静力学各知识点总结

静力学各知识点总结
静力学各知识点总结

静力学各知识点总结

1.静力学是研究物体在力系作用下的平衡规律的科学。

2.力的三要素:(1)力的大小;(2)力的方向;(3)力的作用点。

3. 力的效应:(1)外效应——改变物体运动状态的效应

(2)内效应——引起物体形变的效应

4. 刚体:在外界任何作用下形状和大小都始终保持不变的物体。(在力的作用下,任意两点间的距离保持不变的物体)

5. 一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。

6. 力:物体间相互的机械作用,这种作用使物体的机械运动状态发生变化。

7. 力系:作用在物体上的一群力。(同一物体)

8. 如果一个力系作用于物体的效果与另一个力系作用于该物体的效果相同,这两个力系互为等效力系。

9. 不受外力作用的物体可称其为受零力系作用。一个力系如果与零力系作用等效,则该力系称为平衡力系。

10. 力应以矢量表示。用F表示力矢量,用F表示力的大小。在国际单位制中,力的单位是N或Kn。

第一章

一.静力学公理

公理1:力的平行四边形法则

作用在物体上同一点的两个力,可以合成为一个合力。合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。

合力矢等于这两个力矢的几何和,即F R=F1+F2

公理2:二力平衡条件

作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且作用在同一直线上。

公理3:加减平衡力系原则

在已知力系上加上或减去任意的平衡力系,与原力系对刚体的作用等效。

推理1:作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力

对刚体的作用。

推理2:三力平衡汇交定理

作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。

公理4:作用力与反作用力总是同时存在,两力的大小相等、方向相反、,沿着同一直线,分别作用在两个相互作用的物体上。 公理5:变形体在某一力系作用下处于平衡,如将此变形体化为刚体,其平衡状态保持不变。

二.约束与约束力

1. 位移不受限制的物体称为自由体。位移受限制的物体称为非自由体。

2. 对非自由体的某些位移起限制作用的周围物体称为约束。

3. 约束对物体的作用,实际上就是力,这种力称为约束力。

4. 法向约束力:光滑支承面对物体的约束力,作用在接触点处,方向沿接触表面的共法线,并指向被约束物体。

5. 柔索类约束:绳索对物体的约束力,作用在接触点,方向沿着绳索背离物体。当绳索绕在轮子上,对轮子的约束力沿轮缘的切线方向。

被约束体

约束

被约束体

约束

被约束体

6. 光滑铰链约束(1)向心轴承(2)圆柱铰链和固定铰链支座

7. 其他约束(1)滚动支座(2)球铰链

(3)止推轴承

三.物体的受力分析和受力图·力学模型和力学简图

1. 作用在物体上的力分为主动力和被动力。主动力一般是已知的,被动力是约束对于物体的约束力,是未知的。

2. 受力图:表示物体受力的简明图形。

3. 画受力图:(1)将需要研究的物体(受力体)从周围的物体(施力体)中分离

(2)将施力物体对研究对象的作用力(包括主动力和约束力)全部画出来4. 只在两个力作用下平衡的构件,称为二力构件。因为静力学中所指的物体都是刚体,其形状对计算结果没有影响,因此不论其形状如何,一般均简称二力杆。

第二章

一.平面汇交力系

1. 平面汇交力系合成的几何法、力多边形法则

平面汇交力系可简化为一合力,其合力的大小与方向等于各分力的矢量和,合力的作用线通过汇交点。F R=F1+F2+…F I简写为F R=

2. 平面汇交力系平衡的几何条件

(1) 平面汇交力系平衡的必要和充分条件是:该力系的合力等于零,即=0

(2) 平面汇交力系平衡的必要和充分条件是:该力系的力多边形自行封闭,这是平

衡的几何条件。

3. 平面汇交力系合成的解析法

(1)设由n 个力组成的平面汇交力系作用于一个刚体上,建立直角坐标系O xy ,则合

力F R 的解析表达式为F i =F Rx +F Ry =F Rx i+F Ry j

4. 平面汇交力系的平衡方程

平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上投影的代数和分别等于零。由此构建平衡方程。β

θcos ,cos R y R x F F F F ==

二.

