WebKit内核源代码分析(三)

WebKit内核源代码分析(三)
WebKit内核源代码分析(三)

android课程设计报告(数独游戏)讲解

河南科技学院 《物联网移动应用开发》课程设计报告 设计题目:基于android的数独游戏设计 班级:物联网131 学号:2013156555 姓名:胡建刚 指导教师:许睿 成绩:

信息工程学院 课程设计报告说明 一、写报告前,请认真阅读《课程设计报告说明》。 二、打印装订要求 1、一律用A4纸,双面打印,并左侧装订。报告正文部分均 采用宋体小四。《课程设计报告说明》页也打印。 2、课程设计概述部分占一页;课程设计内容长度根据实际需要填写;结论和指导教师评语及成绩单独占一页。保证打印格式工整。 3、指导教师评语及成绩部分由指导教师填写。 三、报告内容要求 1、课程设计目的结合实际自己写,不要雷同。 2、课程设计原理简要说明所完成课程设计项目所涉及的理论 知识。 3、课程设计内容这是课程设计报告极其重要的内容。概括整个课程设计过程。(最好在上述内容基础上画出相应的流图、 设计思路和设计方法,再配以相应的文字进行说明。)

一、课程设计概述 1、课程设计目的 通过对android的学习,编写除了这个数独游戏,掌握android的控件知识的使用,和界面的制作。对java知识的应用。这样不仅对自身android的学习可以更上一层楼,而且这个游戏可以锻炼智力,游戏简单,适合多人群游戏,健康,益智的 游戏。 2、课程设计要求 1. 熟悉eclipse开发软件,熟练使用java和xml。 2. 学习和掌握android的四大组件的使用。 3. 熟练掌握Android 游戏开发多线程技术、Android 游戏开发的图形处理技术等。 4. 完成程序的编写工作。 5. 完成程序在模拟器上的实现,以及在安卓手机上的功能实现,并完成优化。 3、课程设计原理 基于数独游戏规则,通过java建立一系列的算法。然后利用android的控件知识建立一系列的界面。包括背景的制作。

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.360docs.net/doc/916549593.html,/ ?:http:/https://www.360docs.net/doc/916549593.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.360docs.net/doc/916549593.html, 来源: https://www.360docs.net/doc/916549593.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

Android系统调研报告

Android系统调研报告 摘要:Android手机操作系统自Google公司推出以来,经过两年的发展,已经成长为仅次于Aymbian的巨头,成为众多移动终端生产商和应用程序开发者青睐的选择。这次调研分析了Android系统的特点,介绍了Android系统构架、市场占有率、各版本的更新,以及对硬件的要求。简单分析了Android能取得成功的原因,以及Android的发展面临的困难和问题。 关键字:Android、智能手机系统、Android系统构架、Android版本、Android 发展问题 一、Android简介 Android 是Google历经数年和投资数亿美元开发出来的智能手机系统,是基于Linux内核的操作系统,是Google公司在2007年11月5日公布的手机操作系统。Google也发起了围绕Android的组织——开放手机联盟,其英文全称为“Open Handset Alliance”。它采用了软件堆层(software stack,又名以软件叠层)的架构,主要分为三部分。底层Linux内核只提供基本功能;其他的应用软件则由各公司自行开发,部分程序以Java编写。 随着各大移动终端生产商大力开发和生产基于Android的移动智能设备,Android迅速得到业界和社会的认可,并成为整个产业的热点,基于Android平台的各类人才逐渐成为各大企业竞相争夺的焦点。而且Android是一个开放的系统,不管是企业还是个人都可以参与来表达自己的创意和想法。

二、Android发展历程

三、Android特点 Android手机操作系统的推出,大大受到广大编程人员的喜爱。那么它究竟有什么出色的特点吸引着人们的眼光呢这里总结了一些Android特点,以供对此有兴趣的朋友参考学习。 1. Android是什么 Android是一个平台,主要包括Linux微内核,中间件(SQLite等),关键应用(电话本、邮件、短消息、GoogleMap、浏览器等),提供的Java框架,以及Android中的JVM。 特点之关键类 视图,ContentProviders(应用交互管理类)、ResourceManager非编码资源管理类、NotificationManager(通告管理类)、ActivityManager(生命周期管理类)。 特点之界面开发

