非超临界干燥法制备气凝胶绝热材料

非超临界干燥法制备气凝胶绝热材料
非超临界干燥法制备气凝胶绝热材料

非超临界干燥法制备气凝胶绝热材料3

刘世明 曾令可 王 慧

(华南理工大学材料科学与工程学院 广州 510640)

摘 要 气凝胶是由超细微粒聚结形成的轻质多孔性纳米结构材料,其特有的纳米尺寸颗粒与纳米孔洞结构使它具有良好的绝热性质。阐述了各种非临界干燥法的原理、工艺特点及其应用条件,综述了近年来国内外非临界干燥法制备气凝胶绝热材料的研究现状以及存在的问题,并评价了气凝胶绝热材料的应用前景。

关键词 非超临界干燥法 气凝胶 绝热材料 研究现状

 前言

气凝胶是一种由原子团簇交联而形成的纳米多孔绝热材料。目前,气凝胶绝热材料的制备通常由溶胶2凝胶过程和超临界干燥处理,在溶胶2凝胶过程中,通过控制溶液的水解和缩聚反应条件,在溶体内形成不同结构的纳米团簇,团簇之间的相互粘结形成凝胶体,而在凝胶体的固态骨架周围则充满化学反应后剩余的液态试剂。为了防止凝胶干燥过程中微孔洞内的表面张力导致材料结构的破坏,采用超临界干燥工艺处理,把凝胶置于压力容器内加压升温,使凝胶内的液体发生相变成超临界态的流体,气液界面消失,表面张力不复存在,凝胶孔隙中不存在毛细管附加压力,在这种条件下干燥,就可以保持醇凝胶原先的多孔网络结构,从而获得具有极高孔隙率、超低密度的块状气凝胶[1]。但是超临界干燥所需的条件很苛刻,制备周期耗时长,设备要求高,能耗比较大,这就大大增加了制备大块气凝胶的困难,使气凝胶产品的价格极其昂贵。近年来,有关气凝胶的非超临界干燥法制备己经引起了关注,因此采用非超临界干燥新技术和新工艺,已成为推动这种块状超低密度纳米绝热材料的研究更趋于走向实际应用的关键。笔者结合国内外近年来非超临界干燥法制备气凝胶绝热材料的研究现状及其制备方法作一简单的阐述及展望。1 环境气压干燥法

由于气凝胶的传统制备方法是通过高温高压的超临界干燥技术,其工艺复杂、成本高,而且有一定的危险性。因此,以合理的成本,大规模制备气凝胶一直是具有挑战性的课题,而开展不需要高压的环境气压干燥技术则具有重要意义。环境气压干燥技术制备气凝胶降低了危险性,而且减少了成本,因此在常温常压下制备出气凝胶块体材料,具有很高的实用价值。

1.1 环境气压干燥法机理

通常,通过溶胶2凝胶工艺获得湿凝胶是一种充满乳液的三维多孔结构,根据理论分析,按照杨2拉普拉斯公式,毛细孔中液体弯月面的附加压力可表达为:

ΔP=2γcosθ/r

式中ΔP为附加压力,γ为液体的表面张力,r为毛细管半径,θ为界面接触角。

在凝胶干燥过程中,微小孔隙中弯液面会产生相当大的毛细管压力作用,使得当液体从孔隙蒸发时凝胶会发生收缩;当应力超过网络的强度时,凝胶碎裂就会发生。因此,在干燥过程中,只有当湿凝胶孔隙液体蒸发时凝胶结构不塌陷,且凝胶体不发生收缩或收缩很小时,才能够获得多孔、低密度的气凝胶结构。根据超临界干燥原理,在临界温度及临界压力下,气液界面消失,表面张力为零,因而可以避免物料在干燥过程中

3国家自然科学基金资助项目(50676033)

