复合材料的界面

复合材料的界面
复合材料的界面

复合材料习题

第四章

一、判断题:判断以下各论点的正误。

1、基体与增强体的界面在高温使用过程中不发生变化。(?)

2、比强度和比模量是材料的强度和模量与其密度之比。(√)

3、浸润性是基体与增强体间粘结的必要条件,但非充分条件。(√)

4、基体与增强体间界面的模量比增强体和基体高,则复合材料的弹性模量也越高。(?)

5、界面间粘结过强的复合材料易发生脆性断裂。(√)

6、脱粘是指纤维与基体完全发生分离的现象。(?)

7、混合法则可用于任何复合材料的性能估算。(?)

8、纤维长度l

二、选择题:从A、B、C、D中选择出正确的答案。

1、复合材料界面的作用(B)

A、仅仅是把基体与增强体粘结起来。

B、将整体承受的载荷由基体传递到增强体。

C、总是使复合材料的性能得以改善。

D、总是降低复合材料的整体性能。

2、浸润性(A、D)

A、当γsl+γlv<γsv时,易发生浸润。

B、当γsl+γlv>γsv时,易发生浸润。

C、接触角θ=0?时,不发生浸润。

D、是液体在固体上的铺展。

3、增强材料与基体的作用是(A、D)

A、增强材料是承受载荷的主要组元。

B、基体是承受载荷的主要组元。

C、增强材料和基体都是承受载荷的主要组元。

D、基体起粘结作用并起传递应力和增韧作用。

4、混合定律(A)

A、表示复合材料性能随组元材料体积含量呈线性变化。

B、表示复合材料性能随组元材料体积含量呈曲性变化。

C、表达了复合材料的性能与基体和增强体性能与含量的变化。

D、考虑了增强体的分布和取向。

5、剪切效应是指(A)

A、短纤维与基体界面剪应力的变化。

B、在纤维中部界面剪应力最大。

C、在纤维末端界面剪应力最大。

D、在纤维末端界面剪应力最小。

6、纤维体积分量相同时,短纤维的强化效果趋于连续纤维必须(C)

A、纤维长度l=5l c。

B、纤维长度l<5l c。

C、纤维长度l=5-10l c。

D、纤维长度l>10l c。。

7、短纤维复合材料广泛应用的主要原因(A、B)

A、短纤维比连续纤维便宜。

B、连续纤维复合材料的制造方法灵活。

C、短纤维复合材料总是各相同性。

D、使短纤维定向排列比连续纤维容易。

8、当纤维长度l>l c时,纤维上的平均应力(A、C)

A、低于纤维断裂应力。

B、高于纤维断裂应力。

C、正比于纤维断裂应力。

D、与l无关。

三、氧化铝纤维和SiC纤维的密度分别为3.3g/cm3和2.6g/cm3,若对这两种纤维进行拉伸试验,在拉伸试验中直到纤维失效时的变形为弹性变形,平均拉伸强度和失效应变氧化铝纤维为1500MPa和0.4%,SiC纤维为2300MPa和1.0%。计算这两种纤维的比模量和比强度。

解答:比模量GPa/(g/cm3):氧化铝纤维113.6;碳化硅纤维88.5。

比强度MPa/(g/cm3):氧化铝纤维454.5;碳化硅纤维884.6。

四、直径7 m、长度2mm的碳纤维单向增强聚碳酸脂基体,纤维的拉伸强度和纤维与基体的界面强度分别为2.5GPa和12.5GPa。计算(1)临界纤维长度l c和(2)长度方向复合材料的拉伸强度。

解答:(1)l c=0.7mm;(2)843MPa。

五、采用XD TM法制备TiC/Al,为什么需要采用(1)一定粒度的Ti、Al和碳粉;

(2)按一定量比例进行混合后,压制成预制体;(3)加热至一定反应温度?采用XD TM 法可以制备出Al4C3/Ti或TiC/Al4C3/Al吗?为什么?

解答:从Ti、Al、C的互相反应热力学去考虑。

六、简述复合材料增强体与基体之间形成良好界面的条件。

在复合过程中,基体对增强体润湿;增强体与基体之间不产生过量的化学反应;生成的界面相能承担传递载荷的功能。

复合材料的界面效应,取决于纤维或颗粒表面的物理和化学状态、基体本身的结构和性能、复合方式、复合工艺条件和环境条件。

七、根据下图,讨论为什么在相同体积含量下,SiC 晶须增强MMC 强度(抗拉与屈服强度)均高于颗粒增强MMC ,而这两者的弹性模量相差不大。

解答:从混合定律及

晶须与颗粒的强度

与模量考虑。

八、已知1400℃时Al 2O 3的氧扩散渗透率为3?10-10g/cm·s ,密度为1.9g/cm 3,厚度为20cm 的C/C 涂覆Al 2C 3后在1400℃、100小时后的氧化失重率为1%,计算此时Al 2O 3涂层至少应需的厚度为多少?(式/R KM x h ρ=??中,当C/C 中碳氧化为CO ,K=0.75)

解答:R 为C/C 复合材料的氧化速率,单位:%/h ;K 为常数,当C/C 复合材料中碳氧化生成CO ,K=0.75;ρ为C/C 复合材料的体密度,单位为g/cm 3;x 为C/C 复合材料构件截面厚度的1/2,单位为cm ;h 为涂层厚度,单位为cm ;M 为涂层的氧扩散渗透率,单位为g/cm·s 。

4.26μm 。

九、试述影响复合材料性能的因素。

基体和增强材料(增强体或功能体)的性能;复合材料的结构和成型技术;复合材料中增强材料与基体的结合状态(物理的和化学的)及由此产生的复合效应。

十、复合材料的界面具有怎样的特点?