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

Python网络爬虫实习报告

Python网络爬虫实习报告

目录 一、选题背景.................................................................................... - 1 - 二、爬虫原理.................................................................................... - 1 - 三、爬虫历史和分类......................................................................... - 1 - 四、常用爬虫框架比较..................................................................... - 1 - 五、数据爬取实战(豆瓣网爬取电影数据)................................... - 2 -1分析网页 .. (2) 2爬取数据 (2) 3数据整理、转换 (3) 4数据保存、展示 (8) 5技术难点关键点 (9) 六、总结 ......................................................................................... - 12 -

一、选题背景 二、爬虫原理 三、爬虫历史和分类 四、常用爬虫框架比较 Scrapy框架:Scrapy框架是一套比较成熟的Python爬虫框架,是使用Python开发的快速、高层次的信息爬取框架,可以高效的爬取web页面并提取出结构化数据。Scrapy应用范围很广,爬虫开发、数据挖掘、数据监测、自动化测试等。 Crawley框架:Crawley也是Python开发出的爬虫框架,该框架致力于改变人们从互联网中提取数据的方式。 Portia框架:Portia框架是一款允许没有任何编程基础的用户可视化地爬取网页的爬虫框架。 newspaper框架:newspaper框架是一个用来提取新闻、文章以及内容分析的Python爬虫框架。 Python-goose框架:Python-goose框架可提取的信息包括:<1>文章主体内容;<2>文章主要图片;<3>文章中嵌入的任heYoutube/Vimeo视频;<4>元描述;<5>元标签

Linux内核源代码阅读与工具介绍

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux 目录下的东西就是内核源代码。另外还可以从互连网上下载,解压缩后文件一般也都位于linux目录下。内核源代码有很多版本,目前最新的版本是2.2.14。 许多人对于阅读Linux内核有一种恐惧感,其实大可不必。当然,象Linux内核这样大而复杂的系统代码,阅读起来确实有很多困难,但是也不象想象的那么高不可攀。只要有恒心,困难都是可以克服的。任何事情做起来都需要有方法和工具。正确的方法可以指导工作,良好的工具可以事半功倍。对于Linux内核源代码的阅读也同样如此。下面我就把自己阅读内核源代码的一点经验介绍一下,最后介绍Window平台下的一种阅读工具。 对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,基本要求是:⑴操作系统的基本知识;⑵对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录): arch这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。 include这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。 init此目录包含核心启动代码。 mm此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c。 drivers系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。 ipc此目录包含了核心的进程间通讯代码。 modules此目录包含已建好可动态加载的模块。 fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。 kernel主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。 net核心的网络部分代码。里面的每个子目录对应于网络的一个方面。 lib此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

linux源代码分析实验报告格式

linux源代码分析实验报告格式

Linux的fork、exec、wait代码的分析 指导老师:景建笃 组员:王步月 张少恒 完成日期:2005-12-16

一、 设计目的 1.通过对Linux 的fork 、exec 、wait 代码的分析,了解一个操作系统进程的创建、 执行、等待、退出的过程,锻炼学生分析大型软件代码的能力; 2.通过与同组同学的合作,锻炼学生的合作能力。 二、准备知识 由于我们选的是题目二,所以为了明确分工,我们必须明白进程的定义。经过 查阅资料,我们得知进程必须具备以下四个要素: 1、有一段程序供其执行。这段程序不一定是进程专有,可以与其他进程共用。 2、有起码的“私有财产”,这就是进程专用的系统堆栈空间 3、有“户口”,这就是在内核中有一个task_struct 结构,操作系统称为“进程控制 块”。有了这个结构,进程才能成为内核调度的一个基本单位。同时,这个结构又 是进程的“财产登记卡”,记录着进程所占用的各项资源。 4、有独立的存储空间,意味着拥有专有的用户空间:进一步,还意味着除前述的 系统空间堆栈外,还有其专用的用户空间堆栈。系统为每个进程分配了一个 task_struct 结构,实际分配了两个连续的物理页面(共8192字节),其图如下: Struct task_struct (大约1K) 系统空间堆栈 (大约7KB )两个 连续 的物 理页 面 对这些基本的知识有了初步了解之后,我们按老师的建议,商量分工。如下: 四、 小组成员以及任务分配 1、王步月:分析进程的创建函数fork.c ,其中包含了get_pid 和do_fork get_pid, 写出代码分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作 比例35%。 2、张少恒:分析进程的执行函数exec.c,其中包含了do_execve 。写出代码分析结 果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例35% 。 3、余波:分析进程的退出函数exit.c,其中包含了do_exit 、sys_wait4。写出代码 分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例30% 。 五、各模块分析: 1、fork.c 一)、概述 进程大多数是由FORK 系统调用创建的.fork 能满足非常高效的生灭机制.除了 0进程等少数一,两个进程外,几乎所有的进程都是被另一个进程执行fork 系统调 用创建的.调用fork 的进程是父进程,由fork 创建的程是子进程.每个进程都有一

