圆筒体积的测量的标准不确定度评定样本

圆筒体积的测量的标准不确定度评定样本
圆筒体积的测量的标准不确定度评定样本

”测量圆筒体积”不确定度评定

1、概述

根据……, 在环境温度为20℃下, 用

和高度H, 各对圆筒的不同位置测量6次,

测量值为:

圆筒不同位置测量结果

2、 数学模型

H D

V ?=2

)2

式中: V —— 圆筒的体积; cm 3

D —— 圆筒的直径; cm 。 H —— 圆筒的高度。cm 。

21)2(D H V c π=??=

、 H D

D V c 2

2π=??= 将上表中=D 1.0081cm 、 =H 10.0110cm 代入上式计算为: c 1=0.7982 cm 2

, c 2=15.8526 cm 2

3、 测量不确定度的来源

测量不确定度主要来源:

①、 圆筒高度测量引入标准不确定度; ? 游标卡尺的本身不确定度 ? 测量人员读数引入标准不确定度 ? 圆筒高度不均匀引入标准不确定度

②、 圆筒直径测量引入标准不确定度。 ? 千分尺本身不确定度;

? 测量人员读数引入标准不确定度; ? 圆筒直径不均匀引入标准不确定度;

测量仪器 测量人员 测量环境 测量方法 被测对象

4、 标准不确定度分量的评定

1、 圆筒高度测量引入标准不确定度( u 1) ①、 游标卡尺的本身不确定度( 11u )

游标卡尺的本身存在误差引入的标准不确定度根据游标卡尺的说明书〔或技术文件( 如检定规程等) 〕规定其最大允许误差为±0.020mm, 并经过检定且合格。假设测量值在最大允许误差范围内的概率分布为均匀分布, 即, 故其标准不确定度为:

②、 测量人员读数引入标准不确定度( 12u )

根据游标卡尺分度值0.01mm, 按1/20来估读, 则人员估读产生的测量不确定度为。

③、 圆筒高度不均匀引入标准不确定度(13u )

在圆筒的不同位置测量H , 共测量6次, 其测量数据见上表, 则标准不确定度)(3H u 为:

cm 000257.06

00063

.0)()(13====n H s H s u

综合上述分析, 得圆筒高度测量引入标准不确定度为

cm

0000144.001.03

220/112=?=u cm

00115.03

020.011==u

2

222

132122111000257.00000144.000115.0++=++=u u u u = 0.001178cm

2、 圆筒直径测量引入标准不确定度( u 2) ①、 千分尺的本身的标准不确定度)(21u

根据千分尺的说明书〔或技术文件( 如检定规程等) 〕规定其最大允许误差为±0.001cm, 并经过检定且合格。假设测量值在最大允许误差范围内的概率分布为均匀分布, 即3=k , 故其标准不确定度)(1H u 为:

cm 000577.03

001

.021==

u ②、 测量人员读数引入的标准不确定度)(22u

根据经验估计千分尺读数的分散性不超过最小分度的二分之一, 最小分度为0.0005cm, 假设概率分布为均匀分布, 则)(2H u 为:

a = 0.0005 cm /2=0.00025 cm ( 半宽)

cm 000144.03

cm 00025.022==u

③、 圆筒直径的不均匀引入的标准不确定度)(23u

在圆筒的不同位置测量D , 共测量6次, 其测量数据见上表, 则标准不确定度)(3D u 为:

cm 000416.06

00102

.0)()(23===

=n D s D s u 综合上述分析, 得圆筒高度测量引入标准不确定度为

2

222

232222212000416.0000144.0000577.0++=++=u u u u = 0.0007258cm 5、 合成标准不确定度的计算

根据标准不确定度分量评定结果, 按”不确定度传播律”进行合成得到”相对合成标准不确定度)(c V u ”。

22222211c )0007258.08526.15()001178.07982.0()()()(?+?=?+?=u c u c V u

= 0.01154cm 3

标准不确定度分量一览表

6、扩展不确定度的确定

选取包含因子k=2, 则扩展不确定度U为:

