乳化与去乳化的研究

乳化与去乳化的研究
乳化与去乳化的研究

乳化与去乳化的研究

摘要:我们通过研究不同表面活性剂体系高效化学破乳剂的合成与复配以及液液两相乳状液的形成、稳定、凝聚、消除机理,探讨了乳状液稳定性的影响因素,乳状液消除的机制。研究了不同化学结构的表面活性剂,对生物乳化体系消除的机理和乳化消除的动力学过程。通过研究不同表面活性剂复配后协同破乳化的机制,破乳剂与助溶剂、稳定剂等添加试剂之间的相互作用及配伍性,筛选得到高性能适合系列复合破乳剂,同时考察了无机盐离子、温度等因素对破乳效果的影响。针对不同的生物乳化体系,考察了不同生物质成分与表面活性剂成分作用的机制,研究针对不同生物质体系最适破乳剂复配技术。结合实际生产过程及原材料研究了高效复合化学破乳剂的现场应用工艺。

关键词:乳化去乳化乳化剂液体研究

前言:乳化是一种液体以极微小液滴均匀地分散在互不相溶的另一种液体中的作用。乳化是液-液界面现象,两种不相溶的液体,如油与水,在容器中分成两层,密度小的油在上层,密度大的水在下层。若加入适当的表面活性剂在强烈的搅拌下,油被分散在水中,形成乳状液,该过程叫乳化。乳化液是指至少有一种液体以液珠的形式分散在另一种液体中形成的一种高度分散的非均相体系。乳化压裂液是20世纪70年代发展起来的压裂液体系,分为水包油乳化压裂液和油包水乳化压裂液两种类型。乳化体系具有良好的增粘能力,粘度调节方便,滤失量低等特点,在20世纪70年代中期到80年代有较快的发展,并作为经济有效的压裂液使用于低压油气藏。水包油乳化压裂液具有比油包水乳化压裂液摩阻小、流变性便于调节、易返排的优点,在我国新疆、吐哈等油田多次施工并取得了一定的效益。

理论上,油相和水相在没有表面活性物质的作用下,是不会发生乳化作用的,但在实验中发现大庆原油与水在一定程度上都发生了乳化作用.实验采用4种不同的水源分别与原油混合振荡发生了乳化作用,从各种水源与油的界面张力、原油黏度以及原油的组分和各种水源的矿化度等方面进行了研究和探讨。这些研究对于进一步认识原油与水的乳化作用,涉及的相态变化以及认识和了解驱油机理具有重要的理论和实际意义。[1]

一、乳化的理论与原理

乳状液是化妆品中最广泛的剂型,从水样的流体到粘稠的膏霜等。因此,乳状液的讨论对化妆品的研究和生产及保存和使用有着极其重要的意义。

乳化原理在制备乳状液时,是将分散相以细小的液滴分散于连续相中,这两个互不相溶的液相所形成的乳状液是不稳定的,而通过加入少量的乳化剂则能得到稳定的乳状液。对此,科学工作者从不同的角度提出了不同的理论解释,这些乳状液的稳定机理,对研究,生产乳状液的化妆品有着重要的理论指导意义。

二、乳化技术与方法

乳状液是由水相和油相所组成的,乳状液的制备一般是先分别制备出水相和油相,然后再将它们混合而得到乳状液。

乳化方法制备乳状液的乳化方法,除了前述的初生皂法、剂在水中法、剂在油中法之外,还有油、水混合法,转相乳化法,低能乳化法低能乳化法简记为LEE。[2]

三、影响乳化的各种因素

1、乳化设备

制备乳状液的机械设备主要是乳化机,它是一种使油、水两相混合均匀的乳化设备,目前乳化机的类型主要有三种:乳化搅拌机、胶体磨和均质器。乳化机的类型及结构、性能等与乳状液微粒的大小(分散性)及乳状液的质量(稳定性)有很大的关系。一般如现在还在化妆品厂广泛使用的搅拌式乳化机,所制得的乳状液其分散性差。微粒大且粗糙,稳定性也较差,也较易产生污染。但其制造简单,价格便宜,只要注意选择机器的合理结构,使用得当,也是能生产出一般复合质量要求的大众化的化妆品的。胶体磨和均质器是比较好的乳化设备。近年来乳化机械有很大进步,如真空乳化机其制备出的乳状液的分散性和稳定性极佳。格里芬(Griffin)曾对不同类型乳化机与乳状液粒径大小分布关系进行过试验研究,其结果如下表。乳化设备与微粒粒径分布关系乳化机类型微粒大小范围(微米)1%乳化剂 5%乳化剂 10%乳化剂推进式搅拌涡轮式搅拌器胶体磨均质器。

2、温度

乳化温度对乳化好坏有很大的影响,但对温度并无严格的限制,如若油、水皆为液体时,就可在室温下依借搅拌达到乳化。一般乳化温度取决于二相中所含有高熔点物质的熔点,还要考虑乳化剂种类及油相与水相的溶解度等因素。此外,二相之温度需保持近相同,尤其是对含有较高熔点(70℃以上)的蜡、脂油相成分,进行乳化时,不能将低温之水相加入,以防止在乳化前将蜡、脂结晶析出,造成块状或粗糙不均匀乳状液。一般来说在进行乳化时,油、水两相的温度皆可控制在75℃-85℃之间,如油相有高熔点的蜡等成分,则此时乳化温度就要高一些。另外在乳化过程中如粘度增加很大,所谓太稠而影响搅拌,则可适当提高一些乳化温度。若使用的乳化剂具有一定的转相温度,则乳化温度也最好选在转相温度左右。乳化温度对乳状液微粒大小有时亦有影响。如一般用脂肪酸皂阴离子乳化剂,用初生皂法进行乳化时,乳化温度控制在80℃时,乳状液微粒大小约1.8-2.0μm,如若在60℃进行乳化,这时微粒大小约为6μm。而用非离子乳化剂进行乳化时,乳化温度对微粒大小影响较弱。

3、乳化时间

乳化时间显然对乳状液的质量有影响,而乳化时间的确定,是要根据油相水相的容积比,两相的粘度及生成乳状液的粘度,乳化剂的类型及用量,还有乳化温度,但乳化时间的多少,是为使体系进行充分的乳化,是与乳化设备的效率紧密相连的,可根据经验和实验来确定乳化时间。如用均质器(3000转/分钟)进行乳化,仅需用3-10分钟。

4、搅拌速度

乳化设备对乳化有很大影响,其中之一是搅拌速度对乳化的影响。搅拌速度适中是为使油相与水相充分的混合,搅拌速度过低,显然达不到充分混合的目的,但搅拌速度过高,会将气泡带入体系,使之成为三相体系,而使乳状液不稳定。因此搅拌中必须避免空气的进入,真空乳化机具有很优越的性能。

四、乳化剂的选择原则

(1)选用憎水基与被乳化物质相似的乳化剂;

(2)选择几种乳化剂混合;

(3)选择易溶解的乳化剂;

(4)选择亲水性较好的乳化剂和亲油性较好的乳化剂混合使用;

(5)使用同一憎水基原料制成的不同亲水性的同系复合乳化剂;

(6)制备O/W状液以水溶性乳化剂为主,其余各乳化剂用量按HLB顺序在主乳化剂两侧成倍递减;

(7)复合乳化剂的HLB值应大体跟乳化的油性物质相同。[3、4]