Linux源代码分析_存储管理

文章编号:1004-485X (2003)03-0030-04 收稿日期:2003-05-10 作者简介:王艳春,女(1964 ),副教授,主要从事操作系统、中文信息处理等方面的研究工作。 Linux 源代码分析 存储管理 王艳春 陈 毓 葛明霞 (长春理工大学计算机科学技术学院,吉林长春130022) 摘 要:本文剖析了Linux 操作系统的存储管理机制。给出了Linux 存储管理的特点、虚存的实现方法,以及主要数据结构之间的关系。 关键词:Linux 操作系统;存储管理;虚拟存储中图分类号:T P316 81 文献标识码:A Linux 操作系统是一种能运行于多种平台、源代码公开、免费、功能强大、与Unix 兼容的操作系统。自其诞生以来,发展非常迅速,在我国也受到政府、企业、科研单位、大专院校的重视。我们自2000年开始对Linux 源代码(版本号是Linux 2 2 16)进行分析,首先剖析了进程管理和存储管理部分,本文是有关存储管理的一部分。主要介绍了Linux 虚存管理所用到的数据结构及其相互间的关系,据此可以更好地理解其存储管理机制,也可以在此基础上对其进行改进或在此后的研究中提供借鉴作用。作为一种功能强大的操作系统,Linux 实现了以虚拟内存为主的内存管理机制。即能够克服物理内存的局限,使用户进程在透明方式下,拥有比实际物理内存大得多的内存。本文主要阐述了Linux 虚存管理的基本特点和主要实现技术,并分析了Linux 虚存管理的主要数据结构及其相互关系。 1 Lin ux 虚存管理概述 Linux 的内存管理采用虚拟页式管理,使用多级页表,动态地址变换。进程在运行过程中可以动态浮动和扩展,为用户提供了透明的、灵活有效的内存使用方式。 1)32 bit 虚拟地址 在Linux 中,进程的4GB 虚存需通过32 bit 地址进行寻址。Linux 中虚拟地址与线性地址为同一概念,虚拟地址被分成3个子位段,而大小为4k,如图1所示。 2)Linux 的多级页表结构 图1 32位虚拟地址 标准的Linux 的虚存页表为三级页表,依次为页目录(Pag e Directory PGD)、中间页目录(Pag e Middle Directory PMD )、页表(Page Table PT E )。在i386机器上Linux 的页表结构实际为两级,PGD 和PMD 页表是合二为一的。所有有关PMD 的操作关际上是对PGD 的操作。所以源代码中形如*_pgd _*()和*_pmd_*()函数实现的功能也是一样的。 页目录(PGD)是一个大小为4K 的表,每一个进程只有一个页目录,以4字节为一个表项,分成1024个表项(或称入口点),表项的索引即为32位虚拟地址的页目录,该表项的值为所指页表的起始地址。页表(PTE)的每一个入口点的值为此表项所指的一页框(page frame),页表项的索引即为32位虚拟地址中的页号。页框(page reame)并不是物理页,它指的是虚存的一个地址空间。 3) 页表项的格式 图2 Linux 中页目录项和页表项格式 4)动态地址映射 Linux 虚存采用动态地址映射方式,即进程的地址空间和存储空间的对应关系是在程序的执行过 第26卷第3期长春理工大学学报 Vol 26N o 32003年9月 Journal of Changchun University of Science and T echnology Sep.2003