界面相的化学组成、结构和物理性能与增强材料和基体的均不相同,对复合材料的整体性能产生重大影响。

界面具有一定的厚度(约几个纳米到几个微米),厚度不均匀。

材料特性在界面是不连续的,这种不连续性可能是陡变的,也可能是渐变的。材料特性包括元素的浓度、原子的配位、晶体结构、密度、弹性模量、热膨胀系数等。

十一、什么是浸润?如何描述浸润程度的大小?试讨论影响润湿角大小的因素。

浸润:固-气界面被固-液界面置换的过程,用于描

述液体在固体表面上自动铺展的程度。

固体表面的润湿程度可以用液体分子对其表面的作用力大小来表征,具体来说就是接触角。

Young 公式讨论了液体对固体的润湿条件:

cos lv sv sl γθγγ?=-

降低液-固表面能和液-气表面能或者增大固-气表面能有助于润湿。

θ=0?(γlv =γsv -γsl ),完全浸润;0?<θ<90?(γlv >γsv -γsl >0),部分浸润;θ>90?(γsv <γsl ),完全不浸润。

影响接触角(润湿角)大小的因素:

固体表面的原始状态,例:吸附气体、氧化膜等均使接触角增大。

固体表面粗糙度增加将使接触角减小。

固相或液相的夹杂、相与相之间化学反应的产物都将影响润湿性。原因:夹杂或反应产物改变了固相的性质和固相的表面粗糙度。

十二、如何改善基体对增强材料的润湿性?

1、纤维表面处理:清除纤维表面的杂质、气泡、用化学方法去除纤维表面的氧化膜,或者表面涂层,这些操作都能增进液态基体对纤维的润湿性。

2、变更基体成分:对于金属基复合材料,合金化改善润湿性最方便、有效。 加入合金元素后,θ角的变化还与熔化时间有关。

3、改变温度:一般,提高制造温度可以增加润湿性,但是,过高的温度会产生一些不利影响:基体严重过热、氧化、基体与增强材料在高温下发生化学反应、增强材料损伤等。

4、增加液体压力:对于不润湿的情况,必须施加大于P c (()4/cos c lv f f P V d γθ=)的外压才能使液体渗入纤维束。

5、改变加工气氛:γsv 和γlv 值随气体性质的不同而变化,因此改变制造过程中的环境气氛可以控制液体与固体之间的润湿状况。固体或液体表面吸附某种气体,也可以改变γsv 或γlv 。

十三、简述玻璃纤维表面化学组成、结构及反应性的特点。

玻璃纤维整体化学组成包含Si 、O 、Al 、Ca 、Mg 、B 、F 、Na 等,但其表面只含有Si 、O 、Al 。

玻璃纤维的结构与块状玻璃相似:由三维空间的不规则连续网络构成,阳离子位于多面体中心,被一定数目的O 2-包围,在玻璃内部阳离子与阴离子的作用力处于平衡状态。玻璃表面的阳离子不能获得所需数量的O 2-,因而产生一种表面力,

此表面力与表面张力、表面吸湿性密

切相关,有吸附外界物质的倾向。

玻璃纤维表面会吸附多层水分子膜,表面吸附的水与玻璃组成的中的碱

金属或碱土金属作用,在玻璃表面形成-OH基:~Si-OD+H2O→~Si-OH+D++OH-(D:碱金属或碱土金属)

玻璃纤维上所吸附的水具有明显的碱性,将进一步与二氧化硅网络反应:

~Si-O-Si~+OH-→~Si-OH+~Si-O-

反应中生成的~Si-O-将继续与水反应形成另外的OH-:~Si-O-+H2O→~Si-OH+OH-这样,表面的吸附水就破坏了玻璃纤维中的SiO2网络结构,玻璃纤维成分中含碱量愈高,吸附水对SiO2骨架的破坏愈大,纤维强度下降就愈大。

玻璃纤维表面的反应性主要是由表面明显的碱性和Si-OH基团所决定。Si-OH基团具有一般活性基团所具有的反应性质,这种性质是纤维表面改性、改善纤维与树脂基体界面粘结的有利条件。

十四、简述复合材料的界面结合类型及其特点。

1、机械结合:增强材料与基体之间仅依靠纯粹的粗糙表面相互嵌入(互锁)作用进行连接(摩擦力),没有化学作用。

影响机械结合的因素:增强材料与基体的性质、纤维表面的粗糙度、基体的收缩(正压力)有利于纤维箍紧。

2、溶解与浸润结合:在复合材料的制造过程中,由单纯的浸润和溶解作用,使增强材料和基体形成交错的溶解扩散界面,是一种次价键力的结合。(当基体的基团或分子与增强材料表面间距小于0.5nm时,次价键力就发生作用。次价键力包括诱导力、色散力、氢键等。)

形成溶解与浸润结合的基本条件:增强材料与基体间的接触角小于90?,增强材料与基体间有一定的溶解能力。

3、反应界面结合:基体与增强材料间发生化学反应,在界面上形成新的化合物、以主价键力相互结合。这是一种最复杂、最重要的结合方式。

反应结合受扩散控制,扩散包括反应物质在组分物质中的扩散(反应初期)和在反应产物中的扩散(反应后期)。要实现良好的反应结合,必须选择最佳的制造工艺参数(温度、压力、时间、气氛等)来控制界面反应的程度。