U = k·u c(V)=2×0.01154cm3=0.02308cm3 7、测量结果的最终表示

根据上述计算得到圆筒体积为:

V = 0.8070 cm3

则测量结果表示为:

V = (0.807±0.023) cm3( k = 2)

”测量圆筒体积”不确定度评定

1、概述

根据……, 在环境温度为20℃下, 用

各对圆筒的不同位置测量6次, 测量值为:

圆筒不同位置测量结果

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

测量不确定度评定和分析

测量不确定度评定和分析 【摘要】测量不确定度是评定测量水平的指标,是判断测量结果的重要依据,特别是在中国已加入WTO的宏观经济背景下,开展测量不确定度的评定,对测量领域与国际接轨具有十分重要的现实意义。本文对测量不确定度的评定方法进行了探讨,并结合电力计量实际工作,以典型的电能计量标准装置为实例进行了测量不确定度的评定和分析。 【关键词】测量;不确定度;评定 1 表示测量不确定度的意义 测量是科学技术、国内外贸易及日常生活各个领域中不可缺少的一项工作。测量的目的是确定被测量的值或测量结果。测量结果的质量,往往会直接影响国家和企业的经济利益。此外,测量结果的质量还是科学实验成败的重要因素之一。测量结果有时还会影响到人身安全,测量结果和由测量结果得出的结论,还可能成为决策的重要依据。因此,当报告测量结果时,必须对其质量作出定量的说明,以确定测量结果的可信程度。测量不确定度就是对测量结果质量的定量表示,测量结果的可用性在很大程度上取决于其不确定度的大小。所以,测量结果必须附有不确定度的说明才有完整意义。 2 测量不确定度评定与表示的应用范围 我国国家计量技术规范《测量不确定度评定与表示》,规定的是测量中评定与表示不确定度的一种通用规则,它适用于各种准确度等级的测量,而不仅限于计量检定、校准和检测。其主要应用在以下领域: (1)建立国家计量基准、计量标准及其国际比对; (2)标准物质、标准参考数据; (3)测量方法、检定规程、校准规范等; (4)科学研究及工程领域的测量; (5)计量认证、计量确认、质量认证及实验室认可; (6)测量仪器的校准和检定; (7)生产过程的质量保证及产品的检验和测试; (8)贸易结算、医疗卫生、安全防护、环境监测及资源测量

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

TEMUNGB化学分析中不确定度评定与表示方法规程

一、应用范围和领域 本规程给出了定量化学分析中评估和表述不确定度的详细指导。也适应于仪器校准中不确定度的评定,它是基于“ISO测量不确定度表述指南”〔〕中所采用的方法,适用于各种准确度和所有领域—从日常分析到基础研究、经验方法和合理方法。需要化学测量和仪器校准并可以使用本规程原理的一些常见领域有: (1)制造业中的质量控制和质量保证; (2)判定是否符合法定要求的测试; (3)使用公认方法的测试; (4)标准和设备的校准; (5)与标准物质研制和认证有关的测量活动; (6)研究和开发活动。 本规程未包括化学分析样品的取样和制样操作中不确定度评估。 本规程说明了应该如何使用从下列过程获得的数据进行测量不确定度评估: (1)实验室作为规定测量程序〔〕使用某种方法,对该方法所得分析结果的已识别来源的不确定度影响的评价; (2)实验室中规定的内部质量控制程序的结果; (3)为了确认分析方法而在一些有能力的实验室间进行的协同试验的结果; (4)用于评价实验室分析能力的水平测试项目的结果; (5)本系统内部比对样品的定值; (6)标准和设备的校准结果。 二、引用标准 2.1JJF 1059-1999《测量不确定度评定与表示》 2.2《化学分析中不确定度的评估指南》――中国实验室国家认可委员会 三、术语和定义 3.1不确定度(uncertainty) [测量]不确定度定义 表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。 注: 1此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。 2测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估算,也可用标准差表征。称为A类评定。另一些分量,则可用基于经验或其他信息的假定概率分布计算。也可用标准差表征,称为B类评定。 3测量结果应理解为被测量之值的最佳估计,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的(如,与修正值和参考测量标准有关的)分量。 4不确定度恒为正值。当由方差得出时,取其正平方根。