平面力对点之矩

1. 力对点之矩(力矩)

()OAB

O A Fh F M ?±=±=2

是一个代数量,它的绝对值等于力的大小与力臂的乘积,它的正负可按下法规定:力

使物体绕矩心逆时针转向时为正,反之为负。

2. 合力矩定理与力矩的解析表达式

合力矩定理:平面汇交力系的合力对于平面内任一点之矩等于所有各分力对于该点

之矩的代数和。

3. 力偶与力偶矩

力偶:由两个大小相等、方向相反且不共线的平行力组成的力系。只改变物体的转动状态,

()()i

n

i O

R

O

F M F M ∑==1

()x

y O yF xF F M -=

记作(F ,F’)力和力偶是静力学的两个基本要素。

力偶矩:力偶对物体的转动效应大小:力偶中的两个力对其作用面内某点的矩的代数和方向:逆时针为正,顺时针为负

()ABC

O A Fd F M ?±=±=2

平面力偶对物体的作用效应由以

下两个因素决定:(1)力偶矩的大

小(2)力偶在作用面内的转向

4. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶矩相等,则两力偶彼 此等效。 推论:

1)力偶对刚体的作用与力偶在其作用面内的位置无关。

2)力偶矩的大小和转向决定力偶对刚体的作用。力偶矩是平面力偶作用的唯一量度。

5. 平面力偶系的合成和平衡条件

1)平面力偶系的合成:在同平面内的任意个力偶可合成为一个合力

偶,合力偶矩等于各个力偶矩的代数和。

()2

1434342223111,M M d F d F d F F Fd M d F d F M d F d F M +=-=-==-=-===

1

==∑=n

i i M M

2)平面力偶系的平衡条件:所有各力偶矩的代数和等于零

F

F

d

A

C

D

d

F

F

M

M

三.平面任意力系的简化

1. 力的平移定理:可以把作用在刚体上点A 的力F 平行移到任一点B ,但必须同时附加一

个力偶,这个附加力偶的矩等于原来的力F 对新作用点B 的矩。

2. 平面任意力系向作用面内一点简化?主矢和主矩

平面任意力系向作用面内任选一点O 简化,可得一个力和力偶。力等于该力系的主

矢,作用线通过简化中心O 。力偶的矩等于该力系对于点O 的主矩。

()

i

n

i O

n O n

i i n

R F M M M M M F

F F F F ∑∑===

+++==

+++=1

211

''2'1'......

4. 一物体的一端完全固定在另一物体上,这种约束称为固定端约束。

5. 平面任意力系的简化结果分析 (1)主矢为零,主矩不为零

当力系合成为一个力偶时,主矩与简化中心的选择无关。 (2)主矢不为零,主矩为零

合力的作用线恰好通过选定的简化中心 (3)主矢、主矩均不为零 (4)主矢、主矩均为零 平面任意力系平衡

6. 平面任意力系的平衡条件和平衡方程 (1)平面任意力系的平衡条件:主矢、主矩均为零 (2)平面任意力系的平衡方程

所有各力在两个任选的坐标轴上的投影的代数和分别等 于零,以及各力对于任意一点的矩的代数和也等于零。 7. 物体系的平衡?静定和超静定问题

(1)静定问题:当系统中的未知量数目等于独立平衡方程的数目时,则所有未知数都能由

平衡方程求出。

A

B

F

d

A

B

F

A

B

F ′

F ′

F ′′ M

()

F M Fd M B ==

(2)超静定问题:当系统中的未知量数目多于独立平衡方程的数目时,则未知量就不能全

部由平衡方程求出。 8. 平面简单桁架的内力计算

基本概念1 、桁架:一种由杆件彼此在两端用铰链连接而成的结构,它在受力后几何形状

不变。

2、节点:桁架中杆件的铰链接头

3、理想桁架:1)桁架的杆件都是直的;2)杆件用光滑的铰链连接; 3)桁架所受的力都作用在节点上,而且在桁架的平面上; 4)桁架杆件的重量略去不计,或平均分配在杆件两端的节点上; 9. 计算桁架杆件内力的方法

1、节点法:逐个取节点为研究对象,由已知力求出全部未知杆件内力,用于求每个杆件的

内力。 2、截面法:选取一截面,假想把桁架截开,再考虑其中任一部分 的平衡,求出杆件内力,用于计算某几个杆件的内力。 作截面时每次最好只截断三根内力未知的杆件。

第三章

1. 空间汇交力系

空间力系:力系中各力的作用线不在同一平面内的力系,包括:空间平行力系、空间汇交力

系、空间任意力系。

2. 力在直角坐标轴上的投影

3. 空间汇交力系的合力与平衡条件

(1)空间汇交力系的合力:空间汇交力系的合力等于各分力的矢量和,合力的作用线通过

汇交点。 (2)空间汇交力系的平衡条件:该力系中所有各力在三个坐标轴上的投影的代数和分别等

于零。0,0,0===∑∑∑zi yi xi F F F

4. 力对点的矩和力对轴的矩

γ

?γ?γcos ,sin sin ,cos sin F F F F F F z y x ===直接投影法

γ

βαcos cos cos F F F F F F Z y X

===二次投影法

(1)力对点的矩以矢量表示--力矩矢

力对点的矩矢等于矩心到该力作用点的矢径与该力的矢量积。指向按右手螺旋法则来确定。

注:力矩矢为定位矢量

(2)力对轴的矩

大小:力在垂直于该轴的平面上

方向:右手螺旋法则

力对轴的矩等于零的情形:(1)