界面反应层是非常复杂的组成,有时发生多个反应,产生交换反应结合。界面的反应产物大多是脆性物质,达到一定厚度时,界面上的残余应力可使其发生破坏,因此,界面结合先随反应程度提高而增加结合强度,但反应达到一定程度后,界面结合有所减弱。

4、混合结合:上述界面结合方式的混合,实际情况中发生的重要的界面结合形式。

十五、简述影响增强材料与基体粘结性能的因素。

固-液复合过程中,固体表面与液体的浸润性。

不同组分的分子或原子彼此相互接近时的状态,形成化学结合时相互作用的强弱。

化学结合的形式(主价键结合:共价键、离子键、金属键等;次价键作用:静电作用、诱导力、色散力、氢键、分子间的扩散等)。

十六、试讨论碳纤维/环氧树脂复合材料的界面反应。

碳纤维表面含有氧原子,以羟基、羰基、羧基、内酯基形式存在,这些基团可以与树脂基体中的胺基、环氧基等基团形成氢键。

但是,碳纤维表面的这些含氧基团的浓度很低,反应的活性点很稀少,需要通过表面改性以减小碳纤维表面晶棱尺寸、增加表面积以及增加碳纤维表面含氧基团。

例:碳纤维的氧化处理:

氧含量

显著增

加,氧

化过程分别产生羟基、羰基、羧基,并可能以环状官能团形式存在。

胺固化的环

氧树脂中的

胺基能与碳

纤维表面的

羧基形成氢

键,环氧基也

能与羟基和

羧基形成氢

键,在过量单体和较高温度时,这些氢键就转变成共价键。

十七、试讨论玻璃纤维增强混凝土中玻璃受到侵蚀的类型及其防护方法。

中碱、无碱玻璃纤维在硅酸盐水泥水化物中受到侵蚀,导致玻璃纤维增强混凝土的抗拉强度大幅度下降,甚至丧失殆尽。

①化学侵蚀:水泥水化生成的Ca(OH)2与玻璃纤维的硅氧骨架之间发生化学反应生成水化硅酸钙,当水泥液相中有NaOH、KOH存在时会加速反应。

②应力侵蚀:由于玻璃纤维表面存在缺陷,水泥水化生成的晶体可进入这些缺陷中,在缺陷端部造成应力集中并使缺陷扩展。

防止水泥水化物对玻璃纤维侵蚀的措施:

①改变玻璃纤维的化学组分。例:加入较多量的ZrO2可提高玻璃纤维的抗碱性。

②对玻璃纤维表面进行被覆处理,以隔绝水泥水化物对纤维的侵蚀。例:可用锆、钛、锌、铝等金属的水溶性盐对玻璃纤维进行处理;也可用抗碱性好的树脂(环氧树脂、呋喃)对玻璃纤维进行浸渍处理而后使之固化。

③使用水化物碱度低的水泥以减缓或防止对玻璃纤维的侵蚀。例:采用水化产物中Ca(OH)2含量低的甚至无Ca(OH)2的水泥(高铝水泥、硫铝酸盐水泥)。

十八、试讨论硼纤维-铝基复合体系的界面反应及其防护。

B在高温下,除Ag、Cu、Sn、Be外,可以与其它金属发生反应生成不规则的结构,形成脆性的反应层。

硼纤维和铝的界面反应由于渗入氧生成氧化物而发生破坏,即B2O3层的破坏。当铝的纯度较高时,在纤维上生成AlB2:

Al+2B→AlB2

2B+3O→B2O3

碳化硅涂层能使硼纤维具有突出的抗氧化性。因为硼接触不到铝,硼化物的形成完全被抑制。铝与硅不形成化合物,而铝与碳的反应在碳化硅存在的情况下,在热力学上是非常困难的。硼或铝穿过碳化硅移动的扩散系数在800K时非常小,2.5μm的碳化硅层已足以阻挡扩散。

十九、什么是增强材料的表面处理?简述偶联剂的化学结构及作用。

表面处理是在增强材料的表面涂覆上表面处理剂(包括浸润剂、偶联剂、助剂等物质),它有利于增强材料与基体间形成良好的粘结界面,从而达到提高复合材料各种性能的目的。

偶联剂的化学结构:分子两端含有性质不同的基团,一端的基团与增强材料表面发生化学作用或物理作用,另一端的基团则能和基体发生化学作用或物理作用,从而使增强材料与基体很好地偶联起来,获得良好的界面粘结,改善了多方面的性能,并有效地抵抗水的侵蚀。

二十、试讨论玻璃纤维的表面处理中偶联剂用量的确定及影响表面处理效果的因素。

偶联剂的用量会影响最后处理效果,在实际应用中起偶联作用的是偶联剂单分子层。过多地使用偶联剂是不必要和有害的。每种偶联剂的实际最佳用量,多数要从实验中确定。偶联剂用量也可采用计算法求得:100g给定被处理的增强材料的表面积,被1g硅烷偶联剂的最小涂覆面积除,即得该硅烷偶联剂在100g此种被处理材料上涂覆一单分子层时所需要的量。偶联剂在被处理材料表面上的涂覆并非只是单分子层,被处理材料单丝之间的间隙中往往比表面上含有更多的偶联剂,也不能保证偶联剂分子全部涂覆在被处理材料的表面上,所以,偶联剂的实际用量应高于上述计算值。

影响处理效果的因素:

处理方法的影响:不同的处理方法会影响处理效果。一般来说,前处理法的效果最为明显。

烘焙温度的选择:温度过低不起反应,达不到应有的偶联效果;温度过高会引起

偶联剂分解和自聚等不良后果,以致严重影响偶联效果。

烘焙时间的选择:烘焙时间应选择在一定烘焙温度下偶联剂与玻璃纤维表面的偶联反应能充分进行。随着烘焙时间的延长,被处理玻璃纤维的憎水性有所提高,但是处理时间过长生产效率就低。一般采用高温短时间的烘焙制度。

处理液的配制及使用:直接影响处理效果,应该严格控制处理液的pH值,以抑制水解产物的自行缩合。在整个处理过程中,对处理液的pH值应不断调节。

二十一、试述碳纤维的表面处理方法及作用效果:

1、表面浸涂有机化合物:采用类似纺织中的浆纱工艺,在碳纤维表面涂覆含有反应性端基的树脂(羟端基的丁二烯/丙烯酸共聚物等),以改善碳纤维的界面粘结性。

2、表面涂覆无机化合物:

①表面上沉积无定形碳:在高模量结晶型碳纤维表面加涂一层低模量无定形碳,无定形碳活性大,易与树脂浸润,提高界面粘结力,能显著提高碳纤维复合材料的层间剪切强度。

②加涂碳化物:用化学气相沉积(CVD)的方法加涂碳化物。

3、表面化学处理:

①臭氧氧化法:臭氧极易分解成一个氧分子和一个新生态活泼氧原子,氧化碳纤维表面的不饱和碳原子,生成含氧官能团。

②阳极电解氧化法:靠电解产生的新生态氧对碳纤维表面进行氧化和腐蚀,碳纤维表面被氧化腐蚀,使比表面积增大、化学基团增加。

③盐溶液处理:先浸涂甲酸、乙酸、硝酸等的铜、铅、钴等盐类溶液,然后在空气或氧气中于200-600℃下氧化,使碳纤维表面粗糙而达到改善效果。

复合材料界面与设计

先进聚合物复合材料界面设计与表征进展 姓名:卢刚班级:材研1005 学号:104972100244 摘要:本文简述了界面的形成与作用机理,着重介绍了聚合物基复合材料界面改进的几种方法。 关键词:聚合物;复合材料;界面 Abstract:This paper briefly describes the formation of the interface and the mechanism of action,mainly introduces some methods about the UI improvement of the polymer-based composites. 1引言 聚合物基复合材料是由纤维和基体结合为一个整体,使复合材料具备了原组成材料所没有的性能,并且由于界面的存在,纤维和基体所发挥的作用,是各自独立而又相互存在的。 界面是复合材料组成的重要组成成分,它的结构与性能,以及粘合强度等因素,直接关系到复合材料的性能。所以,复合材料界面问题的研究有着十分重要的意义。 现代科学的发展为复合材料界面的分析表征提供了强有力的手段。扫描电镜、红外光谱、紫外光谱、光电子能谱、动态力学分析、原子粒显微镜等,在复合材料界面分析表征中得到充分利用,为揭示界面的本质、丰富界面的理论做出了重要贡献。 2界面的形成与作用机理 2.1界面的形成 复合材料体系对界面要求各不相同,它们的成形加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为两个阶段:第一阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程。在复合材料的制备过程中,要求组份间能牢固的结合,并有足够的强度。要实现这一点,必须要使材料在界面上形成能量最低结合,通常都存在一个液态对固体的相互浸润。所谓浸润,即把不同的液滴放到不同的液态表面上,有时液滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

