失性”的评价体系和“横向比对、纵向校验”的评价方法,实现智能站二次设备健康状态在线评价,实现“经验评估”向“量化评估”的跨越。趋势性评估方法:是指对装置稳态量的长期监视、记录和分析,反映一段时 间内元件性能的变化趋势,包括采样值精度、开关量一致性、运行及环境温度、 端口光功率、其他自检参数等,超出门槛值预警。损失性评估方法:是指当装置 发生异常告警时,通过对告警信息按类型进行分析和统计,推断故障的具体性质,如严重等级、持续时间、影响范围、最可能的故障位置等,为装置异常缺陷处理 提供辅助决策。 1.3 保护定值管理 针对种类繁多、厂家各异的继电保护装置,能否正确、可靠动作直接关系到 电力系统的安全稳定运行,而继电保护定值的管理显得尤为重要,对于智能变电 站保护定值的管理,应能够正确、可靠地实现定值召唤、定值区切换、定值修改、定值比对等功能。定值召唤应能支持同时通过本地和远方发起的进行定值区号和 任意区定值的召唤,并且能够直观地显示定值名称及相应属性等信息。支持定值 区实时切换,通过选择、返校、执行步骤保证定值切换的正确性。定值修改内容,应能支持同时通过本地和远方发起的对定值进行实时修改,并且能够对单一保护 设备的定值进行批量修改,定值修改后,向所有远端主站发送定值变化告警信号。定值比对功能,应能根据历史数据库保存的最新定值信息与新召唤上来的定值进 行自动或手动对比,当两份定值单不一致时,应触发告警功能,并标识定值不一 致处,以便运行人员进行快速检查、核对。当定值修改后,应能对修改前后的定 值进行自动校对,并对不一致的地方进行明显的标识。 2操作智能化 2.1 隔离开关分合闸状态的“双确认” 敞开式隔离开关在操作过程中的可靠性相比短路器要低,进行操作时需要操

智能变电站一体化监控标准系统

智能变电站一体化监控系统integratedsupervision andcontrolsystem ofsmartsubstation 按照全站信息数字化、通信平台网络化、信息共享标准化的基本要求,通过系统集成优化,实现全站信息的统一接入、统一存储和统一展示,实现运行监视、操作与控制、综合信息分析与智能告警、运行管理和辅助应用等功能。 全景数据panoramicdata 反映变电站运行的稳态、暂态、动态数据、设备运行状态以及图像、模型等数据的集合。 3.3 数据通信网关机communication gateway 一种通信装置。实现智能变电站与调度、生产等主站系统之间的通信,为主站系统实现智能变电站监视控制、信息查询和远程浏览等功能提供数据、模型和图形的传输服务。 综合应用服务器comprehensiveapplicationserver 实现与状态监测、计量、电源、消防、安防和环境监测等设备(子系统)的信息通信,通过综合分析和统一展示,实现一次设备在线监测和辅助设备的运行监视、控制与管理。 数据服务器dataserver 实现智能变电站全景数据的集中存储,为各类应用提供统一的数据查询和访问服务。 智能变电站自动化体系架构 a )智能变电站自动化由一体化监控系统和输变电设备状态监测、辅助设备、时钟同步、计量等共同构成。一体化监控系统纵向贯通调度、生产等主站系统,横向联通变电站内各自动化设备,是智能变电站自动化的核心部分; b )智能变电站一体化监控系统直接采集站内电网运行信息和二次设备运行状态信息,通 过标准化接口与输变电设备状态监测、辅助应用、计量等进行信息交互,实现变电站全景数据采集、处理、监视、控制、运行管理等,其逻辑关系如图 1 所示。

智能变电站辅助系统综合监控平台

智能变电站辅助系统综 合监控平台

一、概述 智能变电站辅助系统综合监控平台是智能变电站的重要组成部分,是集自动化技术、计算机技术、网络通信技术、视频压缩技术、射频识别技术以及智能控制术等技术为一体的综合信息平台,专门用于实现对变电站各种辅助生产系统的整合、优化、管理及控制,成为实施“大运行”战略体系不可或缺的重要技术手段。