(2)力与轴平行。

5. 力对点的矩与力对通过该点的轴的矩的关系

力对点的矩矢在通过该点的某轴上的投影,等于力对该轴的矩。

()

[]()

()

[]()

()

[]()

x

y

z

z

O

z

x

y

y

O

y

z

x

x

O

yF

xF

F

M

F

M

xF

zF

F

M

F

M

zF

yF

F

M

F

M

-

=

=

-

=

=

-

=

=

6. 3 空间力偶(Spatial Couples)

6. 力偶矩以矢量表示,力偶矩矢

1、力偶矩矢:力偶中的两个力对空间某点之矩的矢量和。力偶矩矢为自由矢量。

2、空间力偶三要素:

1)大小:力与力偶臂乘积(力偶矩大小);

2)方向:转动方向

3)作用面:力偶作用面

7. 空间力偶系的合成与平衡条件: 任意个空间分布的力偶可合成一个合力偶,合力偶矩

矢等于各分力偶矩矢的矢量和。

8. 空间力偶系的平衡条件:力偶系的合力偶矩等于零(所有力偶矩矢的矢量和等于零)。

9. 空间力偶系的平衡方程

,0

,0

1

1

1

=

=

=∑

=

=

=

n

i

iz

n

i

iy

n

i

ix

M

M

M

10. 空间任意力系向一点的简化?主矢和主矩

1)空间任意力系向一点的简化

空间任意力系向任一点O简化,可得一力和一力偶。这个力的大小和方向等于该力系的主矢,作用线通过简化中

)F

r?

=

M

心O;这力偶的矩矢等于该力系对简化中心的主矩。主矢与简化中心的位置无关,主矩一般与简化中心的位置有关。

11. 空间任意力系的简化结果分析(1)合力偶矩矢等于原力系对简化中心的主矩。

(2)力螺旋是由静力学的两个基本要素力和力偶组成的最简单的力系。()

()

()

()0

,0

4

,0

3

,0

2

,0

1

'

'

'

'

=

=

=

=

O

R

O

R

O

R

O

R

M

F

M

F

M

F

M

F

12. 空间任意力系的平衡方程

()()()0

,0

,0

,0

,0

=

=

=

=

=

=

F

M

F

M

F

M

F

F

F

z

y

x

z

y

x

工程力学(静力学部分)

工程力学作业(静力学) 班级 学号 姓名

静力学公理和物体的受力分析 一、是非题 1、在理论力学中只研究力的外效应。() 2、在平面任意力系中,若其力多边形自行闭合,则力系平衡。() 3、约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 4、共面三力若平衡,则该三力必汇交于一点。() 5、当刚体受三个不平行的力作用时,只要这三个力的作用线汇交于同一点,则该刚体一定处于平衡状态。() 二、选择题 1、在下述原理,法则、定理中,只适用于刚体的有_______________。 ①二力平衡原理;②力的平行四边形法则; ③加减平衡力系原理;④力的可传性原理; ⑤作用与反作用定理。 2、三力平衡汇交定理所给的条件是_______________。 ①汇交力系平衡的充要条件; ②平面汇交力系平衡的充要条件; ③不平行的三个力平衡的必要条件。

3、人拉车前进时,人拉车的力_______车拉人的力。 ①大于;②等于;③远大于。 三、填空题 1、作用在刚体上的两个力等效的条件是:___________________________。 2、二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是:____________________________________________ ______。 3、书P24,1-8题 4、画出下列各图中A、B两处反力的方向 (包括方位和指向)。 5、在平面约束中,由约束本身的性质就可以确定约束力方位的约束有 ____________________________________ ____,方向不能确定的约束有 ______________________________________ ___ (各写出两种约束)。

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

工程力学知识点总结(良心出品必属精品)

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力 和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体 (对刚体充分必要,对变形体不充分。) 注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体 特点:同时存在,大小相等,方向相反。 注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) ()O M F Fd =±