木塑复合材料界面改性

木塑复合材料界面改性 摘要:介绍了聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯制备的木塑复合材料界面改性的研究进展,阐述了界面改性对木塑复合材料性能的影响,并对木塑复合材料的应用前景进行了展望。 木塑复合材料是近年来兴起的环保型复合材料,由聚合物基体和木纤维(木粉、竹粉、稻壳、秸秆等)按一定比例加工而成。制备木塑复合材料的聚合物基体有热固性聚合物和热塑性聚合物,而热塑性聚合物可回收利用、连续生产,是制备木塑复合材料的主要聚合物基体。常用的热塑性聚合物有聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。由于热塑性木塑复合材料中木纤维的填充量较高,聚合物基体与木纤维之间的界面相容性较差,影响了木塑复合材料的力学性能;此外,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散。因此如何改善聚合物基体与木纤维之间的界面相容性是制备性能优良的木塑复合材料的关键。木塑复合材料的界面改性主要通过改性木纤维或添加界面改性剂的方法进行。木纤维的改性包括物理改性和化学改性。物理改性(如干燥、交联)的主要作用是增强纤维素表面与聚合物基体的啮合;化学改性主要是将纤维素表面的羟基反应掉,形成化学键,如将木纤维表面的羟基进行乙酰化以降低木纤维的表面活化能,或利用相容剂的羧基或酰基与纤维素中的羟基发生酯化反应[1],如马来酸酐接枝PP(PP-g-MAH)、异氰酸酯、氯化苯甲酰等。从改性效果来看,化学改性方法明显优于物理改性方法。添加界面改性剂改善木塑复合材料界面相容性是使用较多的方法。界面改性剂通常一端含有极性基团,另一端含有非极性基团。极性基团能与木纤维的极性部分亲和,而非极性基团则和极性较弱的聚合物基体亲和。界面改性剂主要是起桥梁的作用,通过降低两相间的界面能,促进木纤维在树脂相中的分散,降低木纤维之间的凝聚力,提高聚合物基体的分散能力;并且加强了高分子链与木纤维间的机械缠结以增强两者的界面亲和力,从而提高复合材料的力学性能。常用的界面改性剂有马来酸酐接枝聚烯烃、硅烷偶联剂、钛酸酯、铝酸酯等[2]。木塑复合材料的界面改性方法多种多样。木纤维的改性或界面改性剂的合成可以在加工木塑复合材料之前独立进行,也可以在加工过程中原位进行,从工业化生产的角度来看,越简单的界面改性方法越有利于降低成本和推广应用。 1热塑性木塑复合材料界面改性的研究进展 1.1PP基木塑复合材料的界面改性 PP是常用的制备木塑复合材料的聚合物之一,但它是非极性聚合物,与木纤维的界面相容性较差。PP-g-MAH是常见的PP基木塑复合材料的界面改性剂[3-5],因为马来酸酐价格便宜,界面改性效果良好,而且PP-g-MAH可采用反应性挤出,生产效率高。PP-g-MAH能降低木纤维的表面自由能并降低纤维之间的吸附力,增强聚合物基体的渗透能力,改善纤维的分散和取向,通过机械啮合提高界面黏合力。PP-g-MAH与木纤维表面的羟基在碱性催化剂作用下能发生酯化反应,在聚合物与木纤维之间形成桥梁,从而提高界面黏合力[6]。此外,采用马来酸酐对木纤维进行接枝改性也是改善木塑复合材料界面相容性的重要方法。Nenkova等[7]在含有10%马来酸酐的丙酮溶液中采用过氧化二苯甲酰(BPO)和过氧化二异丙苯(DCP)引发马来酸酐对木纤维进行表面改性,木纤维和马来酸酐发生化学反应,增加了界面黏合力,制得的PP基木塑复合材料的力学性能有了较大的提高。Demir等[8]分别采用3-氨基丙基三乙氧基硅烷(AS)、三甲氧基甲硅烷基丙硫醇(MS)和PP-g-MAH作为PP/丝瓜纤维复合材料的界面改性剂,改善了聚合物与丝瓜纤维的相容性,提高了其力学性能和抗吸湿性。AS和MS改性后的复合材料界面黏合力增强,其中MS改性的复合材料力学性能较高。近年来也有研究者采用固相接枝法[9]或熔融接枝法[10]开发出多种单体的PP接枝共聚物,其具有接枝率高、界面改性效果好等优点,是木塑复合材料优良的界面改性剂。

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

复合材料界面制备技术的研究发展现状

复合材料界面制备技术的研究发展现状 孟明艾复合1001 3100706025 摘要:材料界面直接影响着材料的物理、化学、力学等性能与应用范围, 复合材料整体性能的优劣与复合材料界面结构和性能关系密切。分析材料界面的物理与化学过程、物质传输、能量转化及研究材料界面的结构与性能间的关系,对研究新材料和传统材料及其应用有着愈来愈重要的意义。 复合材料界面介绍 复合材料是由两种或两种以上不同物理、化学性质的以微观或宏观的形式复合而组成的多相固体材料。复合材料中增强体与基体接触构成的界面,是一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相——界面相(界面层)。界面是复合材料极为重要的微结构,它是增强体和基体相连接的“纽带”,也是应力及其他信息传递的桥梁,其结构与性能直接影响着复合材料的性能。因此,深入研究复合材料界面的的制备、技术形成过程、界面层性质、结合强度、应力传递行为对宏观力学性能的影响规律,从而有效进行控制界面,是获得高性能复合材料的关键。 复合材料界面及其组成 界面相并没有十分清晰的界限。界面相内部即使是同一组分其内部性质也有很大的不同,无论从物理状态还是化学情况,界面相各个组分之间都存在着相互扩散和相互影响,并不是一个绝对规整的结构。对于界面相,界面层的形成和结构大体可分为:1.表面的粗糙及活性而形成的吸附层;2.表面的化学物质与基质发生化学反应而成的物质;3.表面诱导的结晶层;4.聚合物和纤维冷却时,因收缩差所引起的残留应力层。 复合材料界面研究现状 界面与材料的各种性能的关系是复合材料研究的前沿领域,当前界面研究的重点是界面润湿、界面结构、界面结合机制和界面稳定性,它对颗粒的分布往往起着决定性的作用。因此,有关润湿机理、改善途径及影响因素仍是今后界面研究的重要课题。 但是,由于界面尺寸很小且不均匀,化学成分及结构复杂,对于界面的结合强度、界面的厚度、界面的应力状态尚无直接和准确的定量的方法,对于界面结合状态、形态、结构以及它对复合材料的影响尚没有适当的试验方法,需要借助电子质谱、红外扫描等试验逐步摸索和统一认识。因此,迄今为止,对复合材料界面的认识还不是很充分,主要表现在:(1)界面表征手段测试手段存在局限;(2)界面改善方法:无法解释界面在材料失效过程的确切作用;(3)材料力学研究:理论模型与材料加工的实际过程有很大差异。 复合材料界面制备技术的研究 制备技术不仅很大程度上影响着复合材料的性能,同时也是它进一步应用发展的重要因素。材料界面制备技术主要是接合。所谓接合,是指为得到具体指定特性的坯料而使用的一种材料复合手段。接合形式有物理吸附、化学反应、

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.360docs.net/doc/915815678.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