二、目的 通过对现有孤立分散的各类二次系统资源进行规范整合,实现二次系统的优化配置、信息资源共享、部门间业务的无缝衔接,从而提高电网一体化运行水平,解决二次系统种类繁杂、运行信息割裂等问题,满足大运行体系建设的需要。 1、通过规范各类辅助生产系统的信息传输方式及通信规约,有利于统一化管理,方便新的智能化功能扩充。 2、可以实现变电站“数据集成、业务协同、管理集中、资源共享”的管理要求,实现信息的集中采集、集中传输、集中分析、集中应用,实现与其他系统的交互应用,从根本上消除产生“信息孤岛”的局面。 3、通过各种辅助生产系统的有机整合,不仅可以提升各子系统的性能,实现系统功能的统一管理及广泛联动,提高应急处理和反应能力,加强对意外灾害和突发事件的预防和管理能力。从而全面提升系统的智能化管理水平。 4、通过各种辅助生产系统的高度集成,统一上传,有利于远方人员对站内状况的全盘掌控,以加强对变电站的运行管理,提高对变电站辅助生产系统的监管质量,降低维护成本,提高运维效率。 三、适用范围 可广泛应用于各电压等级变电站/所、换流站、开闭站/所等场所。 四、产品功能

五、基于角色的差异化应用

六、九大子系统 智能变电站辅助系统综合监控平台包括视频联动子系统、火灾消防子系统、周界报警子系统、环境温湿度采集子系统、空调控制子系统、风机控制子系统、给排水控制子系统、灯光控制子系统、门禁控制子系统等九部分内容。 1) 视频联动子系统 视频联动子系统即将变电站的视频遥视的前端摄像机接入智能辅助系统的功能单元,是智能辅助系统的核心,提供与其它八个系统进行联动操作,实现视频共享及系统间协作功能。 a. 可接受其他系统的调用请求; b. 系统可保障原视频监控系统的系统功能与应用不受影响; c. 系统支持同一摄像机的多位置调用及多个摄像机的同一位置调用方式,即以目标为基础的监控模式。 2) 火灾消防子系统