工程力学实验报告

工程力学实验报告 自动化12级实验班 §1-1 金属材料的拉伸实验 一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度R eH,下屈服强度R eL和抗拉强度R m 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度R m。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。 二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。 三、试样 (a) (b) 图1-1 试样 拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试

样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料 室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样破坏时断口在平行部分。平行部分中测量伸长用的长度称为标距。受力前的标距称为原始标距,记作l 0,通常在其两端划细线标志。 国标GB/T228-2002中,对试样形状、尺寸、公差和表面粗糙度均有明确规定。 四、实验原理 低碳钢(Q235 钢)拉伸实验(图解方法) 将试样安装在试验机的上下夹头中,引伸计装卡在试样上,启动试验机对试样加载,试验机将自动绘制出载荷位移曲线(F-ΔL 曲线),如图(1-2)。观察试样的受力、变形直至破坏的全过程,可以看到低碳钢拉伸过程中的四个阶段(弹性阶段、屈服阶段、强化阶段和局部变形阶段)。 屈服阶段反映在F-ΔL 曲线图上为一水平波动线。上屈服力eH F 是试样发生屈服而载荷首次下降前的最大载荷。下屈服力eL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。最大力R m 是试样在屈服阶段之后所能承受的最大载荷。相应的强度指标由以下公式计算: 上屈服强度R eH :0 S F R eH eH = (1-1) 下屈服强度R eL :0 S F R eL eL = (1-2 ) 抗拉强度R m : 0 S F R m m = (1-3) 在强化阶段任一时刻卸载、再加载,可以观察加载、御载规律和冷作硬化现象。 在F m 以前,变形是均匀的。从F m 开始,产生局部伸长和颈缩,由于颈缩,使颈缩处截面减小,致使载荷随之下降,最后断裂。断口呈杯锥形。

流体力学总结

流体力学总结 第一章 流体及其物理性质 1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用, 流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。 4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和 激波情况下不适合。 5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4C 时纯水的密度(1000)之比 w w S ρ ρρ= 为4C 时纯水的密度 13.6Hg S = 7. 混合气体密度1 n i i i ρρα == ∑ 8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数 为体积模量1 P P K β= 1p V p V δβδ=- 1 1 0 1.4p p T Q p p βγβγ→= === 9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。 1T V T V δβδ= 1 T p T β→= 10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不 可压缩流体。气体流速不高,压强变化小视为不可压缩流体

11. 牛顿内摩擦定律: du dy τμ = 黏度du dy τ μ= 流体静止粘性无法表示出来,压强对黏 度影响较小,温度升高,液体黏度降低,气体黏度增加 μ υρ = 。满足牛顿内摩擦定律的流体为牛顿流体。 12. 理想流体:黏度为0,即0μ=。完全气体:热力学中的理想气体 第二章 流体静力学 1. 表面力:流体压强p 为法向表面应力,内摩擦τ是切向表面应力(静止时为0)。 2. 质量力(体积力):某种力场对流体的作用力,不需要接触。重力、电磁力、电场力、 虚加的惯性力 3. 单位质量力:x y z F f f i f j f k m ==++ ,单位与加速度相同2m s 4. 流体静压强: 1)流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向 2)在静止流体内部任意点处的流体静压强在各个方向都是相等的。 x y z n p p p p === 5. 流体平衡微分方程式(欧拉平衡方程) 101010 x y z p f x p f y p f z ρρρ?- =??-=??-=? 10 p p p f p p i j k x y z ρ???-?=?= ++??? 6. 压差方程 ()x y z dp f dx f dy f dz ρ=++ 7. 势函数 ()()() ,,x y z f f f x y z πππ?-?-?-= ==??? ()dp d ρπ=-