QT调研报告

QT调研报告

目录 Qt简介 (3) 发行版本 (3) 平台支持 (3) QT的开发工具 (4) Qt库 (6) Qt模块 (6) QT各平台内存要求 (3) QT开发体验 (6) 优势 (7) 劣势 (8) QT能提高什么? (8) QT的应用领域 (8) 总结 (9) QT术语 (9) 参考资料 (9)

Qt简介 Qt是一个1991年由奇趣科技开发的跨平台C++图形用户界面应用程序开发框架。它既可以开发GUI程式,也可用于开发非GUI程式,比如控制台工具和服务器。能提供给应用程序开发者建立艺术级的图形用户界面所需的所用功能。Qt是面向对象语言,易于扩展,并且允许组件编程。使用 Qt,只需一次性开发应用程序和用户界面,无须重新编写源代码,便可跨不同桌面和嵌入式操作系统部署这些应用程序。2008年,奇趣科技被诺基亚公司收购,QT也因此成为诺基亚旗下的编程语言工具。 发行版本 Qt商业版:提供给商业软件开发。它们提供传统商业软件发行版并且提供在协议有效期内的免费升级和技术支持服务。Qt专业版和企业版是Qt的商业版本。 Qt开源版:仅仅为了开发自由和开放源码软件,提供了和商业版本同样的功能。GNU通用公共许可证下,它是免费的。 QT已经升级到5.0了。 平台支持 Qt支持下述平台: MS/Windows - 95、98、NT 4.0、ME、2000、XP 、 Vista和Win7 Unix/X11 - Linux、Sun Solaris、HP-UX、CompaqTru64 UNIX、IBM AIX、SGI IRIX、 FreeBSD、BSD/OS和其它很多X11平台 Macintosh - Mac OS X Embedded - 有帧缓冲(framebuffer)支持的嵌入式Linux平台,Windows CE Android平台 - QT框架包在android的移植才刚起步,应用不多,还不支持中文。 QT各平台内存要求 Qt for Embedded Linux Requirements

Linux内核源码分析方法

Linux内核源码分析方法 一、内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内。如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码。通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一般短期内无法了解到的信息。Linux内核由无数开源社区的“大神们”精心维护,这些人都可以称得上一顶一的代码高手。透过阅读Linux 内核代码的方式,我们学习到的不光是内核相关的知识,在我看来更具价值的是学习和体会它们的编程技巧以及对计算机的理解。 我也是通过一个项目接触了Linux内核源码的分析,从源码的分析工作中,我受益颇多。除了获取相关的内核知识外,也改变了我对内核代码的过往认知: 1.内核源码的分析并非“高不可攀”。内核源码分析的难度不在于源码本身,而在于如何使用更合适的分析代码的方式和手段。内核的庞大致使我们不能按照分析一般的demo程序那样从主函数开始按部就班的分析,我们需要一种从中间介入的手段对内核源码“各个击破”。这种“按需索取”的方式使得我们可以把握源码的主线,而非过度纠结于具体的细节。 2.内核的设计是优美的。内核的地位的特殊性决定着内核的执行效率必须足够高才可以响应目前计算机应用的实时性要求,为此Linux内核使用C语言和汇编的混合编程。但是我们都 知道软件执行效率和软件的可维护性很多情况下是背道而驰的。如何在保证内核高效的前提下提高内核的可维护性,这需要依赖于内核中那些“优美”的设计。 3.神奇的编程技巧。在一般的应用软件设计领域,编码的地位可能不被过度的重视,因为开发者更注重软件的良好设计,而编码仅仅是实现手段问题——就像拿斧子劈柴一样,不用太多的思考。但是这在内核中并不成立,好的编码设计带来的不光是可维护性的提高,甚至是代码性能的提升。 每个人对内核的了理解都会有所不同,随着我们对内核理解的不断加深,对其设计和实现的思想会有更多的思考和体会。因此本文更期望于引导更多徘徊在Linux内核大门之外的人进入Linux的世界,去亲自体会内核的神奇与伟大。而我也并非内核源码方面的专家,这么做也只是希望分享我自己的分析源码的经验和心得,为那些需要的人提供参考和帮助,说的“冠冕堂皇”一点,也算是为计算机这个行业,尤其是在操作系统内核方面贡献自己的一份绵薄之力。闲话少叙(已经罗嗦了很多了,囧~),下面我就来分享一下自己的Linix内核源码分析方法。 二、内核源码难不难? 从本质上讲,分析Linux内核代码和看别人的代码没有什么两样,因为摆在你面前的一般都不是你自己写出来的代码。我们先举一个简单的例子,一个陌生人随便给你一个程序,并要你看完源码后讲解一下程序的功能的设计,我想很多自我感觉编程能力还可以的人肯定觉得这没什么,只要我耐心的把他的代码从头到尾看完,肯定能找到答案,并且事实确实是如此。那么现在换一个假设,如果这个人是Linus,给你的就是Linux内核的一个模块的代码,你还会觉得依然那么 轻松吗?不少人可能会有所犹豫。同样是陌生人(Linus要是认识你的话当然不算,呵呵~)给 你的代码,为什么给我们的感觉大相径庭呢?我觉得有以下原因:

中国程序员人才调查报告

中国程序员人才调查报告 篇一:XX年中国程序员调查报告 XX 年第四季度《中国程序员调查报告》。报告里对程序员的 年龄分布,地区分布,性别比例,使用浏览器种类,使用的编程语言等进行了调查、统计和分析。对从业人员及其他相关人员有很好的参考作用。本调查集中对全国 100 万程序员互联网行为的调查,分析以及投票统计。 它清楚的显示出在程序员这个特殊的群体中,男性比例高达 80%,女性仅占 20%,他们具有明显的极客精神,喜欢使用 Chrome 浏览器(%),Android 移动操作系统和设备(%),最喜欢C++(%),C (%),Java(%),C#(%)编程语言。近半数的程序员来自广东(%)、北京(%)、江苏(%)、上海(%)。他们主要使用 PC(%)而不是移动设备(%)进行工作。下面是详细的分类统计结果。 一、年龄分布: 超过 80% 的程序员年龄在 20-40 岁之间。对于程序员这个职业来说,需要大量精力和体力的投入。20-40 岁是程序员工作的黄金时期。根据统计数据,仍

然有 10% 左右的程序员年龄在 40-49 岁之间,这部分人基本上都是已经在管理岗位上,但是,依然对编程有着浓厚的兴趣,会做部分实际的编程工作。从上图中还可以看到,有4% 的程序员,年龄在 10-19 岁。这说明程序员的工作,对于人行年龄基本没有什么限制,有些程序员从中学时期就开始动手写程序,并且做得相当不错。 图中我们也对比了普通网民的年龄分布(黄颜色部分)。程序员的年龄分布与普通网民的年龄分布趋势基本一致,差别比较大的是,在 10-19 岁的年龄段,网民数量很高,占了总数的四分之一还多,这或许与网络游戏对青少年的影响是有密切关系的。 二、性别比例 在中国,男程序员占了绝大多数,达到了近 80%,只有 20% 左右的女性从事程序员的工作。程序员这个行业还是有很明显的性别差异。这与程序员的工作特点有很大的关系(工作时间长,加班多,生活不规律等)。程序员的性别比例与普通网民的性别比例形成了鲜明的对比:普通网民的男女比例基本相同,与自然人口的男女比例基本一致。这说明,互联网真正做到了男女平等,没有性别歧视。而程序员这个职业,基本上是男人的天下。这大概也是播妞这个萌妹子能在程序员心目中有一席之地的主要原因。