五、去乳化与强力去污乳化剂

根据乳化的程度和乳浊液的形式,采用适当的方法去除乳化现象,如采用过滤或离心,加热、稀释、加电解质等方法。是一种由高浓缩表面活性剂合成的低泡沫油污乳化剂,与主洗粉配合使用可有效去除工装、台布、餐巾上的重油污垢,可防止毛巾、床单等织物的污垢再沉淀,提高所洗织物的洗涤质量。[5]乳化剂一般是表面活性剂与矿物油和油脂的混合物,但也可以溶于水。它可以通过把油和油脂分解成非常细小的颗粒而将其形成的污垢从面料驱逐下来。一旦乳化在水中,油和油脂即可通过稀释作用被移除。

乳化剂有助于在洗涤过程中去除衣物上粘着的矿物质油或油脂。如果和适量的碱和洗涤剂混合则可以用来去除汽油。碱和喜油的表面活性剂相结合可以将油和油脂形成的小珠分解成非常细小的颗粒。之后,乳化剂就会将其包围并在其表面形成—层奶状物质。这样在乳化和溶入水之后,油和油脂就会通过稀释作用而被去除了。[6]

六、乳化和去乳化

乳化属于胶体化学范畴,是指一种液体以西小液滴(分散相)的形式分散在另一个不相容的液体(连续相)中,这种现象属于乳化现象,生成这种液体成为乳状液或乳浊液。

在液液萃取的过程中,往往会在两项界面产生乳化现象,这种现象对萃取的过程是不利的,给料液的分离带来了麻烦,即使采用离心机,也难将两相完全分离,如果萃取后的废水效价过高(夹带溶媒),岗位收率就会降低,经萃取的一次BA夹带滤液,造成后续工序的精致困难。[7]

研究了不同化学结构的表面活性剂,对生物乳化体系消除的机理和乳化消除的动力学过程。通过研究不同表面活性剂复配后协同破乳化的机制,破乳剂与助溶剂、稳定剂等添加试剂之间的相互作用及配伍性,筛选得到高性能适合系列复合破乳剂,同时考察了无机盐离子、温度等因素对破乳效果的影响。针对不同的生物乳化体系,考察了不同生物质成分与表面活性剂成分作用的机制,研究针对不同生物质体系最适破乳剂复配技术。[8]

总结:在生物萃取分离体系(微生物发酵、动、植物细胞中有效成分分离)中,乳化是一种常见的现象。我们通过研究不同表面活性剂体系高效化学破乳剂的合成与复配以及液液两相乳状液的形成、稳定、凝聚、消除机理,探讨了乳状液稳定性的影响因素,乳状液消除的机制。研究了不同化学结构的表面活性剂,对生物乳化体系消除的机理和乳化消除的动力学过程。通过研究不同表面活性剂复配后协同破乳化的机制,破乳剂与助溶剂、稳定剂等添加试剂之间的相互作用及配伍性,筛选得到高性能适合系列复合破乳剂,同时考察了无机盐离子、温度等因素对破乳效果的影响。针对不同的生物乳化体系,考察了不同生物质成分与表面活性剂成分作用的机制,研究针对不同生物质体系最适破乳剂复配技术。结合实际生产过程及原材料研究了高效复合化学破乳剂的现场应用工艺。

参考文献:

[1]杨辉荣,区国勇,宋晓锐,雷雨;我国食品乳化剂的现状和展望[J];精细化工;2000年11期.

[2] 穆锐,邓爱民,尾见信三;用SPG膜乳化法合成单分散性高分子微粒子[J];高分子材料科

学与工程;2003年04期.

[3] 李十中.表面化学原理和膜技术在药物分离与纯化过程中的应用[J];中国抗生素杂志,2005,30(1);15.

[4] 刘袖洞;膜乳化内部凝胶化过程及海藻酸钙凝胶珠性能研究[D];中国科学院研究生院(大连化学物理研究所);2002年.

[5] 张志兰;去乳化剂PPB在力复霉素提炼中的应用[J];中国抗生素杂志;1981年03期.

[6] 张浩,周重慰,吴凤鸣;去乳化剂溴代十五烷吡啶中的杂质影响青霉素钾盐澄明度的研究[J];中国抗生素杂志;1980年05期.

[7] 谷和平;陶瓷膜处理含油乳化废水的技术开发及传递模型研究[D];南京工业大学;2003年.

[8] 朱珠,孙元宾;乳化剂的功能及其在食品中的应用[J];食品研究与开发;2003年02期.

乳化柴油

乳化柴油 乳化柴油(微乳化柴油)是水(或甲醇)和柴油通过乳化剂、助乳化剂在一定乳化设备经乳化而形成的油包水(W/O)型(透明)乳液。 一、性质 微乳化柴油是视觉透明的,乳化油则是不透明的; 乳化油的粒径约为0.1~10微米; 微乳的乳化剂用量远大于乳化的用量; 微乳化油的稳定性较乳化油的好。 二、应用特点 操作简单(只需机械搅拌); 原料充足(乳化剂为植物油厂下脚料活炼油厂副产物等) 能耗低(油燃烧释放热的减少低于水量的比重,即燃烧率提高); 污染少(乳化后其燃烧排放的颗粒物(PM10)、氮氧化物(NOx)明显减少); 提高燃油效率等优点(二次雾化的结果等); 税收优惠(产品为节能减排项目,享受税收减免政策,政府部门大力支持)。 三、研发背景 随着经济的不断发展和世界人口的急剧增加,能源危机日益凸显,并逐渐成为制约各国经济发展的主要因素,开源和节流成为人类应对能源危机的两大主要措施。柴油作为传统能源具有高热值、难挥发等特点,在人类活动中占有重要地位。2006年中国柴油消费量为10 962万t,缺口840万t,国内柴油供不应求。因此,柴油燃烧节能问题日益重要。燃油的乳化是指在乳化剂的存在下,通过机械搅拌、超声等手段形成油包水型乳液的过程。由于乳化柴油具有乳化过程简单、乳化油燃烧效率高、燃烧过程污染物排放少等诸多优点而备受关注。乳化柴油的应用研究已成为燃料节能减排研究领域中的热点。乳化柴油适用于各种拖拉机、农用运输车、抽水机、发电机、燃油热风炉、烘干炉、柴油机轮船等。此种新型燃料与柴油性能相当,并且能大大提高燃烧效率,不污染环境,这种清洁柴油经权威机构检测,环保指标还优于柴油,价格比原柴油低1000元/吨以上,是一种经济高效的新型燃料。 四、效益分析 环境效益: 有赖于其独特的燃烧特性,乳化柴油发挥的环境效益远超柴油。视乎发动机的类型、机龄和条件、服务历史、维护、占空比、驱动程序行为和水含量,广泛的测试证明了乳化柴油常见的减排幅度为: · 氮氧化物 --- 10% 至 30% · 一氧化碳 --- 10% 至 60% · 二氧化碳 --- 1% 至 3% · 颗粒物 --- 高达 60% · 烟 --- 基本上消除