智能变电站状态监测系统的设计方案

智能变电站状态监测系统的设计方案 发表时间:2015-12-23T12:01:03.160Z 来源:《电力设备》2015年5期供稿作者:王建树1 康园园2 张贤3 周玲4 [导读] 国网河北省电力公司检修分公司在传统电网升级为智能电网的过程中,变电站状态监测系统也必须向着智能化改造和建设的方向发展。 王建树1 康园园2 张贤3 周玲4 (国网河北省电力公司检修分公司 050000)摘要:在传统电网升级为智能电网的过程中,变电站状态监测系统也必须向着智能化改造和建设的方向发展。本文首先分析了智能变电站状态监测系统结构,其次重点分析了智能变电站状态监测系统设计方案中的关键因素,最后提出了相应的设计方案,具有一定的参考价值。 关键词:智能变电站;状态监测系统;设计方案1 智能变电站状态监测系统结构分析 一般来讲,智能变电站状态监测系统的组成主要包括主站系统、站端检测单元、设备综合监测单元以及传统的监测装置—状态监测主智能电子设备(IED)这四大部分。其功能主要用于采集、传输、存储、转发数据,同时在后台对这些数据加以处理,并且对数据的高级应用进行分析。此外,智能变电站状态监测系统采用的架构形式为主站/子站,通常情况下,在状态监测中心或者网省公司的数据中心这两个地点设置主站,主站由后台数据库、变电设备状态信息接入网关机(CAG)这两部分组成;在各个变电站的站内设置子站,子站的结构为三层两网,其中,三层指站控层、间隔层以及过程层。此外,主站通信传输系统有后台高级诊断分析系统、通信集成平台系统,作为接口平台,能够与外部数据进行交换,同时具有智能诊断、设备及变电站的图形化展示等高级功能。通常情况,变电设备CAG都具有DL/T860标准客户端所要求的相应功能,比如对子站传来的DL/T860标准服务方面的有关数据进行接收,同时在各个站端将状态数据上传完毕后,对该类数据进行实时获取,从而实现主站控制以及DL/T860标准服务等功能。而位于站控层的状态接入控制器(CAC),[1]通常称之为站端检测单元,它的功能主要表现在信息处理以及DL/T860标准服务器端这两个方面,其中在信息处理方面,它能够对装置以及IED运行状态进行监视,同时对变电站运行情况的监测数据进行实时集中的展示,从而初步实现分析、计算、统计数据以及显示图表等功能,此外,通过CAG以及CAC,智能变电站状态监测系统能够在主站系统的历史数据库中接入各个子站的运行监测数据;在DL/T860标准服务器端这一方面,能够接收由智能监测单元IED提供并传输过来的监测数据,同时对各个监测单元所提供的变电站不同运行状态下的数据进行汇集,接着向监测单元的IED进行数据召唤以及采样周期等相关指令的下发,最后将监测参量以及数据分析结论上传至状态监测的主站。 综合监测单元的具体位置在间隔层中,用于转换通信协议,其主要功能是处理一些简单信息、对控制指令进行及时的下达以及上传数据等。而状态监测IED安装的具体位置在过程层中,与被监测设备的主体相邻近,相比传统的状态监测装置,它能够对DL/T860标准通信协议起到有效的支持作用,这是传统状态监测装置所不具备的,而且当现场的高压设备状态为在线运行时,状态监测IED能够对该状态下的参数进行快速采集。 