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么? 当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。于是可得标准不确定度和扩展不确定度之间的关系: U=kσ=ku 式中k为包含因子。 扩展不确定度U表示具有较大置信水准区间的半宽度。包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。 在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。 在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。 测量不确定度评定步骤? 评定与表示测量不确定度的步骤可归纳为 1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。 2)评定标注不确定度分量,并给出其数值ui和自由度vi。 3)分析所有不确定度分量的相关性,确定各相关系数ρij。 4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v . 5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度 U=kuc。 6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc 或展伸不确定度U,并说明获得它们的细节。 根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。 我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤, 一、概述 二、数学模型 三、输入量的标准不确定度评定 这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定 这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。 四、计算合成不确定度 五、计算扩展不确定度 六、最后的不确定度表示 一般试验室能力验证,查的就是不确定度报告,按这个格式就可以

测量不确定度的评定.

第一章入门 1、测量 1.1 什么是测量? 测量告知我们关于某物的属性。物体有多重,或有多热,或有多长。测量赋予这种属性一个数。 测量总是用某种仪器来实现。 测量结果由部分组成:数,测量单位。 1.2什么不是测量 有些过程看起来像是测量,然而并不是。两根绳子作比较,不是测量。计数通常也不认为是测量。对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。 2、测量不确定度 1.1 什么是测量不确定度? 测量不确定度是对任何测量的结果存有怀疑。对每一次测量,即使是最仔细的,总是会有怀疑的余量。可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。 2.2测量不确定度表述 回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。 比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。写成:20cm±1cm,置信概率为95%。表明棍子长度在19厘米到21厘米之间有95%的把握。

2.3 测量不确定度度重要性 考虑测量不确定度更特殊的理由; 校准——在证书上报告测量不确定度。 检测——不确定度来确定合格与否。 允差——不确定是否符合允差以前,你需要知道不确定度。 3、关于数字集合的基本统计学 3.1操作误差 “测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。任何测量至少进行三次,防止出操作误差。 3.2基本统计计算 两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。 3.3获得最佳估计值——取多次读数的平均值 重复测量出不同结果的原因: 进行的测量有自然变化; 测量的器具没有工作在完全稳定状态; 重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。 3.4多少次读数求平均 10次是普遍选择的.根据经验通常取4至10次读数就够了。 3.5分散范围—标准偏差 重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

气相色谱仪不确定度评定分析-共8页

气相色谱仪检测限检定结果的CMC 评定 概述 气相色谱仪的检定根据JJG700—2019《气相色谱仪》检定规程进行。检测限(包括F1D 、FPD 、NPD 、ECD 检测器)和灵敏度(TCD 检测器)反映了检测器的敏感度,是仪器重要的计量指标。 检定依据:JJG700—2019(气相色谱仪检定规程》。 测量环境条件:温度(5~35)℃ ,相对湿度(20~85)%。 一、火焰离子化检测器( FID)检测线检定结果的不确定度评定 1、检定过程概 1.3 测量标准:正十六烷-异辛烷溶液,1mL /瓶,100ng/ L ,不确定度为 =3%,k=2。 微量进样器,10μL ,相对标准偏差为1%。 1.4 被测对象:气相色谱仪型号:GC7890F ;检测器名称:FID 。色谱工作站:T2019P 。 1.5 测量过程:检定时,选择适宜的色谱条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微量进样器准确量取1.0 μL 标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A ,按公式计算出检测限。并设定毛细柱分流比为1:10,故实际进样量为0.1uL 。 2 建立数字模型 FID 2NW D =A 式中: D FID ——FID 检测限,g/s ;N ——基线噪声,A ; W ——正十六烷进样量,g ;A ——正十六烷峰面积的平均值,A ·S 。 3 方差与灵敏系数 2222222()()()()()()()u D u A c A u N c N u W c W =++ 为评定方便,采用相对标准不确定度评定,则有: ()1,()1,()1 ()()()()(),(),()222() ()2rel rel rel rel rel c A c N c W u D u N u A u W u N u A u W N A W u D u D D ======== 其中: 4 各分量的相对标准不确定度的分析 4.1 正十六烷峰面积A 的相对标准不确定度评定u rel (A ) 峰面积A 的不确定度主要由人员操作的重复性、进样的重复性、色谱数据处理系统积分面积的重复性等因素引入,可以通过连续测量得到测量列,采用A 类方法进行评定。 选择适当的色谱仪条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