HB稠油降粘剂说明书2013

HB-01稠油降粘剂 本产品可通过井筒降粘、掺水降粘、油层降粘等方式达到降粘开采目的,对提高采收率、降低回压、减轻采油设备负荷、延长热洗及检泵周期、增加油井产油量、降低采油设备耗电量等起到较好的作用。 一、产品组成 HB稠油降粘剂主要由生物类(非离子)表面活性剂、胶质催化剂、沥青渗透分解剂,助活性剂等组成,是一种环保性良好的油田化学制剂。该产品对油品、环境和工人健康不会造成不良影响。 二、技术指标 HB稠油降粘剂出厂技术指标 三、降粘机理 一种生物(非离子)表面活性剂的耐高温、高矿化度降粘剂,由于该剂分子结构具有双亲活性基因,因此易吸附在原油表面,使高粘度的油包水型稠油乳状液转变为低粘度的水包油型液体。 产品含有胶质催化剂,对胶质分子网状结构具有极强的剪切作用,使胶质分子网状结构卷曲、收缩,从而改变胶质粘稠特性。 沥青主要成份为沥青质和树脂,本产品可在地层温度下产生一种强极性物质渗透进入沥青质和树脂内部,从而破坏沥青的粘稠体系,达到高效降粘的目的。 活性成分在金属等亲水物质表面附着,使油管内壁表面产生一层生物活性极性水膜,防止油垢再次沉积;油流逐渐聚并、析水、具有良好的破乳性。

四、产品主要优点 HB稠油降粘剂是由特种高温非离子表面活性剂、助活性剂和其它添加剂组成。该产品具有如下优点: 具有使用性广、乳化速度快、降粘率高、稳定性强、施工简便、增油效果显著等特点; 根据不同需要在井场直接利用热水将母液稀释成溶液注入,节省药剂消耗和作业费用; 耐高温:能耐250-300高温,可做为蒸汽吞吐开采稠油的化学降粘剂,也可作为常规方法开采稠油的化学降粘剂和油井洗井液; 五、使用方法 油层降粘:将本药剂与一定温度的污水或清水配制成1%-10%的水溶液(比例可根据现场需要进行调配),用泵车从油管或油套环空注入,然后注入蒸汽或热水。 井筒降粘:将药剂与水配制成一定浓度的水溶液,从套管环空定期定量泵入,通过抽油泵的作用,使原油和药剂得到充分的混合,达到降粘开采目的。 掺水降粘:在掺水泵出口加一台注药泵,按掺水量的0.5%连续挤注药剂,达到降粘开采目的。 六、包装储存 该产品采用塑料桶包装,每桶净重200kg或根据用户需求提供不同包装;储存于阴凉、干燥、通风处。 东营源盈石油技术服务有限公司

乳化柴油工艺配方大全

乳化柴油工艺配方大全 微乳化柴油 微乳化柴油,属于一种乳化油。微乳化柴油,是由柴油、油酸、水和乙醇胺配制成,其配料比按重量百分比计:柴油%、油酸3-15%、水5-30%、乙醇胺%。微乳化柴油与其它乳化油相比,具有透明,保存期长,生产工艺简单,成本低,可作为商品油大量推广应用等优点。 微乳化复合柴油添加剂 本发明涉及一种复合燃料所使用的添加剂,特别是制造微乳化复合柴油燃料。本发明的微乳化复合柴油添加剂组成为:按重量百分比,油酸60-80%、浓氨水15-20%、一乙醇胺1-5%、乙酸1-5%、烷基萘%、肼6-10%。本添加剂用于制造微乳化柴油复合燃料,配制时按重量百分比为,柴油∶水∶添加剂=58%∶30%∶12%。该燃料的物理指标和化学指标与柴油接近,具有成本低、外观透明、稳定性好、热值高、对发动机无副作用。同时,本发明的添加剂可起到改善柴油燃烧性能、节省能源、减少排气污染的效果。 含有柴油、醇和水的乳化液及其制备方法 本发明涉及一种液体燃料及其制备方法,特别是涉及一种含有柴油、醇和水的乳化液新型液体燃料及其制备方法。在非塑料容器中,以含有柴油、醇和水的乳化液的总重量百分比计,加入60%-90%的柴油和%-8%的高效复合乳化剂,然后将频率为18KHZ-26KHZ超声波探头放入液面之下,经超声波作用接近1分钟后,逐次加入2%-11%的醇和%-21%的水,再经超声波作用两到三分钟,在整个过程中,保证液体温度不超过80℃,即可形成稳定的含有柴油、醇和水的乳化液。该乳化液稳定性良好,保存一至三个月,作为燃油可以降低NOx、碳黑等的排放,其烟度下降值最大可达50%。 自控优化掺水率的乳化柴油在线合成器 本发明公开了一种自控优化掺水率的乳化柴油在线合成器。包括在蓄水箱出水口依次接有浮子室、由控制器控制的自动剂量阀和手控的电磁阀;油箱经柴油清滤器,装有流量传感器的油路与手控的电磁阀出口的水路连通后接输油泵,随车式油水乳化器安置在输油泵和喷油泵之间的油路中。本发明可以不需添加任何乳化剂,也不需附加其他动力驱动就能获得良好效果的乳化油,并能根据柴油机负荷对水在燃油中的比例进行自动优化,提高节油水平。安装于柴油机上,边乳化边使用,降低柴油机油耗、减少排气烟度,具有节能和环保效益。本发明结构简单,操作方便。 自动旋转壁孔剪切式柴油乳化器 本发明公开了一种自动旋转壁孔剪切式柴油乳化器。其进油口和出油口分别设置在同一根中心轴的两端中心孔,在轴的中间通过轴承配合安装了能自动产生高速旋转的乳化筒,乳化筒的下端盖底面上径向对称布置了两个喷口相反的喷嘴,乳化筒的外壁上均匀布置多个极微小的通孔。一定比例的油水,通过输油泵以一定压力进入乳化器

有机硅稠油降粘剂成分分析、配方开发,降粘机理和技术工艺

有机硅稠油降粘剂配方技术开发,降粘机理及问题解决方案导读:本文详细介绍了有机硅类稠油降粘剂的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 有机硅类稠油降粘剂广泛应用于石油开采方面,禾川化学引进国外配方破译技术,专业从事有机硅类稠油降粘剂成分分析、配方还原、研发外包服务,为石油化工企业提供一整套配方技术解决方案。 一.背景 稠油因其密度大、粘度高、流动性差而不能用常规方法开采。稠油开采的关键是降粘、降摩阻、改善流变性。目前常用的稠油(包括特稠油和超稠油)降粘方法有:掺稀降粘、加热降粘、改质降粘及乳化降粘。掺稀降粘受稀油来源的限制;加热降粘能耗大;改质降粘存在催化剂筛选困难的缺点;乳化降粘因其使用范围宽(包括油层开采、井筒降粘、管道输送等领域) ,且工艺简单等优势而研究活跃。 有机硅降粘剂是由甲基三氯烷类做主要原材料,在有机溶剂条件下,经水解得到环状的、线性的和交联聚合物的混合物。再经过碱化处理而形成的一种淡黄色透明的液体,生成的产品相对稳定。分子结构中含有Si-C 键的化合物,以硅氧键(Si-O-Si)为骨架组成的聚硅氧烷,是有机硅化合物中数量最多,应用最广的一类。 有机硅分子中的≡Si—OH 键易与粘土上的≡Si—OH键缩聚成≡Si—O—Si≡键,在粘土表面形成一层甲基朝外的CH3-Si牢固化学吸附层,使粘土表面发生润湿反转,阻止和减缓粘土表面的水化作用,阻止泥页岩水化膨胀,坍塌。能够有效地控制钻井液高温增稠,防止高温聚结作用,形成端-端(E-E),端-面(E-F)