2 智能变电站状态监测系统设计的关键因素2.1 各系统间数据的交互 一般来讲,在运行方面,变电站的状态监测系统与其自动化运行系统是相互独立的,而且状态监测系统主要在电力系统网的三区运行,在物理层面上,同变电站监视控制与数据采集系统(SCADA)、自动化系统之间是隔离开的。通常情况下,采用可扩展标记语言技术(XML)、Web Service以及数据中心这三种手段对主站系统与状态检修系统、资产全寿命周期管理系统、生产管理系统间的数据进行交互,从而实现DL/T860与IEC61970这两个模型之间的转换,因而,变电站其他系统就能够调用状态监测系统传输来的主站监控装置的告警信息、测量值数据以及设备运行状态信息。各个系统间数据交互的具体过程为:首先,对各个监测设备向CAC提供的符合DL/T860协议加工的那些熟数据,CAC要进行实时接收,然后,再将这些数据推送至位于网省监控中心的变电CAG。一般而言,跨区域发送、获取信息,需要符合信息安全管理制度的相关要求,[2]基于这一点,在CAC接收由变电站综合自动化系统传输过来的电流、电压、功率等数据这一过程中,可以采用一些隔离装置,如单向硬件的物理隔离。 2.2 纵、横向信息的共享 一般而言,传统的状态监测系统在进行系统划分时,通常以业务类型为依据。这种划分方式不利于信息的共享。而智能变电站状态监测系统则突破了这一禁锢,该系统有效利用了DL/T860的应用优势,融合离散信息,从而实现纵、横向信息的共享。信息融合得以实现的前提是子站采用的信息模型必须符合DL/T860的统一标准,而且保证应用规范化的基础在于标准化数据。对从子站CAC传输过来的DL/T860标准熟数据,主站CAG要进行接收,之后,根据相关数据接入规范,将这些数据插至位于历史数据库的数据表中。对于制造厂家而言,数据接入规范具有一定的开放性和共享性,因此,在具体实践中,厂家必须共同遵循该规范。此外,我国电网公司的管理需求是统一信息平台、两级数据中心,具体来讲,即信息管理的发展方向从目前采集单一信息参量演变为融合诊断分析、综合监测多特征量,而信息融合恰恰能够满足这一需求。统一分析模型能够实现参数、接口的统一,具有一定的可扩展性以及二次开发功能,统一分析模型能够良好的适应智能变电站状态监测系统运行管理方法以及监测技术的不断发展。 2.3系统组网方式 传统状态监测系统的主通信模式依赖于CAN总线,具有一定的可扩展性、较高的稳定性以及较快的速度,但是在电磁兼容以及互操作方面却存在一些问题。众所周知,光纤明显的两个优点就是能够免受电磁的干扰以及带宽高。首先,将通信网络光纤化,即在状态监测系统的站控层、间隔层、过程层这三者两两之间安装100M的光纤以太网,[3]以此作为主通信的基础,同时,站控层的上位机会通过光纤以太网同监测装置IED进行连接,而且不同间隔IED之间的通信也是利用光纤以太网来完成的。其次,对通信协议进行统一。智能变电站状态监测系统的通信方式取代了传统监测系统中所应用的通信方式,如现场总线RS485以及CAN等。该系统中,站控层、间隔层以及过程层都依靠TCP/IP以太网来实现相互间的通信,具有良好的通信效果。3现阶段智能变电站状态监测系统的设计3.1新建智能变电站状态监测系统的设计