微博营销分析工作报告

微博营销分析工作报告 p.p1 {margin: 0.0px 0.0px 8.0px 0.0px; font: 14.0px 'Hiragino Sans GB'; color: #000000; -webkit-text-stroke: #000000}p.p5 {margin: 0.0px 0.0px 8.0px 0.0px; font: 14.0px 'Hiragino Sans'; color: #000000; -webkit-text-stroke: #000000}li.li2 {margin: 0.0px 0.0px 8.0px 0.0px; font: 12.0px 'Hiragino Sans GB'; color: #000000; -webkit-text-stroke: #000000}li.li3 {margin: 0.0px 0.0px 18.0px 0.0px; font: 12.0px 'Hiragino Sans GB'; color: #000000; -webkit-text-stroke: #000000}li.li4 {margin: 0.0px 0.0px 18.0px 0.0px; font: 12.0px 'PingFang SC'; color: #000000; -webkit-text-stroke: #000000}li.li6 {margin: 0.0px 0.0px 8.0px 0.0px; font: 12.0px 'Hiragino Sans'; color: #000000; -webkit-text-stroke: #000000}li.li7 {margin: 0.0px 0.0px 18.0px 0.0px; font: 14.4px 'Helvetica Neue'; color: #000000; -webkit-text-stroke: #000000}li.li8 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px 'Hiragino Sans GB'; color: #000000; -webkit-text-stroke: #000000}span.s1 {font: 14.0px 'Hiragino Sans'; letter-spacing: 0.2px}span.s2 {letter-spacing: 0.2px}span.s3 {font: 14.4px

Linux内核源代码解读

Linux内核源代码解读!! 悬赏分:5 - 提问时间2007-1-24 16:28 问题为何被关闭 赵炯书中,Bootsect代码中有 mov ax , #BOOTSEG 等 我曾自学过80x86汇编,没有见过#的用法,在这为什么要用#? 另外, JMPI 的用法是什么?与JMP的区别是什么? 提问者: Linux探索者 - 一级 答复共 1 条 检举 系统初始化程序 boot.s 的分析 [转] 系统初始化程序 boot.s 的分析: 阚志刚,2000/03/20下午,在前人的基础之上进行整理完善 ******************************************************************************** ************** boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself out of the way to address 0x90000, and jumps there. 当PC 机启动时,Intel系列的CPU首先进入的是实模式,并开始执行位于地址0xFFF0处的代码,也就是ROM-BIOS起始位置的代码。BIOS先进行一系列的系统自检,然后初始化位于地址0的中断向量表。最后BIOS将启动盘的第一个扇区装入0x7C00(31K;0111,1100,0000,0000),并开始执行此处的代码。这就是对内核初始化过程的一个最简单的描述。 最初,Linux核心的最开始部分是用8086汇编语言编写的。当开始运行时,核心将自己装入到绝对地址0x90000(576K; 1001,0000,0000,0000,0000),再将其后的2k字节装入到地址0x90200(576.5k;1001,0000,0010,0000,0000)处,最后将核心的其余部分装入到0x10000(64k; 1,0000,0000,0000,0000). It then loads the system at 0x10000, using BIOS interrupts. Thereafter it disables all interrupts, moves the system down to 0x0000, changes to protected mode, and calls the start of system. System then must RE-initialize the protected mode in it's own tables, and enable interrupts as needed. 然后,关掉所有中断,把系统下移到0x0000(0k;0000,0000,0000,0000,0000)处,改变到保护模式,然后开始系统的运行.系统必须重新在保护模式下初始化自己的系统表格,并且打开所需的中断. NOTE 1! currently system is at most 8*65536(8*64k=512k; 1000,0000,0000,0000,0000) bytes long. This should be no problem, even in the future. I want to keep it simple. This 512 kB kernel size should be enough - in fact more would mean we'd have to move not just these start-up routines, but also do something about the cache-memory