的结合,削弱和拆散了粘土颗粒的空间网架结构,并放出大量自由水,致使钻井液的粘度和切力下降,达到了稀释降粘的目的。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。 样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案! 1.1稠油乳化降粘机理 乳化降粘机理的研究主要体现在原油乳状液理论和最佳密堆积理论。 原油乳状液理论表明:W/O(油包水)型乳状液粘度与油的粘度成正比,并随含水率的增加而呈指数增加,故含水原油乳状液的粘度远远超过不含水原油的粘度;O/W(水包油)型乳状液粘度与水的粘度成正比,与原油含水率的增加成反比,而水在50℃的粘度仅为0.55 mPa·s,远远低于原油的粘度,而且含水越高,原油乳状液粘度越小。若设法将W/O型乳状液转变成O/W型乳状液,则乳状液的粘度将大幅降低。 稠油乳化降粘剂不仅能形成稳定的O/W乳状液起到降粘的作用,而且也能借助氢键渗透、分散进入胶质和沥青质片状分子之间,拆散平面重叠堆砌而成的聚集体,形成片状分子无规则堆砌,有序程度降低,空间延伸度减少,聚集体中包含的胶质、沥青质分子数目减少,原油的内聚力降低,起到降粘的作用。 二.乳化降粘剂

石蜡乳液的性能和应用方法

1、外观:灰白色均质半透明液体;乳白色均质液体 2、固含量:30%;50% 3、PH值:7-9 4、稳定性:用特殊中性非离子乳化剂乳化,避免以前用碱性皂化不稳定、易分层的缺点,密封放置阴凉处可以存放两年不分层、不破乳、不结块。 二、石蜡乳液性能特点: 本品抗酸、抗碱、耐硬水、水溶性强、乳液稳定,任意比例水稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好。 三、石蜡乳液应用范围: 1、应用于皮革业: (1)蜡乳液可与加脂剂复配 (2)蜡乳液用作皮革涂饰时的添加剂在皮革涂饰剂中加入蜡乳液主要起填充涂层、改善涂层手感、耐磨、防粘及增加光泽等作用。 (3)乳化蜡用作皮革光亮剂、消光剂和手感剂等。 2、应用于建筑业:作钢筋混凝土固化剂。 3、应用于农业:园艺实践证明植物主要靠根部吸收水分,而水分的蒸发是从叶子表面散失掉的。植物本身耗水量并不很大,如在其叶子表面涂上防水蒸发的喷雾薄膜,可使叶子表面的水分蒸发大量减少。植物所需的水量还不到其总量的50 %。 4、应用于造纸工业:选纸过程中绝大多数的纸张内部加有内胶料,可使纸张纤维固有的吸收网膜具有理想的抗水强度。 5、应用于人造板:人造板包括纤维板和刨花板两种,这两种板材都是木材行业木料综合利用的产品,其成分除木纤维或木屑外,还需有一定配比的胶料,使木纤维或木屑经过热压处理胶合成型。一定数量的蜡与胶料一起掺入,使木板具有抗水性和提高表面光洁度。由于乳化蜡颗粒度小,在人造板制造过程中,通过有效地破乳,可使微小的蜡颗粒从水相中析出,均匀地吸附在木纤维上,在发达国家,已找不到一块不用乳化蜡生产的刨花板和纤维板。 6、应用于木材防水:采用浸泡或喷涂法将石蜡微乳液均匀的涂布在需防水的木材表面,因石蜡微乳液粒径细,可自然渗透到木材内部,烘干即可达到防水的效果。 7、应用于轻工、橡胶行业:在轻工、橡胶行业,乳化蜡可用作上光剂、涂料和助剂。在制造乳胶手套的预硫化过程,或在胶合调合罐内,可将乳化蜡按1.5~2.5量加入,即能改进铸模的抗粘性,易于手套脱模。一些用途乳液的配方内,加入乳化蜡可改进胶乳的使用性能。

乳化柴油

乳化柴油 柴油乳化剂是基于多分子吸附膜理论,该理论是由乳化剂与分散相共同形成的强穿透性复合物构成,膜厚、强度大、难破乳、阻止聚结。乳化柴油特点如下: 1乳化柴油的主要结构 在乳化剂的作用下,使水在短时间内发生质的变化,经专业乳化机械的处理,水即形成微小颗粒,周边被油包围形成油包水的大分子结构,得到与柴油原色相近的新型燃料——乳化柴油。 二、乳化柴油的燃烧原理 乳化柴油是在乳化剂的作用下形成油包水的结构,而水是不可燃烧的,但水又是由H和O组成这两个成分中H可燃烧,O又是助燃的,怎样能使水中的这两个成分各发挥其性能呢?乳化柴油较好的解决了这个问题,这就是: 1、微爆作用 因为乳化柴油是以油包水的状态存在的,由于水和柴油的沸点不同(水100℃、油200-350℃),当乳化柴油燃烧时,每一个包裹水珠的油珠在高温的燃烧室中,水先于柴油汽化,这一过程使包含水珠外面的油膜炸裂成无数的小片,这样的每一下片由于自身的表面张力,将重新形成小细珠。这种微爆现象的存在,使每一个小油珠进行了两次雾化,柴油与助燃空气的接触面也自然成比例增长,分散更好,混合更加均匀,燃烧更加充分,从而减少或消除了原有的不完全燃烧问题从而达到提高

燃烧效率的功效。 2、加速燃烧反应 油的燃烧过程主要是其中的C—C键和C—H与O2的反应,碳氢元素是否完全燃烧取决于燃烧接触面和O2、OH等活性物质的含量。在乳化柴油的燃烧过程中,水参与了燃烧,会发生一系列的附加化学反应,水是非能源物质,最后还是以水(水蒸气)的形式排出,并没有热量的放出,但是在高温反应中,水产生了H、O 和OH等原子或自由基。这些活性物质极大地活化了整个油料的燃烧过程,使生成的一氧化碳尽可能完全燃烧。此外还可加入水裂解催化剂促使H、O和OH等原子或自由基的生成,水煤气反应还加速了燃油裂解所形成的焦炭的进一步燃烧,从而抑制了烟尘的生成。使燃烧更充分、更完全,从而达到提高燃烧效率和热效率的目的,降低了油耗率。 NO x的生成主要是汽缸吸入的空气中含有氮气和氧气,两者在汽缸内混合,反应生成一氧化氮,一氧化氮在高温下又被氧气氧化,从而生成各种氮氧化合物NO x。油掺水后燃烧改善了柴油与空气的混合比例,使氧气尽可能多的参与了与油的燃烧,达到充分燃烧的效果,减少了过剩空气系数。此外乳化柴油中水滴的汽化需吸收热量,防止燃烧火焰局部高温,从而达到了抑制了NO x 的生成,减少了环境污染,保护了大气环境。 三、乳化柴油的优点

乳化蜡MSDS

乳化蜡MSDS 第一部分:化学品名称 化学品中文名称:乳化蜡 化学品英文名称:Emulsified wax 第二部分:主要组成与性状 外观与性状:灰白色均质半透明液体。 固含量:50% PH值:7-9 比重:0.95-1 稳定性:用特殊中性非离子乳化剂乳化,避免以前用碱性皂化不稳定、易分层的缺点,密封放置阴凉处可以存放两年不分层、不破乳、不结块。 乳化蜡的性质:是天然蜡和合成蜡等制得的水乳液。抗酸、抗碱、耐硬水、水溶性强、乳液稳定,任意比例水稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好。 第三部分:急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗,就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸停止,立即进行人工呼吸,就医。 食入:饮足量温水,催吐,就医。 第四部分:消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第五部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。 第六部分:操作处置与储存 操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶耐油手套。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第七部分:运输信息 运输注意事项:运输前应先检查包装容器是否完整、密封,运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。严禁与氧化剂、食用化学品等混装混运。运输车船必须彻底清洗、消毒,否则不得装运其它物品。船运时,配装位置应远离卧室、厨房,并与机舱、电源、火源等部位隔离。公路运输时要按规定路线行驶。 第八部分:法规信息 法规信息:2011年2月16日国务院第144次常务会议修订通过《危险化学品安全管理条例》,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定。