探究智能变电站的智能监测系统

探究智能变电站的智能监测系统 发表时间:2016-03-22T16:02:44.330Z 来源:《基层建设》2015年26期供稿作者:苏峰 [导读] 国电南京自动化股份有限公司目前,我国正在大力发展智能电网技术,其中智能变电站的建设是智能电网建设不可缺少的重要环节。 国电南京自动化股份有限公司 211100 摘要:目前,我国正在大力发展智能电网技术,其中智能变电站的建设是智能电网建设不可缺少的重要环节。在智能变电站监测系统的建设中,在线智能监测系统把各种监测设备联系到一起,对电网的安全建设与正常运行起着重要作用。本文主要通过对变电站的前端信号采集与处理系统,网络传输系统和监控中心系统等三部分的介绍,阐明了智能变电站的工作方式是先信号采集与处理再信号传输到最后的监测与控制。然后分析了其系统的相容性。 关键词:智能变电站;输变电设备;智能监测系统 引言 近年来,随着自动化技术的发展,智能监控技术正逐步渗透到各个岗位。智能变电站作为电网的重要组成部分,其智能化的建设实现将对建设整个电网智能化起到关键作用。而保证智能化变电站智能化目标实现的关键因素就是智能监控系统。通过智能监控系统,可以直观、及时的了解和掌握各变电站安全情况,并对于发生的紧急情况作出应急处理方案。因此,通过对智能化变电站智能监控系统的探讨对整个电网来说具有积极意义。 1 智能变电站智能监测系统的定义 所谓智能化变电站,主要是对变电站的智能化一次设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)的构建,实现24小时自动监控,减少值班人员的运行监盘。而智能监测系统则是通过网络化、信息数字化、共享标准化等方法,以先进、集成、可靠的智能化设备为主要平台完成实时监测设备状态、评估检修周期、自动控制电网、在线分析决策、智能调节调度等功能。使得电站运行变得更加安全、稳定。最终实现经济效益最大化的目的。 2 系统总体设计 2.1 智能监测系统结构 整个智能变电站在线智能监测系统可分成三个部分:前端系统、网络传输系统和监控中心系统。前端系统是指智能变电站在线监测系统对监控区域的图像采集和处理。工作过程是将前端摄像头采集到的信号经由模拟线缆接入到视频编码服务器中,再由视频编码服务器对相应的模拟信号进行编码和压缩,最后通过网络传输系统将压缩后的信号传往监控中心。变电站智能在线监测系统的系统结构图如图所示。 2.2 系统工作原理 智能变电在线智能监测系统就是把现场采集到的信号从变电站的现场采集摄像机中提取出来,再经由数据传输系统将其传输到监控中心的服务器上,也就是一个下行数据传输的过程。首先是把摄像机采集到的信号输入到各自的视频编码服务器中,然后这个服务器会对视频进行处理,先将这个信号清晰化,然后将其压缩,再把处理压缩后的信号发送到数据传输网络中,并通过数据传输网络把信号传输到监控中心。最后在监控中心的数据接收端收集来自前端的数据信息,由终端监控计算机对这些信号进行处理并进行解压缩,再通过计算机的图像电视显示墙以及声卡进行情景回放。 3 系统分部结构设计 3.1 前端子系统 变电站的监控范围称作前端现场,它主要由现场信号采集摄像机、云台和网络视频编码器三个部分组成。主要把现场摄像机采集到的模拟信号发送到视频编码服务器中,在这里视频信号会被压缩并编码成数字信号流。当变电站智能在线监测系统的监控管理中心需要查看相应的监控区域时,监控中心就会通过监控主机发出控制信号调用相应的摄像机,对前段摄像机进行控制。 3.2 网络传输系统 光同步数字传输网络是把不同类型的网元设备通过光缆路线组成的,这些不同类型的网元设备可以实现光同步数字传输网络的同步复用、交叉连接和网络故障自检、自愈等功能。交叉连接系统以灵活的分插任意支路信号,因此它可以用在光同步数字传输网络中点对点的传输,也可以在环形网和链状网的传输中应用。由于光信号在传输过程中会随传输距离的增加而产生衰耗,再生器的功能就是对光信号进行放大、整形处理,主要用于光信号的长距离传输中。当 SDH 传输网络在传输过程中某一传输通道出现故障时,数字交叉连接系统可以对复接段的通道进行保护,把这一信号接入保护通道中。 3.3 监控中心系统 变电站智能在线监测系统的监控中心系统主要是由图像监控服务器,监控管理系统和监控客户终端三部分组成的。由监控中心负责对远端和近端的现场监测设备进行统一管理,并且在管理中要对应好变电站的主控计算机,以便当相应的解码设备对相应的图像信息解码后,把还原后的信号发送到主控计算机中。最后在主控计算机上会显示相应的图像,并记录下变电站智能在线监测系统的的各设备、仪器仪表的使用情况和对应的状态,与此同时在监控中心外配置的大屏幕上可以对屏幕进行显示。变电站智能在线监测系统的控制中心可以对监控现场摄像机进行随意切换和控制。 4 系统相容性 智能变电站在线监测系统在智能监测的过程中不仅要做好监控工作,还要兼顾站内各系统相互间的关系,以防对监测结果产生影响。继电保护系统作为电网安全稳定工作的最后保护关口,它的安全性和可靠性都是最高的,这些特点也对自身有很高的要求,其中最基本的一点就是要保证系统的独立性。在变电站智能在线监测系统出现前电能量采集系统一般是通过拨号的方法向各监测部门发送相应的电量信息,这种方式比较落后。但是随着网络技术飞速发展和控制中心监控系统的改进,电量信息的网络传输也具有了另一种快速、方便的