工程力学试题及答案-(1)汇总

工程力学试题及答案 一、填空题 1.物体的平衡是指物体相对于地面__________或作________运动的状态 2.平面汇交力系平衡的必要与充分条件是:_____。该力系中各力构成的力多边形____ 3.一物块重600N,放在不光滑的平面上,摩擦系数f=0.3, 在左侧有一推力150N,物块有向右滑动的趋势 F max=__________,所以此物块处于静止状态,而其 F=__________。 4.刚体在作平动过程中,其上各点的__________相同,每一 瞬时,各点具有__________的速度和加速度。 5.AB杆质量为m,长为L,曲柄O1A、O2B质量不计,且 O1A=O2B=R,O1O2=L,当φ=60°时,O1A杆绕O1轴转 动,角速度ω为常量,则该瞬时AB杆应加的惯性力大 小为__________,方向为__________ 6.使材料丧失正常工作能力的应力称为极限应力。工程上一 般把__________作为塑性材料的极限应力;对于脆性材 料,则把________作为极限应力。 7.__________面称为主平面。主平面上的正应力称为______________。 8.当圆环匀速转动时,环内的动应力只与材料的密度ρ和_____________有关,而与 __________无关。 二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在 题干的括号内。每小题3分,共18分) 1.某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的 关系为( )。 A.R AR B C.R A=R B D.无法比较 2.材料不同的两物块A和B叠放在水平面上,已知物块A重0.5kN,物块B重0.2kN,物块 A、B间的摩擦系数f1=0.25,物块B与地面间的摩擦系数f2=0.2,拉动B物块所需要的最 小力为( ) A.0.14kN B.0.265kN C.0.213kN D.0.237kN 3.在无阻共振曲线中,当激振力频率等于系统的固有频率时,振幅B趋近于( )。 A.零 B.静变形 C.无穷大 D.一个定值 4.虎克定律应用的条件是( )。 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 5.梁的截面为T字型,Z轴通过横截面的形心,弯矩图如图所示,则有( )。 A.最大拉应力和最大压应力位于同一截面C

工程力学实验总结

工程力学实验总结 1.对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在 弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 2.我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转 弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 3.如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主 应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 4.对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡, 孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆5.在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可 采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 6.为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正 式测量前,预先加,卸载3-5次。 7.对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 8.如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合 金,敏感栅最好为丝绕式。 9.使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻 线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 10.为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b 改变应变仪的方向c使用屏蔽电缆线。 11.金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其 中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 12.引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计, 电学引伸计三大类。 13.以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应 变计,横向效应最小的是箔式应变计。 14.使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 15.应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变 的夹角有关。 16.对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。 17.在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45° 螺旋断面。 18.电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测 非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 19.为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变 花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 20.由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应, 其大小用H表示。 21.在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的 长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻为0.175Ω/m,应变计电阻为120Ω,测得应变仪读数为。。。。。。 22.一构件处于平面应力状态,若要测定构件上的某点的主应力,在该点至少站贴2枚应变

流体力学学习心得

竭诚为您提供优质文档/双击可除 流体力学学习心得 篇一:我对流体力学的认识 我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及 其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。1738年伯努利出版他的专著时,首先

采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体 力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且

工程力学拉伸实验报告

试验目的: 1. 测定低碳钢(塑性材料)的弹性摸量E;屈服极限σs 等机械性能。 2.测定灰铸铁(脆性材料)的强度极限σb 3.了解塑性材料和脆性材料压缩时的力学性能。 材料拉伸与压缩实验指导书 低碳钢拉伸试验 拉伸试验的意义: 单向拉伸试验是在常温下以缓慢均匀的速度对专门制备的试件施加轴向载荷,在试件加载过程中观测载荷与变形的关系,从而决定材料有关力学性能。通过拉伸试验可以测定材料在单向拉应力作用下的弹性模量及屈服强度、抗拉强度、延伸率、截面收缩率等指标。其试验方法简单且易于得到较可靠的试验数据,所以是研究材料力学性能最基本、应用最广泛的试验。 操作步骤: 1.试验设备:WDW-3050电子万能试验机 2.试件准备:用游标卡尺测量试件试验段长度l0和截面直径d0,并作记录。 3.打开试验机主机及计算机等相关设备。 4.试件安装(详见WDW3050电子万能试验机使用与操作三.拉伸试件的安装)。 5.引伸计安装(用于测量E, 详见WDW3050电子万能试验机使用与操作四.引伸计安装)。 6.测量参数的设定: 7.再认真检查一遍试件安装等试验准备工作。 8.负荷清零,轴向变形清零,位移清零。 9.开始进行试验,点击试验开始。 10.根据提示摘除引伸计。 11.进入强化阶段以后,进行冷作硬化试验,按主机控制面板停止,再按▼,先卸载到10kN,再加载,按▲,接下来计算机控制,一直到试件断裂(此过程中计算机一直工作,注意观察负荷位移曲线所显示的冷作硬化现象.). 12.断裂以后记录力峰值。 13.点击试验结束(不要点击停止)。