乳化柴油实验报告

1、实验目的 1.1 学会柴油微乳体系拟三元相图的绘制与研究方法,并根据相图,选择合适的柴油微乳液进行燃烧性能测定。 1.2 通过氧弹卡计进行燃烧性能的测定,比较柴油、微乳柴油燃烧时其燃烧效率的不同,对微乳柴油的经济与环保价值进行评价。 1.3通过对乳化柴油的燃烧热的测定,掌握燃烧热的定义,学会测定物质燃烧热的方法,了解恒压燃烧热与恒容燃烧热的差别。 1.4 了解氧弹卡计的主要部件的作用,掌握氧弹卡计的量热技术;熟悉雷诺图解法校正温度改变值的方法。 2、实验原理 2.1实验背景知识 Schulman 在1959 年首次报道微乳液以来,微乳的理论和应用研究获得了迅速发展。1985 年,Shah 定义微乳液为两种互不相溶的液体在表面活性剂界面膜的作用下生成的热力学稳定、各向同性的透明的分散体系[1]。由于微乳液能形成超低界面张力,具有高稳定性、大增溶量、以及粒径小等特殊性质,已引起人们广泛关注[2]。 燃料中掺水, 能提高油料的燃烧效率, 降低燃烧废气中有害气体的含量[3]。燃油掺水是一个既古老又新兴的课题。早在一百多年前就有人使用掺水燃油。由于油、水在表面活性剂作用下形成的W/O或O/W乳液在加热燃烧时水蒸气受热膨胀后能够产生微爆,使得燃油二次雾化燃烧更加充分,提高了燃烧效率,大大降低了废气中的有害气体的含量。但是由于一般的乳状液稳定时间短,易分层,使得这一技术的应川受到了很大的限制[4]。 微乳燃料的制备比较简单,只需要把油、水、表面活性剂、助表面活性剂按合适的比例混合在一起就可以自发形成稳定的微乳燃料。微乳燃油可长期稳定,

不分层,且制备简单, 并能使燃烧更完全,燃烧效率高,节油率达5 %~15 % ,排气温度下降20 %~60 % ,烟度下降40 %~77 % ,NO x和CO 排放量降低25 %,在节能环保和经济效益上都有较为可观的效果,已成为世界各国竞相开发的热点。随着近年来对两亲分子有序组合体研究的不断深入,微乳液理论在乳化燃油领域取得了突破性进展,开发透明、稳定、性能与原燃油差不多的微乳液燃料成为了研究热点。 随着经济快速发展与人口的急剧增长, 80% ~90%的空气污染来自交通工具排放的尾气,柴油不完全燃烧造成的环境污染越来越受到人们的关注,根治大气污染已成为人类面临的重要课题。另一方面,由于中国未来石油供需缺口将越来越大,进口量呈逐步增大的趋势,而且天然石油的储备是有限的,人类面临日益严峻的能源危机。因此,如何提高燃油燃烧效率和减少环境污染,研究新型节油防污染技术,包括最为人们青睐并具有节能效率高,减少尾气污染的燃料乳化以及微乳化技术,己成为人们十分关心的问题。本着节能和环保两个根本宗旨,各国都在加紧对微乳燃油性能的研究。微乳柴油的性能决定着它的应用,研究微乳柴油的性能就显得十分重要[5]。 2.2微乳柴油与燃烧减排机理 乳化燃油与通常的乳状液一样,也分为油包水型(W/o)和水包油型(O/W), 在油包水型乳化燃料油中,水是以分散相均匀地悬浮在油中,被称为分散相或内 相,燃料油则包在水珠的外层,被称为连续相或外相。我们目前所见的大多数乳化燃料油都为油包水型乳化燃料。乳化燃料燃烧是个复杂的过程,对其节能降污机理较为成熟的解释是乳化燃料中存在的“微爆”现象和水煤气反应,也就是从燃料的物理过程和化学过程来解释。一些燃烧机理介绍如下: 2.2.1物理作用—“微爆现象” 二十世纪六十年代初,前苏联科学家伊万诺夫等人发现了乳化燃料的“微爆”现象,从而为乳化燃料的节能、降污机理提供了理论基础。油包水型分子基

国内外稠油降粘剂发展现状及展望

国内外稠油降粘剂发展现状及展望 1、概述 稠油,国外叫重质原油,是指在油层条件下,原油粘度大于50mPa·s或者在油层温度下脱气原油粘度大于100mPa·s,密度大于0.934g/cm3的原油。近年来各国石油专家认为,轻质原油的开发受储量的限制,不会有太多的轻质原油储量供我们去开采。据有关资料估计,全世界轻质原油资源为3600亿吨。可采储量为1350亿吨,而重质原油的资源有9000亿吨,可采储量为1800亿吨。我国现已探明和开发的稠油油田已有20多个。主要有胜利油田的孤岛油田,胜坨东营组、单家寺、草桥等油田,大港油田的枣园、羊三木上油组、孔店等油田,新疆的克拉玛依六东区、黑油山油田,吉林的扶余油田。辽河油田稠油储量占全国第一位,产量占辽河油田年产1500万吨的一半以上,主要分布在辽河油田的高升油田、曙一区、欢17块、锦45块、齐40块、锦7块、冷43.37块、牛心坨、海外河及小洼油田。有的区块稠油粘度高达 13×104mPa·s。 稠油之所以稠,主要由于油中胶质、沥青质含量高所致,从表1中可看出,原油中的胶质、沥青质含量越高、油的粘度就越大。 长期以来,世界各国关于重质原油(稠油)和沥青的定义、分类标准及评价的说法不完全一致。1982年2月在委内瑞拉召开的第二届重质原油及沥青砂学术会上正式提出了这一定义和标准,联合国开发训练署推荐的分类标准见表2。 上述由联合国开发训练署推荐的分类标准,主要是针对重质原油和沥青的差异,也包括了重质原油与普通原油界限,但比较粗。根据我国稠油特点和开发的需要,石油总公司勘探开发研究院提出了我国稠油分类标准见表3。 辽河油田参照国内外稠油分类标准和本油田实际及开采工艺,将稠油分为以下四类见表4。 由于稠油粘度大,流动性差,有的在地层温度下根本无法流动,给开采带来许多困难: 1)、由于油稠,所以抽油机的负荷很大,这不仅耗电量大,而且机械事故(如断抽油杆,断悬绳等)也随着增加,作业频繁; 2)、由于油稠,有时连抽油杆也下不去,影响正常生产; 3)、由于油稠,地面管线回压很高,增加了原油外输困难;

乳化蜡

乳化蜡 一、技术参数: 1、外观:灰白色半透明液体; 2、固含量:60%; 3、PH值:6.5-7.5; 4、粒径:约0.8微米; 5、熔点:约56-62℃; 6、离子型:水性非离子型。 二、性能特点: 本品属水溶型环保非离子型,用特殊中性非离子乳化剂乳化,避免以前用碱性皂化不稳定、易分层的缺点,且抗酸、抗碱、耐硬水、水溶性强、乳液稳定,任意比例水稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好。 三、适用范围: 用于造纸、水性涂料、皮革、木业、建筑、橡胶、农业等行业。 四、使用方法: 建议直接用喷枪喷涂、滚涂或以热压成型的方法,具体添加量可根据贵司产品体系酌情微调。 五、重要说明: 以下声明所述技术性能及应用方法仅供专业人士参考,凡应用于新产品中及改变工艺后,须先做严格的可行性测试,达到最佳使用效果后方可使用在批量生产上。此声明取代买方文件。卖方不作任何明示或暗示的陈述或保证,包括产品用于某一特定目的的商销性或适用性。本资料中任何表述均不应被理解为诱导任何专利侵权行为。卖方在任何情况下均不对与产品有关的声称过失,违反保证、严格责任、侵权或合同