智能变电站概述

智能变电站概述 第2 章智能变电站概述 2.1 智能变电站的定义和主要技术特点 所谓智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。 智能变电站具有数字化全站信息、网络化通信平台、标准化信息共享和互动化高级应用的主要技术特点。 (1)数字化全站信息。数字化全站信息是指实现一次、二次设备的灵活控制,并具有双向通信功能,可以通过信息网进行管理,满足全变电站信息采集、传输、处理、输出过程完全数字化。主要表现在信息的接地数字化,通过采用电子互感器,或者常规互感器就地配置合并单元,实现了就地数字化的信息采样;通过一次设备智能终端的配置,实现就地采集设备本体信息和就地执行控制命令。使电缆缩短,光缆延长。

(2)网络化通信平台。网络化通信平台是指使用基于IEC 61850 的标准化网络通信体系,具体表现是网络化传输全站信息。变电站能根据实际需求灵活选择网络拓扑结构,利用冗余技术增强系统可靠性;互感器的采样数据可通过过程层网络同时发送到测控、保护、故障录波及相角测量等装置,从而共享了数据;利用光缆代替电缆可大幅度减少变电站二次回路的连接线数量,同时提高了系统的可靠性。 (3)标准化信息共享。标准化信息共享就是形成基于一致的断面的唯一性、一致性基础信息,一致的标准化信息模型,通过一致的标准、一致的建模来实现变电站里外的信息交换和信息共享。具体表现在信息一体化系统下,将全站的数据按照一致的格式、一致的编号存放在一块儿,使用时按照一致的检索方式、一致的存取机制进行,避免了不同功能应用时对相同信息的重复建设。 (4)互动化高级应用。互动化高级应用就是实现各种变电站里外高级应用系统相关对象之间的互动,全面满足智能电网运行、控制要求。具体而言,就是建立变电站内全景数据的信息一体化系统,供各个子系统同一数据标准化规范化存取访问以及和调度等其他系统进行标准化交互;满足变电站集约化管理、顺序控制的要求,并能与相邻变电站、电源、用户之间的协调互动,支撑各级电网的安全稳定经济运行[5,6].

智能变电站新技术的应用

智能变电站新技术的应用 智能化的变电实施标准,导致变电站的设备和数量上,有所增加,从而能够在主要的问题上,进行处理和决定,以求带来更好地技术应用基础。只有加强节能环保的节能变电新技术,提高整体的能源利用率,智能变电站新技术的研究与应用才能起到真正的效果。 标签:国网智能;变电站;新技术;应用 1 智能变电站新技术的意义 对于智能变电站的新技术的应用研究,有着重要的研究意义。其中主要是以研究智能变电站的理论方法为主要关键点。对智能变电站的新技术研究,可谓实施智能变电站的新技术提供重要的方法观点和理论基础。并主要围绕智能变电站所要遵循的可靠、安全、节能环保的理念,进行可靠的分析研究。智能变电站所要遵循的可靠、安全、节能环保的理念,能够阻止全球变暖化的趋势,能够有效抵抗环境污染,改善环境,并能够做到节约社会资源,加强可利用资源的应用,为社会创造更多良好的经济效益和社会效益。其次便是智能化变电站的新技术,对于全国性智能变电的合理性实施奠定一个良好的基础,具有一定的现实意义。因为随着电子技术的智能化普及,全国各地的变电站已逐渐将智能化要求面向于各个变电站。主要是采用了一种分散式结构作为基础,这大大提高了智能变电站的可靠性、可扩充性、可维护性。智能变电站的技术人员,根据现存的技术条件,研发出一批新型的智能设备和技术,在保证变电站电力运行正常的基础上,逐渐推进整个技术进程。这是对智能变电站新技术进行研究设计的过程,也是不断发现问题解决问题的过程,通过这一过程设计出一整套建设方案,使得智能变电站的新技术更加具有一定的实用性、倡导性。 2 项目在实施过程中的创新点 (1)首次在智能变电站实现集中式保护测控方案,保护测控服务器集成了保护、测控、电能计量、故障测距等功能,减少保护测量装置、屏体数量,按常规组屏方案本期大约需要43面柜,按集成一体化方案仅需要10面柜,总体节省度达76.7%。 (2)实现采样值IEC 61850-9-2,对时信息IEEE-1588,GOOSE三网合一技术,实现全站信息共享;实现了过程层合并单元与智能终端一体化设计,提高了装置的可靠性,减少了交换机数量40%,减少了装置光纤接口数量67%。 (3)首次实现了变压器油色谱检测“一拖二”模式的变压器设备在线监测功能,提高了监测设备集成度,节约了检修维护成本。 (4)首次实现了单网双套集中式保护装置的检修方案,在各种运行方式及切换过程中均满足继电保护的性能要求,解决集中式保护故障或者检修时影响范

智能变电站在线监测技术研究(最新版)