的收缩和碎裂,从而保持物料原有的结构和状态。因此,在环境气压下干燥凝胶可以从2个方面努力:①直接提高凝胶网络骨架的强度来抵抗表面张力;②减小表面张力的影响。

1.2 环境气压干燥法采取的措施

要实现在环境气压下干燥制备气凝胶可以通过以下几种措施来实现,即增强凝胶网络骨架的强度,改善凝胶中孔洞的均匀性、凝胶的表面修饰以及减小溶剂的表面张力等。

1.2.1 增强凝胶网络骨架的强度

只要凝胶的网络结构比较完整,且有足够的强度和弹性,足以抵御在干燥过程中毛细管附加压力与凝胶的破坏作用,就有可能实现气凝胶的非超临界干燥制备。在陈化过程中发生的结构变化对干燥过程具有重要影响,凝胶网络越坚硬和牢固,它承受毛细管压力的能力越强。可通过不同的方法对凝胶网络进行增强[2~4],包括在母液中陈化湿凝胶,或将凝胶浸人硅烷氧化物中;可通过在表面层次上引入各种受控源物质,以及对醇凝胶形成条件的严格筛选,实现材料配比和制备工艺的优化,从而改善凝胶网络骨架密度,提高网络骨架强度,增加骨架的柔韧性。例如,正硅酸乙酯基(TEOS)凝胶的硬化可通过将凝胶放入TEOS2G醇溶液中进行强化。作者陈龙武,甘礼华等[5]在“SiO2气凝胶非超临界干燥法制备及其形成过程”中通过对正硅酸乙酯的两步水解2缩聚反应速率的调控,使生成的醇凝胶具有比较完整的网络结构,配合乙醇溶剂替换和正硅酸乙酯乙醇溶液浸泡和陈化,改善和增强凝胶的结构和强度,在分级干燥下实现了SiO2气凝胶的非超临界干燥制备,所得的气凝胶是由粒径约10nm均匀球状纳米粒子构成,且具有连续网络结构的低密度多孔材料,密度为200~400kg/m3,孔径分布在10~30nm范围内,孔隙率约为91%,比表面高达625.65 m2/g,外观及微观构造与应用超临界干燥工艺制得的气凝胶完全一致。

1.2.2 改善凝胶中孔洞的均匀性

在溶胶2凝胶过程中,有机金属化合物发生水解2缩聚反应得到纳米团簇而形成三维多孔结构,一般不可能形成很均匀三维多孔,这就造成凝胶内部的孔道有粗有细,根据杨2拉普拉斯公式可知,细孔道内的附加压力大于粗孔道,因此在同一块凝胶内部存在不均衡应力,导致了气凝胶在干燥过程中开裂或粉碎。

近来研究中为了得到比较均匀的凝胶孔结构,在湿凝胶中加入化学干燥控制剂(Drying Cont rol Chemical Additives,简称DCCA)可使硅溶胶体系凝胶的生成时间延长,凝胶结构均匀化,促使醇凝胶的网络孔道均匀,大大抑制气凝胶的碎裂,从而可避免凝胶在干燥过程中由于应力不均匀而引起的收缩和破碎,非常有利于大块气凝胶的获得。甲酰胺就是一种干燥控制化学添加剂(DCCA),添加甲酰胺可以使凝胶孔道结构匀称、孔径分布集中,减少凝胶干燥时由于各处应力不同带来的开裂和破碎,这对制备具有较高孔隙率的块状气凝胶非常有利。添加甲酰胺还可以使凝胶网络的孔径增大,而孔径增大有利于在正硅酸乙酯的乙醇溶液浸泡的过程中,正硅酸乙酯分子进入凝胶孔道中的每个位置,与凝胶表面的2O H发生反应,生成≡Si2O2Si(OC2H5)22O2Si≡的结构,而起到支撑孔道的作用。作者王玉栋,陈龙武等[6]在“块状TiO2/SiO2气凝胶的非超临界干燥法制备及其表征”中分别通过TiO2和SiO2的单独溶胶和TiO2/SiO2复合凝胶,并添加干燥控制化学添加剂甲酰胺,形成比较完善的凝胶网络结构,同时通过正硅酸乙酯的乙醇溶液浸泡,低表面张力溶剂替换和分级陈化以及干燥等步骤,实现了块状TiO2/SiO2复合气凝胶的非超临界干燥制备。所制得的TiO2/SiO2气凝胶呈无色或乳白色,透明性好,具有一定强度的轻质多孔块状固体,表观密度约0.4~0.9g/cm3,孔隙率约80%~95%,而且焙烧温度升高到800℃都不发生相变化。甘礼华,张宇星等[7]在“干燥控制化学添加剂在制备硅气凝胶中的应用”中以硅溶胶为主要原料,通过硅溶胶体系的凝胶过程中添加干燥控制化学添加剂(DCCA),结合非超临界干燥技术制备了硅气凝胶,并研究了DCCA能使凝胶的生成时间增加,凝胶结构均匀化,构成凝胶的基本微粒的粒径有所减小。在一定的DCCA添加量范围内,随着DCCA添加量的增加,所得气凝胶样品的密度有所减小,比表面积增加,微观结构变得更加完善,孔分布也更加集中。