14.材料刚度特征值中的弹性模量E的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择应力─应变曲线。在曲线上较均匀地选择若干点,记录各点的值,分别为及 (如i =0,1,2,3,4),并计算出相应的 计算E i的平均值,得到该材料的弹性模量E的值。 15.材料强度特征值屈服极限和强度极限的测定 试验结束后,在试验程序界面选定本试验的试验编号,并选择负荷─位移曲线,找到的曲线屈服阶段的下屈服点,即为屈服载荷F s, 找到的曲线上最大载荷值,即为极限载荷P b. 计算屈服极限:;计算强度极限:; 16.材料的塑性特征值延伸率及截面收缩率的测定 试件拉断后,取下试件,沿断裂面拼合,用游标卡尺测定试验段长度,和颈缩断裂处截面直径。 计算材料延伸率 计算截面收缩率 低碳钢拉伸试验报告 试验目的: 1. 掌握电子万能试验机操作; 2. 理解塑性材料拉伸时的力学性能; 3. 观察低碳钢拉伸时的变形特点; 4. 观察低碳钢材料的冷作硬化现象; 5. 测定低碳钢材料弹性模量E ; 6. 测定材料屈服极限和强度极限; 7. 测定材料伸长率δ和截面收缩率Ψ 试验设备:

流体力学重点概念总结(可直接打印版)

第一章绪论 表面力: 又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。它的大小与作用面积成比例。剪力、拉力、压力 质量力: 是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。重力、惯性力 流体的平衡或机械运动取决于: 1.流体本身的物理性质(内因) 2.作用在流体上的力(外因) 牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。 τ=μ(du/dy) τ只与流体的性质有关,与接触面上的压力无关。 动力粘度: 反映流体粘滞性大小的系数,单位: N?s/m2 运动粘度: ν=μ/ρ 第二章流体静力学 流体静压强具有特性

1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。 2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。 静力学基本方程: P=Po+pgh 等压面: 压强相等的空间点构成的面 绝对压强: 以无气体分子存在的完全真空为基准起算的压强Pabs 相对压强: 以当地大气压为基准起算的压强P P=Pabs—Pa(当地大气压) 真空度: 绝对压强不足当地大气压的差值,即相对压强的负值Pv Pv=Pa-Pabs= -P 测压管水头: 是单位重量液体具有的总势能 基本问题: 1、求流体内某点的压强值: p = p0 +γh;

2、求压强差: p–p0 =γh; 3、求液位高: h =(p - p0)/γ 平面上的净水总压力: 潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。 注意: 只要平面面积与形心xx不变: 1.面积上的总压力就与平面倾角无关; 2.压心的位置与受压面倾角无直接关系,是通过yc表现的; 3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。 作用在曲面壁上的总压力—水平分力 作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。 作用在曲面壁上的总压力—垂直分力 作用于曲面上的静水总压力P的铅垂分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。 xx原理: 静止不可压缩流体内任意一点的压强变化等值传递到流体内的其他各点; 重力场中静止流体等压面的特点

工程力学重点知识总结

工程力学 第一章 在该刚体内前后任意移动, 而不改 变它对该刚体的作用。 I 白比味 在空间的位移不受任何限 H 曰*的制的物体称为自由体。 2. 非自由体:位移受到限制的物体称为非自由体。 3?约束 由周围物体所构成的、限制非自由体位移的釦生 、、亠" 注意: 物体向约束所限制的方向有运动趋势时,就会有约束力? 另外,有约束,不一定有约束力 4:讨论约束主要是分析,有哪些约束力?约束力的方向是?最终要确定约 束力的大小和方向。 5:柔性约束,约束力的数目为 1方向离开约束物体。光滑接触面约束,约 束数目1。 注意:□接触面为两个面时,约束力为分布的同向平行力系, 可用其合理表示。②若一物体以尖点与另一个物体接触,可将尖点是为小圆 弧。再者,一般考虑物体的自重,忽略杆的自重,除非题目要求考虑。 光滑圆柱铰链约束:01固定铰支座(直杆是被约束物体),约束力数目为2; 推论 (力在刚体上的可传性) 作用于刚体的力, 其作用点可以沿作用线 或对非自曲体的某些位移起限制作用

Q中间铰约束按合力讨论,有一个约束力,方向未知:安分力讨论,有 两个约束力,方向可以假设(正交) 注意:销钉和杆直接接触传递力,杆 和杆之间不直接传递力。O3可动铰支座仅限制物体在垂直与接触面方向的移动。约束力数目为1 向心推力轴承,约束力数目为2;止推轴承有三个约束力 强调:无约束的方向一定没有约束力! 平面约束: (1)柔性约束:有一个约束力,离开物体; (2)光滑接触面(线、点)约束: 有一个约束力,指向物体; (3)光滑BI柱较链约束 扎固定餃支座约束:有两个正交约束力, 方向可以假设; B.中间较约束:有两个正交约束力,方向可以假设; G可动较支座或辗轴约束: 有一个约束力,方向可以假设; 空间约束: (1)空间球较约束:有三个正交约束力, 方向可以假设; (2)向心轴承约束:有两个正交约束力, 方向可以假设; (3)向心推力轴承约束:有三个正交约束力, 方向可以假设; 第二章 矢量表达式:R = F i+F2+F. + F4= ^Y i i-↑结论:力在某轴上的投影,等于力的模乘以力与该轴正向间夹角