所引起的偶然的、继发性的或间接的损失负责。对于任何索赔请求,买方的唯一补偿 和卖方的唯一责任为买方的购买价款。数据和结果均基于受控制的或实验室的工作, 必须由买方根据其所预计的使用条件通过试验加以确认。本产品未就长时间接触粘膜、破损皮肤或血液或置入人体的情形进行过专门试验,因此建议不应将这些产品用于上 述情况。本公司如实提供上述资料,但对此不承担任何法律责任。 六、健康与安全: 本产品无毒,使用时除遵守一般工业保护规程外,无需特殊保护。澳达化工提供 产品安全性方面的评估资料,详情请参考有关的产品安全说明书。 七、运输和使用: 常规包装为1吨/200公斤/50公斤塑胶桶供应,使用方便,安全可靠。 使用时应遵守常规工业规程,避免污染环境,对于洒出的溶液应利用适当容器收集,然后以适当的方式丢弃。本产品仅用于工业用途。 八、使用和储存: 原液10-25℃密封储存:1年。 产品应存放在阴凉干燥处,欲了解有关产品制备和添加方面的详情,请与澳达化 工营销代表联络。

乳化柴油的缺点和柴油的危险性

乳化柴油的缺点和柴油的危险性 乳化柴油的优点有很多,但是却没有得到广泛的推广,是因为乳化柴油还存在许多缺点,然而柴油又存在不可忽略的危险性,一般乳化燃料的油水分离时间为7-15天,由于保存时间短,因而作为商品周转使用时有一定困难; 3.生产设备造价昂贵。乳化燃料的设备多采用高速搅拌或超声波乳化装置,设备价格昂贵,投资大而且操作复杂,一旦损坏,很难维修; 4.节油不省钱。由于所用乳化剂的成本高,生产的乳化燃料成本较高,因此虽有一定的节油效果,但节油不省钱,直接经济效益不大。 二、柴油燃烧、爆炸的危险性 1.柴油的易燃性。物质的燃烧性是由其闪点、燃点、自燃点来衡量的,闪点是衡量火灾危险性的重要依据。液体燃料的危险等级

是根据闪电来划分的。油品的闪点愈高,火灾危险性愈小;油品的闪点愈低,火灾危险性愈大。汽油、煤油、柴油的闪点都在120℃以下,润滑油类的闪点一般在210℃因此,汽油的火灾危险性最大。依照我国石油产品技术标准,炼油厂生产的柴油的闪点应不低于45°c,通常在60°c--120°c之间。-35号柴油的闪点为50℃左右,正常情况下环境温度可能达到或接近此温度,所以,火灾危险性较大,油库设计规范在油品火灾危险性分类时,把-35号柴油划为乙级。其它轻柴油和重柴油闪点在60~120℃之间,环境温度通常不可能达到,不易着火,火灾危险性分类把它们划分为丙级a类。但是,必须注意,如果这类柴油因为某种原因被加热、或其附近有高热辐射的火源时,则可能存在被点燃引起火灾的危险性。 2.柴油的易爆性。爆炸性,是物质发生非常迅速的物理或化学变化的一种形式。油品爆炸的危险性通常用爆炸极限表示。油气与空气混合,其浓度达到一定的混合比范围,遇一定能量的点火源时,即可发生爆炸。发生爆炸的最低油气混合比称为爆炸下限;发生爆炸的最高油气混合比称为爆炸上限。如柴油的爆炸下限是混合气体中油气体积含量为0.6%,爆炸上限为6.5%。柴油蒸气在空气中的含量在上述范围内,遇到大于或等于0.2mj的点火能量时,则发生爆炸。如果混合气体浓度超出上述范围时,遇点火源则不爆炸。但在通常的储运条件下,油气很难达到与空气均匀混合,在爆炸极限外,可能存在

微乳化柴油技术简介

Biodisel and the microemulsion additives 生物柴油及微乳化剂简介 生物柴油(biodisel)是指以一部分可再生生物质资源代替不可再生柴油,通过特殊的工艺和技术生产的一种燃烧高效的环保柴油。本公司推出的生物柴油是利用微乳化剂,将9%-12%的水和80%-84%的柴油这两种完全不相溶的液体在特定的条件下经过物理化学反应,生成一种透明、稳定的微乳化生物柴油。本产品不同于现有市场上通过乳化剂和乳化设备加工而成的白色乳浊状柴油,而是通过巧妙的物理化学工艺生成的燃烧值更高,物化性质更为稳定的微乳化生物柴油(以下简称微乳化柴油)。 微乳化柴油的特点: 1、透明、清澈,经过充分乳化后,外观与常规柴油外观相同,完全不同于目前市场上 的白色乳浊状乳化柴油。 2、状态稳定。在-20℃到80℃的恶劣工况下无油水分离现象。 3、燃烧值高。微乳化柴油的燃烧值>9800Cal/kg,完全达到或超过国家0#柴油的标准。 4、环保清洁。有害气体量下降30%以上,PM达到欧Ⅱ标准,能清洁常用设备的油路。 5、使用范围广。该乳化柴油适用于不同型号的柴油发动机和其他内、外燃机使用。 6、微乳化范围广。可以针对市场上常用的柴油和重油进行微乳化调配。 微乳化柴油的工作原理: 柴油分子链较长,在正常使用的情况下20%-30%的柴油都是在没有经过充分燃烧的情况就排放掉,这样理论净燃烧值就大打折扣。微乳化柴油则是通过掺入一定比例的水,通过微乳化剂的作用,在柴油体系中形成稳定的纳米粒径(<50nm)的油包水(w/o)稳定结构。这样,柴油在燃烧的过程燃烧不充分形成的C和CO经过水分子的参与下以微爆的形式得以充分燃烧,最终以CO2的形式排出,从而提高柴油的燃烧效率。其作用化学反应原理如下所示: CO + H2O ==CO2 + H2+E(能量) 2H2 + O2 ==H2O + E(能量) 微乳化柴油的工作示意图: 柴油液滴 微乳化柴油液滴水珠

乳化柴油的使用和推广

乳化柴油的使用和推广 目前国外己经有成熟的乳化油技术投入使用,并获得了较好的效果。 为了支持含水乳化燃料,许多国家政府都在不同程度上给予了含水乳化燃料的税率的优惠。美国Lubrizol公司在2001年1月开发了PuriNO。柴油乳化技术,并获得第一个美国国家环保总局(EPA)认证。PuriNO。燃料由柴油、水和专有的Lubrizol添加剂调合而成稳定的均相乳化液,可降低氮氧化合物(NO。)19%,颗粒烟尘54%。 英国两个主要的汽车运输公司伦敦AITiVa集团、诺丁汉城市运输公司对PuriNO。乳化燃料进行了测试使用,也取得了出色的节能和降低污染排放效果,英国已经取消了PufiNO。含水乳化燃料油的税率。同时由法国埃尔夫石油公司生产的Aquazole水乳化燃料油,经过三年运行测试证明,乳化燃料油可降低30%的氮氧化物,80%的烟尘排放。这种乳化燃料油分别在法国Chambery、里昂、巴黎的市区里进行了严格的测试,同时又在德国柏林的十五辆公众巴士上进