1.2.3 凝胶的表面修饰

Ziegler等[8]指出通过增大湿凝胶中固相结构和溶剂的接触角,可以减小毛细管压力,使其在干燥过程中几乎可以完全保持湿凝胶的原结构。因此,如果对

醇凝胶的表面进行修饰改善,调节和控制凝胶表面羟基的数量和表面电性,使凝胶骨架表面具有一定的憎水性,从而使骨架和溶剂之间的接触角(θ)增大,这样就能大大减小毛细管附加压力,有利于实现气凝胶的非超临界干燥制备。

改善凝胶表面使接触角增大的常用方法有2种[9]:一种是选用RSi(OMe)3类化合物作为水解和缩聚的源物质,通过对RSi(OMe)3化合物在中R基团的选择和RSi(OMe)3/Si(OMe)4比例的调节,达到在水解和缩聚后获得一定憎水性表面的凝胶骨架的目的。具体的水解反应可表达为:

RS i(OM e)3+H2O R S i(O H)3+MeO H

另一种是在醇凝胶形成后,以硅烷化剂对凝胶进行表面修饰,使硅烷化剂和凝胶发生表面羟基反应: Si2O H+Si(CH3)3Cl≡Si2O2S i(CH3)3+HCl 从而使凝胶表面具有憎水性。作者沈军,汪国庆等[10]在“SiO2气凝胶的常压制备及其热传输特性”文中以相对廉价的多聚硅(E240)为硅源,通过溶胶2凝胶工艺制备了SiO2气凝胶。采用以三甲基氯硅烷(TMCS)为表面修饰剂,硅油为干燥介质的表面修饰工艺,实现了在常压条件下的制备。作者周小春,钟华[11]在“表面修饰对常压干燥SiO2气凝胶的研制”中以三甲基氯硅烷(TMCS)作为修饰剂,在常压干燥下获得了疏水性SiO2气凝胶。该气凝胶的疏水性在大气中能保持高达500℃,非常有利于用作纳米孔绝热材料。

1.2.4 减小溶剂的表面张力

表1 几种溶剂的表面张力(20℃)

溶剂水乙醇丙酮二甲基硅氧烷四聚二甲基硅氧烷mN?m-172.7530.8426.2621.017.6

根据杨2拉普拉斯公式可知,凝胶干燥过程中毛细管附加压力与毛细管中溶剂的表面张力直接相关。一般,经水解2缩聚形成的醇凝胶体的固态骨架周围充满着化学反应后剩余的液态试剂,液态溶剂主要是水和醇。由于水的表面张力很大(见表1),因此在干燥过程中毛细管的附加压力很大,这是造成气凝胶制备过程中开裂破碎的直接原因。如果通过溶剂替换,用表面张力小的溶剂将水和醇替换出来,这些表面张力小的溶剂蒸发干燥时,附加压力将大大减小,对实现非超临界干燥制备气凝胶很有利。有时也可以用表面活性剂溶液进行替换,这些表面活性剂溶液具有极低的表面张力,同样可以减小毛细孔中的附加压力。

Harreld等通过低表面张力的非极性溶剂多次置换以减小干燥过程中毛细管力对凝胶的破坏作用,在常压下制得了具有气凝胶特性的V2O5和MoO。作者房兴梅,吴广明等[12]在“V2O5常压干燥气凝胶薄膜的制备及Li+注入研究”中采用溶胶2凝胶技术以VO (OC3H7)3为前驱体,通过溶剂替换工艺制备出了纳米多孔结构的V2O5常压干燥气凝胶薄膜。

2 真空冷冻干燥法

真空冷冻干燥是先将经前处理后的物料冻结,然后置于真空容器中,在一定的真空度下对物料加热,使物料中的水分从固态直接升华为气态,并通过真空系统将水蒸气排走,从而排除湿物料中的水分,获得干燥制品的干燥方法,其原理如图1所示。

该方法的特点是:一方面水在冻结成冰时体积膨胀;另一方面这种工艺没有形成气液界面,因而避免了水的表面张力影响。真空冷冻干燥法中溶剂的选择非常重要,一般要求溶剂的熔点接近室温和具有较高的气压

,现在广泛采用水作溶剂。文献报道,采用真空冷冻干燥法将凝胶孔内的液体去除,但凝胶网络结构往往难以抵抗孔内介质的结晶所造成的破坏作用,最终只能得到粉末状气凝胶而不是块状气凝胶。