工程力学实验报告

实验一金属材料的拉伸及弹性模量测定试验 实验时间:设备编号:温度:湿度: 一、实验目的 1、观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢的弹性模量E。 3、测定低碳钢拉伸时的屈服极限;强度极限,伸长率和截面收缩率 4、测定铸铁的强度极限。 5、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 6、了解CMT微机控制电子万能实验机的构造原理和使用方法。 二、实验设备和仪器 1.CMT微机控制电子万能实验机 2.电子式引伸计仪 3.游标卡尺 4.钢尺 三.实验原理 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。2—1图 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、

颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs、最大载荷Fb和铸铁试件的最大载荷Fb。 取下试件测量试件断后最小直径d1和断后标距 l1,由下述公式Fl?lA?AFs????10b01?100%??100%???bs AAlA 0000可计算低碳钢的拉伸屈服点σs。、抗拉强度σb、伸长率δ,和断面收缩率ψ;铸铁的抗拉强度σb。 低碳钢的弹性模量E由以下公式计算: ?Fl0?E A?l0式中ΔF为相等的加载等级,Δl为与ΔF相对应的变形增量。 四、实验步骤 低碳钢拉伸试验步骤(1). 按照式样、设备的准备及测试工作,大致可以将低碳钢拉伸试验步骤归纳如下: lodo。在式样标距段的及标距首先,将式样标记标距点,测量式样直径两端和中间3处测量式样直径,每处直径取两个相互垂直方向的平均值,do。用扎规和钢板尺处直径的最小值取作试验的初始直径做好记录。3lo。测量低碳钢式样的初始标距长度接着,安装试件。按照微机控制电子万能试验机的操作方法,运行电子万能试验机程序,

工程力学实验总结

工程力学实验总结 对于标准拉伸试件为测量标距Lo的长度,可选用游标卡尺;为测量标距Lo的总变形在弹性范围内的?长,可选用引伸计;对其加载并测量荷载值,可选用万能试验机。 我们接触过的动态试验机有冲击试验机和疲劳试验机,而后者又分为两种,一种是旋转弯曲疲劳试验机,另一种是高频拉压疲劳试验机。 如果测点处是二向应力状态,则当主应力方向已知时,应选择直角应变花,使丝韧沿主应力方向粘贴,当主应力方向根本无法估计时,应选用等角应变花。 对粘贴后的应变片进行质量检查,要求为:a粘贴位置,方向准确b粘贴缝内无气泡,孔隙c应变计阻值无明显变化d一般测量引出线与构件间的绝缘电阻大于100M欧姆 在对断后的低碳钢进行拉伸试件测定长度时,若断面距最近标距点的距离大于Lo/3,可采用直接测量法;若该距离等于或者小于Lo/3,采用移位法测量。(工程力学实验课本P160);若断口在两段与头部距离小于或者等于2d时,试验无效。 为减小应变片机械滞后效应,可采取的措施有:采用高质量的应变计;固化完全;在正式测量前,预先加,卸载3-5次。 对于液压式试验机,测力的方式有压力表测试,摆锤测试,弹簧测试,电子测试。 如果进行高温下的应变测量,多选电阻应变计的基底为金属基,敏感栅的材料为铂钨合金,敏感栅最好为丝绕式。 使用液压摆锤式万能试验机时,确认摆杆是否铅垂有三种方法:a看摆杆标示牌上的刻线与缓冲挡座的指示刻线是否对齐b看水准仪的气泡是否居中c增减摆锤,看力度盘上的指针位置是否变化。 为了减少电磁干扰对对电阻应变测量的影响可采取的措施有:a将测量导线捆绑成束b改变应变仪的方向c使用屏蔽电缆线。 金属材料的圆截面拉伸试样分为比例试样和非比例试样。比例试样关系式:Lo=Kd,其中K=5为短比例试样,K=10为长比例试样。Lo为原始标距,d为原始直径。 引伸计是一种测量变形的器具,按其结构原理引伸计可分为机械引伸计,光学引伸计,电学引伸计三大类。 以敏感栅的工艺上考虑,横向效应最大的是丝绕式应变计,疲劳寿命最短的是短接式应变计,横向效应最小的是箔式应变计。 使用液压万能试验机时为减少读数误差,常要求所测荷载在满量程的20%-80%之间。 应变片粘贴方向不准造成的误差,不仅与角偏差有关,还和预定粘贴方位与该点主应变的夹角有关。 对发动机活塞连杆机构中的连杆,若要测量其材料的持久极限,需选择拉压疲劳试验机。在铸铁的拉伸,压缩,扭转实验中,试样破坏后的形式分别为横截面,45°斜截面,45°螺旋断面。 电测法测量应变时,为尽量显示测点的真实应变,在应力集中点应选用小应变计,在测非均质材料的应用大应变计,并且应变计的标距长度至少是直径的4倍。 为减少应变片粘贴不准确带来大测量误差,在测点的主应力方向已知时,选择直角应变花,并沿主应力方向粘贴;在主应力方向未知时,选择等角应变花。 由于应变计敏感栅的横栅部分感受横向应变而对轴向测量值产生的影响称为横向效应,其大小用H表示。 在一钢结构表面某点站贴一枚应变计(另有一枚补偿计)应变计与应变仪间用80米的长导线连接,连接方式为半桥三线接法,若已知应变计与应变仪的灵敏系数均为2.0,导线电阻