拉伸试验结果的测量不确定度报告

拉伸试验结果的测量不确定度评定 1试验 检测方法 依据GB∕T228-2002《金属材料室温拉伸试验方法》进行试样的加工和试验. 环境条件 试验时室温为25℃,相对湿度为75%. 检测设备及量具 100kN电子拉力试验机,计量检定合格,示值误差为±1%;电子引伸计(精度级);0~150㎜游标卡尺,精度0.02mm;50mm间距的标距定位极限偏差为±1%。 被测对象 圆形横截面比例试样,名义圆形横截面直径10 mm。 试验过程 根据GB∕T228-2002,在室温条件下,用游标卡尺测量试样圆形横截面直径,计算原始横截面积,采用电子拉力试验机完成试验,计算相应的规定非比例延伸强度、上屈服强度R eH、下屈服强度R eL、抗拉强度R m、断后伸长率A及断面收缩率Z。 2数学模型 拉伸试验过程中涉及到的考核指标,R eH,R eL,R m,A,Z的计算公式分别为 = ∕S0(1) R eH=F eH∕S0(2) R eL= F eL∕S0(3) R m=F m∕S0(4) A=(L U-L0)∕L0(5) Z=(S0-S)∕S0(6) 式中———规定非比例延伸力; F eH———上屈服力; F eL———下屈服力; F m———最大力; L U———断后标距; L0———原始标距; S0———原始横截面积; S u———断面最小横截面积。 3测量不确定度主要来源 试验在基本恒温的条件下进行,温度变化范围很小,可以忽略温度对试验带来的影响。 对于强度指标,不确定度主要分量可分为三类:试验力值不确定度分量、试样原始横截面积测量不确定度分量和强度计算结果修约引起的不确定度分量. 对于断后伸长率A, 不确定度主要分量包含输入量L0和L U的不确定度分量. 对于断面收缩率Z, 不确定度主要分量包含输入量S0和S u的不确定度分量. 4标准不确定度分量的评定 试验力值测量结果的标准不确定度分量 4.1.1试验机误差所引入的不确定度分量

TG-04-989 化学不确定度评定示例

中检集团南方电子产品 测试(深圳)有限公司 发布日期:2013年04月23日 实施日期:2013年05月10日 作业指导书 化学不确定度评定示例 CCIC-SET/TG-04-989 编制: 杨 勇 审核: 邓春涛 批准: 王克勤