图1 冷冻干燥法原理图

3 共沸蒸馏干燥法

共沸蒸馏的原理是:当有机溶剂与水蒸气气压之和等于大气压时,二相混合物开始共沸,随着蒸馏的进行,混合物中水的含量不断减少;随着这种混合物组分的变化,混合物的共沸点不断升高,直到等于有机溶剂的沸点;共沸蒸馏的目的是使胶体内包裹的水分以共沸物形式最大限度地被除去,从而防止硬团聚形成。

由于有机溶剂的表面张力较低,可减小毛细管力作用,同时也可消除水分子氢键的架桥效应,从而降低聚集作用,另一方面由于有机分子可与微粒表面的羟基反应有机基团代替表面羟基基团,可消除粒子间形成化学键的可能性,阻止聚集作用的发生[13,14]。因此共沸蒸馏的第一步就是要选择一种合适的有机溶剂,使它与水形成的二元共沸体系中水的含量最大,这就有效地将胶体中的水取出来。作者刘海弟,郭锴[15]在“利用恒沸蒸馏干燥超细SiO2凝胶的研究”中研究了利用恒沸蒸馏脱除超细SiO2滤饼中水分的可行性和具体实现的方法。研究结果表明,利用恒沸蒸馏可以明显地减弱颗粒之间的团聚和结块现象,并且证据显示,蒸馏过程不会对SiO2颗粒表面的活性基团造成明显改变。

4 存在的问题

环境气压干燥制备气凝胶,研究内容多集中在网络增强和溶剂交换2表面改性以及常压干燥制备气凝胶薄膜等方面,一步溶剂交换2表面改性工艺的研究报道仍较少。总的来说,目前气凝胶制备工艺的改进,一方面通过胶凝后渗透硅酸钠或TEOS等母液来提高强度;另一方面通过表面改性来覆盖反应活性的硅羟基,使干燥过程中出现“弹性回缩”现象,然而上述工艺仍存在一些潜在的问题,如溶剂的过多使用,较长的工艺时间以及密度的有限性等;而且,一步硅烷化表面改性法反应剧烈,不易控制,较难制备大块气凝胶,且所用的TMCS对周围空气有一定的环境污染性。因此,采用更理想的溶剂交换2表面改性工艺措施,研究开发新的环境气压干燥工艺,进一步解决凝胶的收缩和开裂问题,对于实现气凝胶的大规模生产及实际应用具有很大的必要性[16]。

冷冻干燥法所制得的纳米颗粒粒度小、纯度高、均匀性好,但工业装置造价高,操作周期长,能耗利用率低、对设备和技术操作的要求也较高,大规模应用于工业化生产中有一定的难度。而且国内外在这方面的研究还比较少,文献报道,在采用真空冷冻干燥法制备气凝胶时,因凝胶网络结构往往难以抵抗孔内介质的结晶所造成的破坏作用,最终只能得到粉末状气凝胶而不是块状气凝胶。

采用共沸蒸馏法工艺能有效减弱颗粒之间的团聚和结块现象,可以保持气凝胶纳米结构而不会被破坏,不足之处是用该法加热蒸馏干燥所需时间长,能耗大,对实现工业化应用有一定的难度。

5 展望

通过非超临界干燥技术替代目前常用的超临界干燥技术获得了具有多孔纳米网络结构的高分散固体气凝胶材料,其基本特征与用超临界干燥技术制备的气凝胶基本一致,而且非超临界干燥技术不需要高压设备,制备条件容易控制,制取速度可以大大提高,这使得气凝胶的制备过程大大简化,为大规模工业化生产制备气凝胶绝热材料打下了良好的基础。气凝胶作为一种新型的纳米孔超级绝热材料随着其制备技术的不断完善和工业化成本的不断降低,将会在民用太阳能热水器及热电池上得到应用,在军事及航天领域、工业及建筑保温等行业发挥越来越重要的作用,必将在绝热领域引起一场划时代的技术革命。

参考文献

1 胡惠康,甘礼华,等.超临界干燥技术.实验室研究与探索,2000,19(2):33~35

2 Einarsrud M A,Nilsen E.Strengthening of water glass and colloidal sol based silica gels by aging in TEOS.J Non2 Crystal Solids,1998,226:122~125

3 Rolison D R,Dunn B.Electrically conductive oxide aer2 o2gels:new materials in electrochemistry.J Mater Chem,2001, 11:963~966