安卓版连连看毕业设计报告

题目:安卓版水果连连看 系名:计算机科学与技术系 专业:软件工程 学号:6009203107 学生姓名:贺晓林 指导教师:李白 2012年12月19日

1课题概述 1.1课题意义 目前随着移动设备越来越普及以及移动设备的硬件的提升,移动设备的功能 越来越完善,移动设备的系统平台也日渐火热起来。目前国内最常见的移动开发平台有Symbian,iPhone,Windows Phone以及当下正在逐步兴起的Android。目前为止国内已经有很多Android系统的用户。截止2010年第二季度Android系统的国内市场占有率已经过10%,在西欧以及北美智能手机市场占有率也在20%左右。可见Android系统正在崛起之中。但是对于Android系统的应用和开发在国内仍然属于起步和探索阶段。急需要大量的相关技术和人员的投入。 下面首先介绍一下Android系统。Android是基于Linux内核的软件平台和操作系统,是Google在2007年11月5日公布的手机系统平台,早期由Google 开发,后由(Open Handset Alliance)开发。它采用了软件堆层(Software stack,又名以软件叠层)的架构,主要分为三部分。低层以Linux核心工作为基础,只提供基本功能;其他的应用软件则由各公司自行开发,以Java作为编写程式的一部分。 安卓版水果连连看是一款比较常见的安卓版游戏。游戏主要功能是点击俩个相同的水果,如果中间可以通过小于等于三条直线连接,就可以将俩个水果消除掉。游戏不同操作具有不的背景音乐。还有道具。刷新顺序和提示道具分别三次。游戏设置不同的关卡,通过时间的不同来控制。通过该课题,使学生更了解安卓 游戏项目的开发。 1.2课题目标 随着3G应用的不断开发推广,用户会越来越需要更加个性化、优质化的多媒体数据服务,用户希望能够随时、随地无缝利用3G网络进行办公、网上交易、游戏娱乐、欣赏影视节目、收听和下载音乐等。根据观察,在不久的将来,移动手机终端将会在以下若干方面具有新的发展。 首先,提供智能提醒服务,手机能够与用户实现密切配合,并监控用户的个性化设置(保持在本地或者云端),当重要时间点或关键事物需要用户注意时,手机会向用户发出“提醒”服务,服务包括日程提醒、交通状况、最佳行车路线、最佳泊位、优惠活动、实时新闻、体育赛事、天气情况、股市行情、好友活动、亲友生日等。 其次,提供虚拟现实体验,手机可以借助传感器、周边设备了解到您的身边环境,并根据收集到的信息,智能的为您提供有用的信息,如在网络世界养的宠物,可以借助音频设备表达叫声,借助马达和位置传感器等传递其跳、跃等行为

Linux KVM虚拟化源代码分析文档

KVM虚拟机源代码分析 1,KVM结构及工作原理 1.1K VM结构 KVM基本结构有两部分组成。一个是KVM Driver ,已经成为Linux 内核的一个模块。负责虚拟机的创建,虚拟内存的分配,虚拟CPU寄存器的读写以及虚拟CPU的运行等。另外一个是稍微修改过的Qemu,用于模拟PC硬件的用户空间组件,提供I/O设备模型以及访问外设的途径。 图1 KVM基本结构 KVM基本结构如图1所示。其中KVM加入到标准的Linux内核中,被组织成Linux中标准的字符设备(/dev/kvm)。Qemu通KVM提供的LibKvm应用程序接口,通过ioctl系统调用创建和运行虚拟机。KVM Driver使得整个Linux成为一个虚拟机监控器。并且在原有的Linux两种执行模式(内核模式和用户模式)的基础上,新增加了客户模式,客户模式拥有自己的内核模式和用户模式。在虚拟机运行下,三种模式的分工如下: 客户模式:执行非I/O的客户代码。虚拟机运行在客户模式下。 内核模式:实现到客户模式的切换。处理因为I/O或者其它指令引起的从客户模式的退出。KVM Driver工作在这种模式下。 用户模式:代表客户执行I/O指令Qemu运行在这种模式下。

在KVM模型中,每一个Guest OS 都作为一个标准的Linux进程,可以使用Linux的进程管理指令管理。 在图1中./dev/kvm在内核中创建的标准字符设备,通过ioctl系统调用来访问内核虚拟机,进行虚拟机的创建和初始化;kvm_vm fd是创建的指向特定虚拟机实例的文件描述符,通过这个文件描述符对特定虚拟机进行访问控制;kvm_vcpu fd指向为虚拟机创建的虚拟处理器的文件描述符,通过该描述符使用ioctl系统调用设置和调度虚拟处理器的运行。 1.2K VM工作原理 KVM的基本工作原理:用户模式的Qemu利用接口libkvm通过ioctl系统调用进入内核模式。KVM Driver为虚拟机创建虚拟内存和虚拟CPU后执行VMLAUCH指令进入客户模式。装载Guest OS执行。如果Guest OS发生外部中断或者影子页表缺页之类的事件,暂停Guest OS的执行,退出客户模式进行一些必要的处理。然后重新进入客户模式,执行客户代码。如果发生I/O事件或者信号队列中有信号到达,就会进入用户模式处理。KVM采用全虚拟化技术。客户机不用修改就可以运行。 图2 KVM 工作基本原理

相关文档
最新文档