智能变电站在线监测技术研究 (最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0855

智能变电站在线监测技术研究(最新版) 摘要:电网运行的稳定性可以通过设备的在线监测技术得到保障,文章总结了我国关于智能变电站所采用的在线监测技术,其中包括传感、信息处理、数据传输等智能技术的原理其优势,分析了我国目前在线监测发展情况,其中对于存在的问题进行研究,借此希望可以对电网自愈系统提供可靠的依据。 关键词:智能变电站;在线监测;技术 1智能变电站在线监测技术存在的问题 1.1在线监测技术共享功能需要进一步完善 要想实现智能变电站与供电系统中各个组成部分的信息数据共享功能,就必须要保证各个系统的数据收集速率保持在一个相同的水平。这样一来,就需要另外建立一个数据信息收集系统,将供电系统中各组成部分采集到的数据收集起来,然后再对数据传输速率

进行统一处理。这种方式的应用,不仅会降低智能变电站的工作效率,而且也会在一定程度上加大成本投入。 1.2在线监测技术的网络选择有待提高 网络连接方式以及数据传输速率,是影响在线监测技术在智能变电站中应用有效性的关键因素。所以,在选择在线监测技术所使用的网络平台时,必须要根据实际需要,选择更加经济、高效的供电网络系统。就当前供电系统中的网络选择方式来看,以太网的选择是比较普遍的。在应用以太网来搭建供电系统的网络系统时,首先,要注意的就是网络系统与变电站的兼容性,以确保智能变电站的稳定运行;其次,在建立网络系统时,必须要根据时代发展需要,设计具有双向通信功能的网络通道,以保证变电站工作的高效性;最后,就是网络选择的经济适用性,在保证供电质量的基础上,适当的控制成本投入。 1.3在线监测技术的稳定性较低 变电站主要是用来改变电压的,其工作的稳定性将直接影响到用户的用电质量。因此,提高在线监测技术在智能变电站中应用时

智能变电站技术的应用与发展分析

智能变电站技术的应用与发展分析 近年来,我国经济高速发展,作为经济发展的基础行业,电力系统也在不断发展创新,各种先进的技术不断得以应用,而作为电力系统中的重要一环,变电站的智能化也越来越受到重视,智能技术可以从根本上减少变电站的人员投入与人工操作引起的失误,通过运用自动化设备、电子计算机、新型智能设备等可以显著改善电力行业的经济价值,实现高效低耗的企业目标。电力部门坚持科学发展观可以为建设节约型社会做出贡献,智能变电站技术可以很大程度上保证电力系统的安全与稳定,为人民生活与经济发展提供稳定可靠持久的动力来源,为我国的经济发展与人民生活提供帮助。 1. 智能变电站技术基本概念与发展现状 国家电网颁布的《智能变电站技术导则》定义智能变电站是通过运用先进可靠、环保节能并且高集成度的智能化设备将整个变电站系统做成一个网络化、数字化、标准化的信息平台,从而实现变电站的信息处理的高效与可靠,并且完成信息收集、控制与保护等功能的自动化。通过智能技术的运用,使变电站单体与临近变电站、控制调度中心等部门实现自动控制、协同动作以及在线辅助分析等行为。通过智能变电站可以在很大程度上提高电网的稳定性与高效安全,对于我国的经济发展起到了非常重要的基础支撑作用。 据统计,目前我国的智能变电站系统通过采用先进的自动化数据采集与反馈系统,能够为变电站的自动化程度提高提供支撑。在新型变电站中,主要采用的是集中配屏、全部分散以及局部分散等几种模式,基于人工智能的图像分析识别技术在变电站二次设备智能巡检系统中的研究与应用主要研究针对二次屏柜进行智能监控,具体为以下3个方面:首先,所有的视频均通过以太网传输至智能算法在线分析服务器进行识别、分析及上传数据。其识别对象涵盖大部分二次屏柜内部对象。其次,开发数据管理及展示平台,将汇集的信息数据及监控画面显示至监控屏幕,供工作人员进行异常状态的监测、往期数据查询和报表查看等。最后,开发相应的APP,便于工作人员随时查验现场情况。未来变电站的全自动化是发展趋势,因此需要不断提高电气设备与计算机技术作为支撑。 2. 新一代智能变电站的功能