4 Haereid S,Dahle M,Lima S,ea al.(下转第35页)

表4 坯料的烧成温度范围

坯料编号A B C

烧成温度范围(℃)1250~12901255~13001255~1290 从表4可以看出,3种坯料的烧成温度起点由低到高依次是A、C、B,与3种钾长石的液相出现温度及软化温度顺序一致。烧成温度范围由宽到窄依次是B、A、C,与3种钾长石的软化温度范围顺序B、A、C也是相同的。

3 结论

长石的性能与其氧化钾、氧化钠总量及比例有关,长石混合物中钠长石含量愈多,出现液相的温度降低,高温下完全熔化成液相的温度也相应降低,当混合物中钾长石含量增多,则熔化温度范围增宽,熔化温度增高,熔融后的粘度也增大。

从3种钾长石的变化情况可以看出,3种钾长石软化温度范围起点、液相出现温度、开始软化温度均随着K2O/Na2O的增大而增高。软化温度范围随着(K2O+Na2O)/100g的增大依次下降,且随着SiO2含量的增加而变宽,高温流动度随着K2O/Na2O的增大而变小。通过试验及测试法分析,3种钾长石对坯料烧结性能的影响与原料性能一致,因此在实践中,我们希望坯料液相开始出现的温度低一些,熔融温度范围宽一些,有利于烧成的顺利进行,这样,可以随着长石成分的变化作为调整配方的依据。

参考文献

1 杜海清,等.电瓷制造工艺.北京:机械工业出版社,1983

2 钱端芬,等.电瓷材料的物理试验与化学分析.北京:机械工业出版社,1989

3 方邺森,等.中国陶瓷矿物原料.南京:南京大学出版社,1990

4 刘康时,等.陶瓷工艺原理.广州:华南大学出版社,1990

(上接第28页)Preparation and properties of monolithic silica xerogels from TEOS2based alcogels aged in silane solutions.J Non2Crystal Solids,1995,186(2):96~98

5 陈龙武,甘礼华,等.SiO2气凝胶非超临界干燥法制备及其形成过程.物理化学学报,2003,19(9):819~823 6 王玉栋,陈龙武,等.块状TiO2/SiO2气凝胶的非超临界干燥法制备及其表征.高等学校化学学报,2004,2(25):325~329

7 甘礼华,张宇星,等.干燥控制化学添加剂在制备硅气凝胶中的应用.同济大学学报,2003,9(9):156~159

8 Ziegler,Bernd,G erber,et al.Method of producing inor2 ganic aerogels under subcritical https://www.360docs.net/doc/917882007.html, Pat,No. 6017505.2000

9 陈龙武,张宇星,等.气凝胶的非超临界干燥制备技术.实验室研究与探索,2001,12(6):174~177

10 沈军,汪国庆,等.SiO2气凝胶的常压制备及其热传输特性.同济大学学报(自然科学版),2004,8(8):177~182 11 周小春,钟华.表面修饰对常压干燥SiO2气凝胶的研制.化学工程,2007,1(1):177~180

12 房兴梅,吴广明,等.V2O5常压干燥气凝胶薄膜的制备及Li+注入研究.材料导报,2007,1(7):170~173

13 Weiling L uan,lian G ao,et al.Study on drying stage of nanoscale powder preparation.Nano Structured Materials, 1998,10(7):1119~1125

14 Z S Hu,J X Dong,et al.Replacing solvent drying technique for nanometer particle preparation.Journal of Colloid and Interface Science,1998,208:367~372