流体力学知识点总结

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力: 重力、惯性力、非惯性力、离心力) 单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 ΔF ΔP ΔT A ΔA V τ 法向应力周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA F A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ) ,1pa=1N/㎡,表面力具有传递性。 B F f m =u u v v 2m s 3 /1000m kg =ρ3 /2.1m kg =ρ

牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体 无粘性流体,是指无粘性即μ=0的液体。无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。 (3) 压缩性和膨胀性 压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。 T 一定,dp 增大,dv 减小 膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。 P 一定,dT 增大,dV 增大 A 液体的压缩性和膨胀性 液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。 由于液体受压体积减小,dP 与dV 异号,加负号,以使к为正值;其值愈大,愈容易压缩。к的单位是“1/Pa ”。(平方米每牛) 体积弹性模量K 是压缩系数的倒数,用K 表示,单位是“Pa ” 液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。 du T A dy μ =? dt dr dy du ? =?=μ μτdu u dy h =ρ μν= dP dV V dP V dV ? -=-=1/κρ ρ κ d dP dV dP V K =-==1

流体力学公式总结

工程流体力学公式总结 第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘 度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系: γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以 υ表示 υ = 1/ ρ = V/m 5.流体的相对密度: d = γ流 /γ水 = ρ流 /ρ 水 6.热膨胀性 1V VT 7.压缩性 . 体积压缩率 κ 1V Vp 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力) (牛顿内摩擦定律) dv dn 11. .动力粘度μ: dv/dn 12.运动粘度 ν :ν = μ /ρ 13.恩氏粘度° E :°E = t 1 / t 2 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、 压强关系换算、 相对静止状态流体的压强计算、流体 静压力的计算(压力体) 。 1.常见的质量力: 重力 ΔW = Δ mg 、 直线运动惯性力 ΔFI = Δm ·a 离心惯性力 ΔFR = Δm ·r ω2 . FA d dn

2.质量力为 F 。:F = m ·am = m(fxi+fyj+fzk) am = F/m = fxi+fyj+ fzk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用, 取 z 轴铅垂向上, xoy 为水平面, 则单位质量力在 x 、y 、 z 轴上的分量为 fx= 0 , fy= 0 , fz= -mg/m = -g 式中负号表示重力加速度 g 与坐 标轴 z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数 得静 压强的全微分为 : p p d p p dx p dy xy 4.欧拉平衡微分方程式 p f y ρdxd ydz dxd ydz 0 y p f z ρdxd ydz dxd ydz 0 z 单位质量流体的力平衡方程为: 1p 1p 0 y ρy 1p 0 ρz 5.压强差公式(欧拉平衡微分方程式综合形式) ρ(f x dx f y dy f z dz) p dx p dy p dz xyz d p ρ( f x dx f y d y f z dz) 6.质量力的势函数 dp ρ( f x dx f y dy f z dz) dU 7.重力场中平衡流体的质量力势函数 UUU dU dx d y dz= f x dx f y dy f z dz xyz gdz 。即:p= p(x,y,z),由此 dz z f x ρdxd ydz p d xdydz 0 x

工程力学知识点总结教学文稿

工程力学知识点总结

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体 运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚 度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角 α: 方向:由 Fx 、Fy 符号 定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化 模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 ()O M F Fd =±v

7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体(对刚体充分必要,对变形体不充分。)注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体特点:同时存在,大小相等,方向相反。注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) 9.常见铰链约束及其性质

相关文档
最新文档