第十五章-复合材料的界面及界面优化设计

复合材料
第三部分 复合材料的增强材料
第十五章 复合材料的界面及界面优化设计
教学目的:通过本章的学习,掌握复合材料的界面及 作用,聚合物基复合材料的界面及改性方法,几种聚 合物基复合材料的形成和改善界面的途径,界面表征 的方式。 重点内容: 1、复合材料的界面及界面改性方法。 2、复合材料改善界面的途径。 难点:复合材料界面与性能的关系。 熟悉内容:复合材料界面的研究内容及方法。
1
2
主要英文词汇:
Composite material---复合材料 Composite interface---复合材料界面 Residual stress of composite interface---复合材料界面 残余应力 Reaction of composite interface---复合材料界面反应 Modification of composite interface---复合材料的界 面改性 Mechanics of composite interface---复合材料界面力学
3
Bonding strength of composite interface---复合材料界面 黏结强度 Optimum design of composite interface---复合材料界面 优化设计 Compatibility of composite interface---复合材料界面相 容性 Mechanics of composite---复合材料力学 Micromechanics of composite---复合材料细观力学
4
参考教材或资料:
1、复合材料学----周祖福 (武汉理工大学出版社,2004年) 2、现代复合材料----陈华辉 邓海金 李 明 (中国物质出版社,1998) 3、复合材料概论----王荣国 武卫莉 (哈尔滨工业大学出版社,1999) 4、复合材料--------吴人洁(天津大学出版社,2000) 5、复合材料科学与工程---倪礼忠,陈麒(科学出版社,2002) 6、复合材料及其应用—尹洪峰,任耘(陕西科学技术出版社,2003) 7、高性能复合材料学---郝元恺,肖加余 (化学工业出版社,2004) 8、新材料概论--- 谭毅, 李敬锋(冶金工业出版社,2004) 9、先进复合材料----鲁 云 朱世杰 马鸣图 (机械工业已出版社,2004) 10、复合材料--------周曦亚(化学工业出版社,2005)
5
15、复合材料的界面及界面优化设计
21世纪对材料要求多样化,复合材料开发有很大发 展,复合材料整体性能的优劣与界面结构和性能关系密 切。
15.1复合材料的界面概念
复合材料的界面是指基体与增强相之间化学成分有显 著变化的、构成彼此结合的、能起载荷传递作用的微小区 域。 复合材料的界面是一个多层结构的过渡区域,约几个 纳米到几个微米。大量事实证明,复合材料的界面 复合材料的界面实质上 界面相 是纳米级以上厚度的界面层(Interlayer)或称界面相 (Interphase)。
6
1

高性能有机纤维增强复合材料的界面性能研究

高性能有机纤维增强复合材料的界面性能 研究 201001130606 高同舜

高性能有机纤维增强复合材料的界面性能研究 摘要:为了改善超高分子量聚乙烯(UHMWPE)纤维、芳纶纤维增强树脂基复合材 料的界面粘结性能,本文从树脂基体入手,依据相似相容原理和纤维的结构特点开发出两种新型热固性树脂—PCH 树脂和AFR 树脂,分别用作UHMWPE 纤维复合材料和芳纶复合材料的基体,以未经表面处理的纤维作增强材料,采用热压成型法制备了UHMWPE 纤维/PCH 和芳纶/AFR 复合材料,并通过测定接触角、层间剪切强度(ILSS)、横向拉伸强度和扫描电镜观察形貌等方法研究了复合材料 的界面粘结性能。结果表明:UHMWPE 纤维和PCH 树脂浇注体的溶度参数相近,PCH 树脂溶液在UHMWPE 纤维表面的接触角为15.6°,说明对其具有良 好的浸润性;UHMWPE/PCH 复合材料的ILSS 和单丝拔出强度分别为42.6MPa 和21.8MPa,均远大于UHMWPE/环氧树脂(EP)复合材料的相应强度,扫描电镜分析也表明UHMWPE 纤维增强PCH树脂基复合材料具有优异的界面粘结性能。AFR 树脂溶液与芳纶纤维的接触角为42.8°,而EP 与芳纶的接触角为68°,说明AFR 树脂对芳纶的润湿性优于EP;芳纶/AFR 复合材料的ILSS、横向拉伸强度和纵向拉伸强度分别为74.6MPa、25.3MPa、2256 MPa,比芳纶/EP 复合材料的相应强度分别提高了28.7%、32.5%和13.4%,其复合材料破坏面的形貌也 说明芳纶与AFR 树脂之间的界面粘结性能较好。 Abstract:In order to improve the interfacial adhesion of UHMWPE fiber and aramid fiber reinforced polymer matrix composites, two new thermosetting resin systems (PCH and AFR) have been developed according to law of similar mutual solubility and the structural characteristics of fibers. The adhesion properties of UHMWPE fiber/PCH and aramid /AFR composites were investigated by the methods of the contact angle, interlaminar shear strength, transverse tensile strength and scanning electron croscopy etc. Test results show that a strong interaction occurs between fibers and the matrix due to the structural and polar similarity. In the case of slight ifference between solubility parameters of UHMWPE fiber and cured PCH resin, it is found that the wettability of PCH resin on surface of the fiber can be improved and UHMWPE /PCH composite has excellent transverse tensile strength, interlaminar shear strength and the pull-out strength together with the outstanding interfacial bond property. The contact angle (42.8 °) between AFR resin and aramid fiber is smaller than the contact angle (68°) between the epoxy resin (EP) and aramid fibers. Therefore, the AFR resin had better wettability with the aramid fibers. The nterlaminar shear strength, transverse tensile strength and longitudinal tensile trength of aramid/AFR composite are respectively 74.6 MPa, 25.3MPa and 2256 MPa, increasing by 28.7%, 32.5% and 13.4% respectively compared with aramid fibers/EP composite. According to the SEM photograph of aramid fibers/AFR composite, AFR resin had good interface bonding performance with aramid fibers . 关键词:超高分子量聚乙烯(UHMWPE)纤维芳纶纤维复合材料界面粘结性Keywords: UHMWPE fiber; aramid fiber; composites; interfacial adhesion