2013年05月10日生效

不确定度评定练习试题2013-01 Cd 214.439 加标1ppm 回收率的不确定度评定计算 (中检集团南方电子产品测试(深圳)有限公司 化学部 杨勇) 一、测量及不确定度评定对象 依据IEC62321:2008 标准,对塑料样品采用粉碎后用微波消解法进行处理,使其中的待测元素 Cd 成为可溶性盐类溶解在酸消解液中。将酸消解液定容至25ml ,导入ICP-OES 中进行测定,从而定量样品中的 Cd 。对测定结果的不确定度进行分析,找出影响测定结果不确定度的因素,对不确定度进行评估,如实反映测量的置信度和准确性。 本次评定采用加标试验的方法,评定待测溶液浓度(ml g /μ)、加标回收率(%)、假定为实际样品的 Cd 含量(kg mg /)的测量不确定度。 二、测定方法描述 1、测量过程 (1) 称取约0.2g 塑料样品(经过粉碎)于消解罐中。加入10ml g /μ的 Cd 标准溶液1ml ,加入8ml 硝酸与2ml 双氧水,按照规定程序使之消解完全;;冷却,转移至于25ml 的容量瓶中,用10%硝酸定容至刻度以备分析。 (2) 用 Cd (编号为:GSB XXXX,,1000ml g /μ,不确定度为:2ml g /μ,%95,2==p k ),首先配制10.0ml g /μ,用1ml 移液管取1ml ,用10%硝酸定容于100ml 容量瓶中。 (3)从10ml g /μ分别使用25ml 、10ml 、5ml 取满刻度溶液到100ml 容量瓶中,分别得到2.5ml g /μ、1.0ml g /μ、0.5ml g /μ的标液。 (4)从10ml g /μ使用25ml 、10ml 、5ml 分别取(25+10+5)ml 、(10+5)ml ,定容到100ml 容量瓶中,分别得到4.0ml g /μ、1.5ml g /μ的标液。 (5) 以上均使用10%硝酸定容,同时做空白;采用0.5、1.0、1.5、2.5、4.0ml g /μ共5点绘制工作曲线 (6)取样0.2g,加标取10ml g /μ标液1ml,前处理完成后,定容于25ml 容量瓶,平行样9个;均使用10%硝酸定容,同时做空白。 (7) 在ICP 上于Cd 214.439nm 处测定,以空白标准溶液,进行标准曲线法测量,采用线性回归法算出工作校准曲线,从校准曲线上求得样品的 Cd 浓度,根据公式(1)计算样品中的Cd 含量。 2、测量结果计算公式 (1)实际样品的测量不确定度评定 被测元素含量以质量分数M W 计,数值以kg mg g g ppm /,/,或或μ表示,按下式计算: m d V C W M ??= 0……………………………………………………………(1) 式中: 0C —在校准曲线上查得试液中被测元素浓度的数值,单位为微克每毫升(ml g /μ); V ——样品溶液的体积,单位为毫升(ml ); d -样品溶液的稀释倍数; m —试样量,单位为克(g )。 取9次次测试结果的算术平均值,报告结果。 (2)待测样品溶液浓度的测量不确定度评定 被测元素浓度含量以0C W 计,数值以ml g /μ表示,按下式计算: n C W i s C ∑-= (2)