关于智能变电站一次设备相应状态在线监测的分析

关于智能变电站一次设备相应状态在线监测的分析 摘要:为适应国家对电网改造技术提升的要求,推进电网安全运行智能化、监测数字化的需要,近年来,我国的电力工业加大对智能电网的建设,智能变电站逐渐成为新建变电站的主要形式。本文通过分析智能变电站的在线监测系统,在相关标准的要求下,加强对智能变电站的一次设备的在线监测进行分析,将各种全站设备状态的监测数据进行传输、诊断和汇总分析,从而可以为以后的智能变电站的一次设备的使用提供良好的参考依据。 关键词:智能变电站;一次设备;在线监测 在我国智能变电站的建设中,将变压器和开关等一次设备在线监测以及故障分析作为变电站建设的重要技术研究,对于各种在线监测系统的配置进行技术和结构分析。在研究中,将重点放在变压器、断路器和避雷器等在线监测上,促进智能电网建设的全面升级。 1.在线监测和智能诊断技术简介 一次设备的绝缘老化的发展具有统计性,速度难以预测,大多有一定的发展期。前期表现为设备的物理,化学,电气等特性变化的征兆,通过对获取的信息进行分析和处理,可对设备的可靠性做出预测和判断,从而及早发现潜在的故障,为设备的检修提供依据。 目前,国网提出了建设以信息化,数字化,自动化,互动化为基本技术特征的坚强智能电网,在变电环节要求建设智能变电站,需要安装智能化设备,这都对变电站设备的选择,数据的采集,通信,分析,和控制环节提出了智能化的要求。智能化设备要求具有信息就地处理能力,并可实现对设备健康状况的自我检查。智能变电站一次设备的在线监测和诊断技术通过安装传感器对设备的实时状态进行数据采集,分析,并进行设备的安全评估和故障诊断。目的是为了实现变电站智能化及无人值班。 2.在线监测和智能诊断技术特点 在线监测技术的研究始于20世纪80年代初,最近10年来,随着计算机通信技术,微处理器技术,故障诊断技术和多传感器信息融合技术的发展,一次设备在线监测技术达到了实用化阶段并不断进步。目前其研究重点转移到监测项目完善,研究符合智能电网建设需求的智能变电站在线监测与智能诊断系统。 (1)信息共享平台化。支持信息一体化平台化的要求,站内数据信息共享;满足集中监控,顺序控制,状态检修等要求;站控层一体化平台和电力数据网相连。 (2)信息展现一体化。站内系统信息平台把经过整合的信息资源展现给用户,提供给用户最全面的全方位监测和故障诊断信息,大大提高了信息系统的效率。 (3)监测目标全景化。对整个变电站关键设备包括变压器,开关设备等进行全面的状态监测,实现监测目标全景化。 (4)系统构架网络化。网络结构分为站控层,间隔层,过程层三层网络结构,系统按照IEC61850协议进行网络化的数据传输和网络化控制。 (5)设备状态可视化。系统基于自监测信息和经由信息互动获得的设备其他信息,通过智能组件的自诊断,以智能电网其他相关系统可辨识的方式表述自诊断结果,使设备状态在电网中是可观测的。 (6)全站信息数字化。对高压设备本体或部件进行智能控制所需设备状态参量及进行就地数字化测量。测量结果可根据需要发送至站控层网络或/和过程层网络。设备状态参量包括开关设备分合闸状态,OLTC分接位置等。 (7)监测功能模块化。监测功能可根据需求对监测项目进行灵活配置,各监测功能模块基于统一的通信协议,具有即插即用得特点。 (8)通信协议标准化。全站实现通信协议标准化(IEC61850标准)站控层具有智能高级应用,可以向外部提供统一的网络服务接口。 3.在线监测和智能诊断技术分析 电力工业的不断发展促进智能电网的出现,随着智能电网的逐步普及,智能变电站的应用也相应拓展,而且已经成为新建变电站的主要形式。智能变电站拥有先进的技术导则和智

相关文档
最新文档