复合材料界面层材料的研究

复合材料界面层材料的研究* 卢国锋1,2 ,乔生儒1,许 艳3 (1 西北工业大学,超高温结构复合材料国家重点实验室,西安710072;2 渭南师范学院装备工程技术中心, 渭南714000;3 渭南师范学院图书馆,渭南714000)摘要 界面层是复合材料中的关键组成部分,因对复合材料的各项性能都有重要影响,而成为复合材料研究的重点之一。在叙述界面层功能的基础上,分别对层状结构界面层材料(包括层状晶体结构材料和多层陶瓷界面相)和非层状结构界面层材料进行了讨论,分析了研究中存在的问题,指出了未来研究的方向和重点。 关键词 界面层 复合材料 力学性能 抗氧化性能中图分类号:TB332 文献标识码:A Studies on the Interphase of the Comp ositesLU Guofeng1, 2,QIAO Sheng ru1,XU Yan3 (1 National Key Laboratory  of Thermostructure Composite Materials,Northwestern Polytechnical University,Xi’an 710072;2 Center for Armament Engineering  Technology,Weinan Normal University,Weinan 714000;3 Library  of Weinan Normal University,Weinan 714000)Abstract The interlayer is a key component of the composites,and has important influence on the properties ofthe materials.Based on the description of the functionality of interphase,the research status of the interphase mate-rials with layer structure,including layered crystal structure and multilayer ceramic interphase,and the interphase ma-terials without layered structure is introduced.The problems in the research work are analyzed,the direction and fo-cus of future research are p ointed out.Key  words interphase,composites,mechanical property,oxidation resistance *国家自然科学基金( 50772089);渭南师范学院科研项目(13YKS003) 卢国锋:男,1975年生,博士,副教授,主要研究方向为陶瓷基复合材料和功能材料 E-mail:lug uof75@163.com0 引言 界面层是复合材料中处于增强体和基体之间的一个局部微小区域。它将增强体和基体彼此良好地结合在一起,起着传递载荷,阻止裂纹越过增强体表面进行扩展,缓解残余热应力,阻挡基体和纤维间元素的相互扩散、溶解和有害化 学反应, 阻止纤维在高温环境下发生氧化的作用[1] 。界面层在复合材料中所占的体积分数虽不足10%,但却是影响陶瓷基复合材料力学性能、抗环境侵蚀能力等的关键因素之一。特别是对于脆性纤维增强脆性基体复合材料来说,纤维与基体间的界面层是决定复合材料强度和韧性的重要因素。因此,对界面层材料及其结构的研究一直是复合材料研究的热点之一。本文对近年来在复合材料界面层领域的研究进行了综述。 1 复合材料界面层的功能 一般来讲,界面层的功能主要有4个:传递、阻止裂纹扩展、缓解和阻挡。传递作用是指界面层作为一个“桥梁”将作用于基体的载荷充分传递至复合材料的主要承载者———纤维增强体上。阻止裂纹扩展是指当基体裂纹扩展到界面层 区域时, 基体和纤维沿它们之间的界面发生分离,并使裂纹的扩展方向发生改变,即裂纹偏转,阻止裂纹直接越过纤维表面进行扩展。缓解作用是指界面层通过过渡作用和界面滑移减少残余热应力。阻挡作用是指阻挡基体和纤维间元素的相互扩散、 溶解和有害化学反应,阻止外界环境对纤维增强体的侵害[ 1,2] 。以上只是一般意义上的界面层功能,但不同功用的复合材料对界面层的要求不同。例如:以承受载荷为主要目的的复合材料对前3种功能有更为苛刻的要求, 而以抗氧化为主要目的的复合材料则对阻挡功能要求更严。一种界面层所具有的功能主要取决于界面层的材质、结构、厚度以及界面层与纤维或基体间的相互作用等因素。为了满足不同复合材料功能的需求, 不同功用的复合材料应具有不同的界面层。复合材料界面层的研究正是在这种需求下不断进行的。目前常被研究的界面层材料有很多,大致可分为两类:层状结构材料和非层状结构材料,其中层状结构材料又包括层状晶体结构材料和多层陶瓷界面相。 2 层状晶体结构界面层材料 具有层状晶体结构的材料由于其层间结合力较弱,当外 ·04·材料导报A:综述篇 2 013年11月(上)第27卷第11期

聚合物基复合材料的界面研究进展

深圳大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低了添加刚性粒子所引起的材料韧性下降的程度;同时由于界面层的引入,使三相复合体系在较低的橡胶含量下具有较高的模量和冲击强度。欧玉春[6]等报道了PP/三元乙丙橡胶(EPDM)/