行权威测试论证,均获得了较好的效果。使用埃尔夫的Aquazole乳化柴油,巴士外表用专门的乳化柴油使用标志涂装,该型乳化柴油含水9wt%.15wt%,在2002年己通过美国加州大气资源部(CARB)认证。 我国在柴油乳化技术的研究起步较晚,在80年代乳化油的研究进入了低谷,90年代还出现了“水变油”热潮,使得乳化柴油的研究严重倒退,但最近几年来的研究发展迅速,也有许多文献专利发表。张泽斌公开了一种乳化燃油乳化剂,其组成为十二烷醇聚氧乙烯醚硫酸钠粉末、十二烷基硫酸钠粉末、烷醇酰胺溶液和水组成;将其按一定比例加入燃油中,制备成乳化燃油,其中含水量在10~15wt%之间。夏百根等进行了HQ.I型柴油乳化剂进行了柴油乳化工艺条件的筛选实验,通过正交试验,分别考察了乳化油的掺水量、乳化剂用量、乳化剂添加方式通过乳化油的台架试验来考察燃油节油率,得到的结果表明乳化剂的好坏对燃油节油率的影响最大,掺水比例次之,添加方式最小,并得到较佳的乳化工艺为:65:15:25

乳化柴油的研究现状及应用前景

乳化柴油喷入气缸后,由于乳化油液滴中的水分先达到沸点,气化而发生“微爆”现象,可使得油滴进一步微粒化,雾滴的“2次雾化”大大改进了燃油的燃烧过程,更加快了燃烧速率,使油分子燃烧趋近完全,达到节油的目的。 一般柴油机中产生碳氢化合物的主要原因是混合不均匀,以及在燃烧过程后期低速离开喷油器的燃油混合及燃烧不良所致;一氧化碳是一种不完全燃烧产物;柴油机碳烟的生成机理,概括地说是由烃类燃料在高温缺氧条件下裂解生成的。与纯柴油相比,乳化柴油能发生“2次雾化”,其雾化质量是任何柴油机喷嘴都难以达到的,它使柴油分子与高温空气的混合更均匀,使油分子的燃烧更加完全,避免了柴油在瞬时间由于雾化不好,油滴直径过大,表面积小,不能与氧充分接触,而生成较多的碳烟、CO和碳氢化合物造成油耗高及环境污染。大量研究和实践证明,乳化柴油的燃烧环境能显著减少烟尘排放。 NO X是柴油机的主要污染物,其生成过程为:在温度大于1600℃的条件下, O2→2O N2+O→N+NO N+O2→N+NO NO进一步氧化生成NO2。可见温度、氧浓度在NO X生成过程中起着重要作用,一般认为,当温度高于1600℃时,NO X的生成才比较明显,并且温度越高越容易生成。乳化柴油中水的存在降低了燃烧温度和烟气温度,不利于NO X的生成,从而使NO X排放显著下降;另外,与纯柴油相比,乳化柴油能更充分的燃烧,使得烟气中未反应的氧大大降低,也减少了NO X的生成机会。 柴油乳化技术早在100多年前就有人提出,50年代末由于环境保护及石油危机等原因受到重视,70年代末达到实用性发展阶段,目前工业发达国家柴油掺水技术已达到广泛应用[4]并已有多项专利发表。我国柴油掺水乳化技术起步较晚,八十年代初才有突破性进展,最近几年发展比较迅速,并有初步应用与少量乳化柴油专利申请。由于对乳化柴油在燃烧过程中的物理、化学现象缺乏研究以及乳化技术的不完善使得内燃机锈蚀、节油效果不明显。同时由于乳化柴油为热力学不稳定体系,存储时间短、易破乳分层,导致内燃机运行不正常。而微乳化柴油水微滴直径小于0.1微米,为热力学稳定体系,色质透明,非常适合内燃机使用,但微乳所需乳化剂量较大,价格偏贵,推广应用仍有困难。乳化液的形成与稳定理论仍不完整,其研究与应用尚少[2]。 我国每年柴油消耗量约为2000万吨左右,如果能够全部采用柴油掺水乳化技术,按节油率10%计,每年可以节省大约200万吨。这样不仅可以缓解国内柴油的紧张的状况,带来上亿元的经济效益,还可以大大减少由于柴油燃烧不完全成的环境污染。

柴油微乳化技术中乳化剂的选择及配方的研究

ChemicalIntermediate2006年第9期科技与开发 1前言 柴油乳化和微乳化技术的研究自上世纪至今已有几十年的时间,美国、德国、日本等发达国家早在上世纪末微乳化柴油已进入使用阶段[1],为此欧洲国家已在排放标准上达到了欧Ⅲ标准,但我国至今仍没能将这项技术推广使用,重要的一点就是微乳化剂的选配不合适,导致微乳化柴油稳定性差,不能长期贮存,无法进入销售使用。因此,选配优质稳定的柴油微乳化剂是目前我国柴油微乳化技术的关键[2]。 乳化液的形成理论包括定向楔理论、界面张力理论、界面膜理论、相似相溶原理和电效应理论等。这些理论的出发点为:在油-水非连续体系中加入复合乳化剂,乳化剂在油-水界面作定向吸附,不仅可以降低界面张力,而且可以形成致密的界面复合膜,对液 柴油微乳化技术中乳化剂的选择及配方的研究 黄艳娥,徐伟,沈春红 (唐山师范学院化学系,河北唐山063000) 摘要:讨论了柴油微乳化研究中的应用理论,应用相似相溶原理和HLB值初选柴油乳化剂并对乳化剂进一步筛选和复配,同时确定助表面活性剂为正戊醇。利用HLB值的计算对复配得到的微乳化剂进行验证,表明:非离子表面活性剂Span80、AEO-3、TX-4与阳离子表面活性剂D08/1021或D12/1421复配作乳化剂时HLB值在6-15.9范围内均可制得柴油微乳液;对不同复配乳化剂制得微乳化柴油稳定性验证表明:微乳化剂的组成以AEO-3、TX-4与D08/1021三种乳化剂复配,复配比为0.6:1.4:8时掺水量达14%,且稳定性高。 关键词:乳化剂;柴油;微乳化;表面活性剂 中图分类号:TQ027.35文献标识码:A文章编号:1006-253x(2006)09-020-6 StudyoftheSelectionandPrescriptionofEmulsifier inDieselOilMicro-emulsification HUANGYan-e,XUWei,SHENChun-hong (Departmentofchemical,TangshanNormalCollege,Tangshan063000,HebeiChina) Abstract:Orientedwedgetheory,Interfacialtensiontheory,Interfacialfilmtheory,Similitudedissolvetheory,HLBvalueandsoonwerediscussed.Throughapplicationofthesetheories,thedirectionofemulsifierselectedoriginallywasdeterminedandemulsifierswerethoroughlyscreenedoutandcom-pounded.Inthemeanwhile,co-surfactantwasconfirmedtoben-pentanol.Thecompoundedmicro-emulsifierswereverifiedbycalculationofHLBvalue.Itshowedthatmicro-emulsionswereformedwhennonionicsurfactantsuchasSpan80,AEO-3,TX-4andcationicsurfactantsuchas(D08/1021orD12/1421)wereusedasemulsifiers,aswellasHLBvalueiswiderthanthatinthedatas,anddieselmicro-emulsionsareallformedfrom6to15.9.Thesituationandstabilityofmicro-emulsifieddieseloilintheconditionofdifferentformulaswereexplored.TheresultsshowedthatAEO-3,TX-4andD08/1021wereoptimal,andtheweightratioofAEO-3/TX-4/D(08/1021)is0.6/1.4/8. Keywords:emulsifier;dieseloil;micro-emulsified;surfactant 收稿日期:2006-6-25 ?20?