分析测试中测量不确定度及评定

不确定专题 文章编号:1000-7571(2006)04-0089-06 分析测试中测量不确定度及评定 第五部分 测量不确定度评定中 要注意的一些问题 曹宏燕 (武汉钢铁集团公司技术中心,湖北武汉 430080) 摘 要:对A 类和B 类不确定度评定的概念、合成标准不确定度的评定方法、温度对溶液体积 的影响等几个容易混淆和在评定中要注意的问题进一步讨论,提出一些新的认识,有助于对测量不确定度评定概念的理解,并对评定中的具体问题作出正确、合理的判断。关键词:测量不确定度;A 类不确定度;B 类不确定度;合成标准不确定度;评定 中图分类号:O651 文献标识码:A 收稿日期:2004-06-08 作者简介:曹宏燕(1941-),男,教授,从事钢铁材料化学分析,Tel :023*********,E 2mail :caohy 2yh @https://www.360docs.net/doc/915212562.html, 。 作者在本专题(第一至第三部分)对分析测试中测量不确定度的概念、评定的基本方法、主要不确定度分量的评定作了较为系统的介绍[1-3],并随后发表在本刊6个不确定度评定实例中剖析了不同类型分析方法评定的要点。但是,在不确定度评定实践中,还可能遇到一些具体问题,这些问题在不同的著作和论文中亦有不同的认识。以下就对标准不确定度A 类评定和B 类评定的认识、合成不确定度的评定方法、温度对溶液体积的影响及不确定度评定中的误区等几个容易混淆和要注意的问题作进一步讨论。 1 标准不确定度的A 类评定和B 类 评定 标准不确定度的A 类评定和B 类评定并无本质差别,只是评定方式不同而已。它们都基于概率分布,并都用标准差或方差表示,只是方便起见而称为不确定度的A 类评定和B 类评定。因此,指出某个分量是用统计方法得出的,某个分量是用非统计方法得出的,在不确定度评定中并不重要,重要的是评定的可靠性。 有些不确定度分量的评定可以认为是A 类不确定度评定,在另一情况下又可认为是B 类不确定度评定。不确定度的B 类评定中大量用到 技术说明书、技术资料和以往经验所提供的数据 和参数,这些数据和参数都是建立大量重复测量和对数据统计的基础上,即亦是通过统计方法得出来的(即A 类不确定度评定)。例如,不少分析方法标准列出的方法重复性限(r )和再现性限(R )的函数关系式,是由多个实验室对多个水平的样品进行实验室间共同试验,通过对大量实验数据统计而得来的;又如,容量器皿给出的体积允许差,亦是通过大量实验统计而得到的。这些数据和参数在共同试验数据进行统计时是A 类评定,而在随后引用时是B 类评定。理论上讲,每个实验室都可以对这些B 类不确定分量进行实地试验,用统计方法计算其标准不确定度(属于A 类评定)。但是,这需要对实验方法有充分的了解并花费大量的时间、精力和物力,而且不是每个实验室都能做到的,也没有必要这样做。 2 不确定度评定的可靠性 不确定度的评定中要充分利用仪器设备的校准证书、检定证书、准确度等级、极限误差或有关 技术说明书、技术资料、分析方法标准和手册所提供的数据及不确定度,这些数据和参数不少都是以技术标准或规范的形式规定下来,具有较高的可靠性和实用性,可直接引用进行不确定度分量 — 98—

至今见过的最规范的不确定度评定的例子!

至今见过的最规范的不确定度评定的例子! 不确定度是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。在报告结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。今天,仪器论坛版友六弦琴为大家找来了不确定度评定的范例,供大家参考。如有疑问,请点击阅读原文版友将为大家详细解答 点击图片查看大图不确定度评定中需要注意的几个问题a) 抓住影响测量不确定度主要分量的评估,避免漏项。通常测量重复性分量、标准物质不确定度分量、工作曲线变动性分量等在合成标准不确定度中所占比重较大,须逐一评估。对某些不可能进行多次的测定,无重复性数据,应尽可能采用方法精密度参数或以前在该条件下的测试数据进行评估。b)忽略次要不确定度分量的影响。有些分量量值较小(属微小不确定度),对合成不确定度的贡献不大。例如,一个分量为1.0,另一个分量0.33,二者的合成不确定度为1.05,相差5%,即分量0.33在合成标准不确定度中的贡献可忽略。通常试料称量、相对原子量、物质的摩尔质量等分量相对于测量重复性、工作曲线变动性分量要小得多,一般可忽略。 c)不确定度评估中避免重复评估。如当已评估了测量重复性

分量,不必再评估诸如样品称量、体积测量、仪器读数的重复性分量。 d)不应将一些非输入量的测量条件当作输入量评估。例如,重量法中高温炉灼烧温度的变动性,测定碳、硫时氧气纯度的变动性,光度分析中波长的精度等,它们不是输入量,其对测量结果的影响反映在测量重复性中,不应将其作为分量进行评估。 e)合成标准不确定度和扩展不确定度通常取一位或两位有效数字。计算过程中为避免修约产生的误差可多保留一位有效数字。修约时可采用末位后面的数都进位而不舍去,也可采用一般修约规则。测量结果和扩展不确定度的数位一致。

相关文档
最新文档