复合材料的界面问题研究

论文题目:复合材料的界面问题研究 学院:材料科学与工程学院 专业:材料学 任课老师:霍冀川 姓名:夏松钦 学号:2011000148

复合材料的界面问题研究 摘要:界面问题,在复合材料制备中起很大的作用,界面结合的好坏,直接影响复合材料的整体性能,现针对国内外增强树脂用玻璃纤维、碳纤维及芳纶纤维的表面处理方法,强调界面问题的重要性 关键词:界面问题;玻璃纤维;碳纤维;芳纶纤维 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有重要的影响。随着对复合材料界面结构及优化设计研究的不断深入。研究材料的界面力学行为与破坏机理是当代材料科学、力学、物理学的前沿课题之一。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,各自都有其独特的结构、性能与作用,增强相主要起承载作用;基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递。对增强相和基体相的研究已取得了许多成果,而对作为复合材料3大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,其理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能,尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为越来越受到重视。 热塑性复合材料不仅有优越的力学性能、耐腐蚀、无毒性和低价格指数,还由于具有热固性复合材料所不具备的可重复加工和使用的特点,避免产生三废,有利于环保,因而倍受人们的重视,发展很迅速。对于增强热塑性复合材料来说,由于基体本身缺乏可反应的活性官能团,很难与纤维产生良好化学键结合,因而界面结合的问题就显得更为重要。 2玻璃纤维的表面处理方法 玻璃纤维在复合材料中主要起承载作用。为了充分发挥玻璃纤维的承载作用,减少玻璃纤维和树脂基体差异对复合材料界面的影响,提高与树脂基体的粘合能力,因此有必要对玻璃纤维的表面进行处理[1],使之能够很好地与树脂粘合,形成性能优异的界面层,从而提高复合材料的综合性能。 2.1玻璃纤维表面的偶联剂处理 Zisman[2]于1963年发表关于粘结的表面化学与表面能,他认为要获得完全的表面润湿,粘结剂起初必须是低粘度且其表面张力须低于无机物的临界表面张力,其结果引发了对采用偶联剂处理玻璃纤维表面的研究。偶联剂主要用于增强玻璃纤维表面处理,其种类很多,包括硅烷偶联剂、铝酸酯偶联剂、钛酸酯偶联剂等,通过偶联剂能使两种不同性质的材料很好地“偶联”起来,从而使复合材料获得较好的粘结强度。 2.1.1硅烷偶联剂处理 在用偶联剂对玻璃纤维表面处理中研究较多的是硅烷偶联剂。硅烷偶联剂的水解产物通过氢键与玻纤表面作用,在玻纤表面形成具有一定结构的膜。偶联剂膜含有物理吸附、化学吸附和化学键作用的3个级分,部分偶联剂会形成硅烷聚合物。在加热的情况下,吸附于玻纤表面的偶联剂将与玻纤表面的羟基发生缩合,在两者之间形成牢固的化学键结合。 氨基硅烷偶联剂是偶联剂的一种,研究结果表明:含有氨基的偶联剂比不含

聚合物基复合材料的界面及改性研究

FRP /C M 2005.No .3 收稿日期:2004210215 作者简介:朱雅红(19712),女,硕士研究生,主要从事高分子材料的合成及改性研究。 聚合物基复合材料的界面及改性研究 朱雅红,马晓燕,陈 娜 (西北工业大学理学院 应用化学系,西安 710072) 摘要:本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、晶须增强复合材料和原位复合材料的界面特性及其改性方法,论述其界面改性的研究进展,指出目前研究工作中存在的不足及发展方向。 关键词:界面;聚合物;复合材料;改性 中图分类号:T B332 文献标识码:A 文章编号:1003-0999(2005)03-0044-05 界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域。偶联剂用于改善复合材料的界面,聚合物界面改性的目的也从单纯的增韧向增强增韧以及功能化方向发展。本文针对无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、晶须增强复合材料和原位复合材料论述各种界面的特性及其改性方法。 1 无机刚性粒子增强复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点。它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子有CaCO 3、Si C 、BaS O 4、滑石、硅石灰、蒙脱土以及煤灰等。 欧玉春等提出刚性粒子增强、增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时既能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。在PP /CaCO 3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低了添加刚性粒子所引起的材料韧性下 降的程度;同时由于界面层的引入,使三相复合体系在较低的橡胶含量下具有较高的模量和冲击强度。欧玉春等报道了PP /三元乙丙橡胶(EP DM )/滑石粉三相复合体系。在无机填料表面形成的弹性界面相可使三相复合材料同时具有高韧性和高模量的特点。金士九等用乳液聚合的方法将具有不同交联程度和带环氧官能团的刚性粒子作为环氧树脂的增韧改性剂掺到环氧树脂中,研究其界面层结构对增韧的影响,发现刚性粒子与聚合物树脂基体之间发生不同程度的分子互穿,刚性粒子表面带环氧官能团后,与基体材料形成化学键合的界面层结构,从而改善材料的力学性能。 刚性粒子的加入对聚合物基体的结晶行为产生影响,使晶粒尺寸变小,完善程度降低,甚至在界面附近形成择优取向的滑移阻力较小的结晶层,从而促进基体发生屈服变形,利于材料韧性的提高。欧玉春等 [1] 研究PP /高岭土(Kaolin )/GF 复合体系及 其界面结晶性。通过DSC 非等温结晶数据分析指出,加入Kao1in 粒子和GF 后发生异相成核作用,促使PP 球晶尺寸变小,使材料韧性提高。张云灿等研究HDPE /CaCO 3体系中用烷氧焦磷酸酯型钛酸酯类和端口恶唑啉聚醚复合处理CaCO 3时,复合偶联剂在CaC O 3表面形成包覆层,且通过化学键形成联接、缠 绕、网络CaC O 3周围的基体分子链,增强了界面相粘结,复合材料力学性能明显得到改善;同时发现Ca 2C O 3表面处理剂、处理方式和CaCO 3的颗粒大小亦影 响界面的粘结强度,进而影响材料的力学性能。 在无机刚性粒子增韧机理上,吴永刚等还建立了刚性粒子团2界面带模型,即在复合体系中存在刚性粒子团,刚性粒子团与周围环境之间存在着一个

相关文档
最新文档