乳化聚乙烯蜡

澳达牌“乳化聚乙烯蜡”新品上市,欢迎免费调样试用! 一、乳化聚乙烯蜡技术指标: 1、外观:淡黄色均质液体; 2、有效成份:40%; 3、PH值:8~9; 4、稳定性:不分层、不破乳、不结块。 二、乳化聚乙烯蜡性能特点: 本品为无毒、无味、无腐蚀性的非离子型乳液,抗酸、抗碱、耐硬水、水溶性强、乳液稳定,任意比例水稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好。 三、乳化聚乙烯蜡应用范围: 1、用在水性涂料体系及地板、皮革、家具、汽车、纸品等上光剂、上光油领域。 2、可广泛应用于水性油墨、液体鞋油、金属脱模剂等行业的生产中。 3、用在人造板工业。在纤维板、刨花板生产中用乳化蜡代替石蜡防水剂可大大降低成本。 4、在造纸工业上,用乳化蜡代替松香胶,不但可改善纸张质量还可降低生产成本。 5、用在农业上,用于水果蔬菜的保鲜剂,防止水果蔬菜的衰老、干旱、冻害、日灼对其有害影响。花卉采摘后,用水浸泡,然后用乳化蜡处理可延长花卉的寿命。 6、乳化蜡可用在陶瓷生产中的润滑剂,塑料制品及汽车的上光剂等。 7、本品是聚氨酯行业及其他特殊行业的优良脱模剂。 8、本品加入到皮革涂饰剂中,可以增加皮革的蜡感和光亮性;加入到色浆中,还可以起到流平作用,并且可以防止涂层遇热发粘。 9、用在纺织工业上,主要用作柔软剂和上浆助剂。 10、用于棉、涤卡、涤棉、中长纤维等织物的平滑、抗皱整理。特别改善织物的缝纫性,防止针洞的产生。织物经处理后手感柔软,弹性好,提高褶皱回复角。 11、用于胶粘剂的生产中。 四、乳化聚乙烯蜡使用方法: 本品建议添加量为0.5%~8%之间,具体添加量视贵司产品体系酌情添加。此说明所述产品性能及应用方法仅供参考,凡新使用产品须先做严格的可行性测试,以求最佳使用效果。 五、乳化聚乙烯蜡储存方式:

石蜡微乳液

石蜡微乳液ADS3RS6001 微乳液的制备方法: 1、剂在水中法:乳化剂溶于水中,在激烈搅拌下将油相加入,可得O/W型乳液。 2、剂在油中法:乳化剂溶于油相,再加水,直接制得W/O型乳液。继续加水至变型,可得O/W型乳液。这样制得的O/W型乳液粒度小,稳定性高。 3、轮流加液法:将油和水轮流加入乳化剂中,每次少量。 4、瞬间成皂法:制备用皂稳定的乳液,可将脂肪酸溶于油相,将碱溶于水相。在剧烈搅拌下将两相混合,在界面上瞬间形成脂肪酸皂,从而得到稳定的乳液。 5、界面复合物生成法:采用复合乳化剂时,将亲油性强的乳化剂溶于油相,将亲水性强的乳化剂溶于水相,两相混合时,界面上二种乳化剂形成复合物,从而使乳状液稳定。 6、自发乳化法:不需要机械搅拌,把油、水和乳化剂加在一起自发地形成乳状液。 一、石蜡微乳液技术指标: 1、外观:灰白色均质半透明液体;乳白色均质液体 2、固含量:30%;50% 3、PH值:7-9 4、稳定性:用特殊中性非离子乳化剂乳化,避免以前用碱性皂化不稳定、易分层的缺点,密封放置阴凉处可以存放两年不分层、不破乳、不结块。 二、石蜡微乳液性能特点: 澳达牌石蜡微乳液本品抗酸、抗碱、耐硬水、水溶性强、乳液稳定,任意比例水稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好。 三、石蜡微乳液应用范围: 1、应用于皮革业: (1)石蜡微乳液可与加脂剂复配 (2)石蜡微乳液用作皮革涂饰时的添加剂在皮革涂饰剂中加入石蜡微乳液主要起填充涂层、改善涂层手感、耐磨、防粘及增加光泽等作用。 (3)乳化蜡用作皮革光亮剂、消光剂和手感剂等。 2、应用于建筑业:作钢筋混凝土固化剂。 3、应用于农业:园艺实践证明植物主要靠根部吸收水分,而水分的蒸发是从叶子表面散失掉的。植物本身耗水量并不很大,如在其叶子表面涂上防水蒸发的喷雾薄膜,可使叶子表面的水分蒸发大量减少。植物所需的水量还不到其总量的50 %。 4、应用于造纸工业:选纸过程中绝大多数的纸张内部加有内胶料,可使纸张纤维固有的吸收网膜具有理想的抗水强度。

微乳化生物柴油制备及特性研究

微乳化生物柴油制备及特性研究 微乳化生物柴油是一种节能环保的绿色能源,其应用研究有重大的经济意义。目前技术中存在着稳定性差、保存周期短等缺点,文章通过对几种表面活性剂的复配,发现微乳化生物柴油具有较好的稳定性,其燃烧热值高于纯生物柴油,且其粘度,pH值、氧化安定值等物理特性符合国家柴油机燃料调和用生物柴油标准。 标签:生物柴油;乳化液;燃烧特性 生物柴油是一种再生能源,其不含芳香烃、硫、十六烷值较高、能降解、燃烧性能好、能任意比例与柴油混合等优点。生物柴油是一种内燃机替代的燃料。但生物柴油粘度高、挥发性较差、NO排放不好等缺点。微乳化生物柴油通过燃烧时“微爆”现象、水煤气加速燃烧及水滴气化吸热降低火焰温度,在减排同时增加燃烧热值,达到良好的环保节能效果。 微乳化生物柴油技术现在已有了一些成果,但稳定性较差、保存时间较短和乳化剂成本高等问题。通过大豆油和环氧乙烷缩合物、卵磷脂和氯化十六烷吡啶的不同配比得到透明、稳定、环保的微乳化生物柴油配方,测试其粘度、粒径、燃烧热值等参数,研究其特性。 1 试验内容 1.1 试验装备 试验仪器有电动搅拌器、电子天平、电子显微镜、自动粘度计、pH仪、氧弹热量分析仪、水分测定仪、氧化安定仪。试剂有大豆油和环氧乙烷混合物、卵磷脂、氯化十六烷基吡啶,均为分析纯、生物柴油。 1.2 试验方法 部分生物柴油,加入微乳化剂,搅拌均匀后加入一定的水,充分混合,形成油包水型微乳化液。离心一段时间,观察油水分离情况,测定微乳化油稳定性。用显微镜观察微乳化油微观形态,用粘度计、pH计、密度计、氧弹分析仪分析物理特性。 2 结果与分析 2.1 乳化剂用量的确定 对不同比例配方试验(表1),观察稳定性,经试验确定大豆油和环氧乙烷混合物和卵磷脂的用量分别为1.3%和0.7%效果最佳。添加一定含量的氯化十六烷基吡啶水溶液,形成无色、透明、均一、稳定的微乳化生物柴油,静置6个月

相关文档
最新文档