15 刘海弟,郭锴.利用恒沸蒸馏干燥超细二氧化硅凝胶的研究.无机盐工业,2002,34(6):177~179

16 史非,王立久.环境气压干燥制备多孔SiO2气凝胶的研究进展.材料导报,2005,4(4):154~157

17 马景云,张卫珂,于方丽.溶胶2凝胶法基本原理及其在压电陶瓷中的应用.全国性建材科技期刊———陶瓷,2005 (8):12~15

18 段碧林,曾令可,刘平安,等.微波辅助加热技术的应用及现状..全国性建材科技期刊———陶瓷,2005(12):11~14

天然气管道干燥施工方法

天然气管道干燥施工方法 天然气管道在投产试用前进行干燥施工作业,主要是解决管道中积水问题。管道中含有水,不仅会腐蚀管道内壁和附属设备,影响天然气质量,而且在一定温度、压力作用下,还会形成水合物,严重影响天然气管道的安全平稳运行。在以往的输气管道建设中,由于忽视输气管道的干燥问题,经常出现冰堵或损坏阀门附件事故,给管道运营带来极大的安全隐患。目前,天然气管道的干燥问题逐步被各施工、运营和使用单位所重视,对管道干燥方法、工艺、施工技术的研究,必将有力推动我国管道干燥技术的全面发展。 一、天然气管道干燥的必要性 目前很多管道在投产前所进行的管道试压中,大部分采用的是水试压,这也是最安全的一种试压方式,但也为今后的管道运行留下了一定的安全隐患。在清管过程中,由于很难将管道内的积水全部清理干净,管道内部积水,对长输管道而言,危害极大。管道内残留液态水会产生以下几个方面的危害。 (1) 管道中残留的液态水是造成管道腐蚀的主要原因。天然气中的 少量酸性气体,如H 2S、CO 2 等在有水的条件下能生成酸性物质,使管道内部产生 危害较大的应力腐蚀。内部腐蚀是影响管道系统使用寿命及其可靠性的重要原因,也是引发管道事故的重要原因,因管道内部腐蚀造成的事故在输气管道事故中占很大比例。有关资料表明,苏联在1981~1990年的10年间,因内部腐蚀引起的事故有52次,占事故总数的6.9%;美国在1970~1984年的14年间,因内部腐蚀引起的事故有428次,占事故总数的7.3%。 (2) 管道中液态水是形成天然气水合物的必要条件之一。天然气水合物又称固态甲烷,由天然气与水组成,呈固体状态,其外貌很像冰雪或固体酒精,点火即可燃烧,因此有人称其为可燃冰、气冰、固体瓦斯。天然气水合物的结晶格架主要由水分子构成,在不同的低温高压条件下,水分子结晶形成不同类型多面体的笼形结构。形成水合物有两个条件,一是管道内有液态水或天然气处于水蒸气的过饱和状态;二是管道内的天然气要有足够高的压力和足够低的温度。天然气水合物一旦形成后,就会减少管道的流通面积,产生节流,加速水合物的进一步形成,从而造成管道、阀门和一些设备的堵塞,严重影响管道的安全运行。 (3) 天然气含水量上升将降低天然气质量。管道内液态水的存在会降低管道的输送能力,还会使天然气的含水量升高,从而导致天然气的质量下降,严重影响用户的正常使用。 在天然气管道投运前,应严格按照国家标准《天然气管道试运行投产规范》(GB50251—94)对天然气管道进行脱水、干燥处理,是管道内空气露点达到规定的要求。确保管道安全平稳运行,满足客户对天然气质量的要求。 二、天然气管道干燥方法的比较 对输气管道进行干燥的主要目的,是将清管扫线后残存的液滴和气态水清除掉。待管道干燥合格后还应采取必要的措施,防止湿空气重新进入管道。天然气管道干燥合格的标准是水露点小于一20C。目前,对管道干燥处理有以下4种方法,干空气干燥法(干空气加清管干燥列车)、真空泵干燥法、氮气干燥法以及脱水清管列车干燥法(天然气驱动甲醇等)。但应用于工业现场的管道干燥施工方法主要有3种,即干燥剂干燥法、真空泵干燥法和干空气干燥法。 1、干燥剂干燥法

第五章建筑保温隔热材料

第五章建筑保温隔热材料 随着各国工业化进程的发展,地球上可供人类利用的化石燃料已日渐枯竭,世界性能源危机的出路只有两条,即在开发新能源的同时注意节约能源。 建筑能耗在人类整个能源消耗中所占比例甚高(尤其是欧美发达国家,一般在30%-50%之间),故建筑节能意义重大。建筑保温隔热材料是建筑节能的物质基础,为了实现建筑节能的目标,就必须不断扩大和改进建筑保温隔热材料。 在建筑上合理采用保温隔热材料,可以减少基本建筑材料的用量;减轻围护结构的自重;提高建筑施工的工业化程度(隔热构件及制品适合工厂预制),大幅度节能降耗。 原来在建筑中使用的保温隔热材料,主要是基于改善居住舒适程度,如今已转移到节能上面。因此,使用建筑保温隔热材料对缓解能源危机以及提高人民的居住水平具有重要意义。 建筑保温隔热材料的基本特性; 在任何介质中,当两处存在温差时,在温度高低两部分之间就会产生热量的传递,热量将由温度较高的部分通过不同方式自动向温度低的部分转移。 例如,就人们的住宅来讲,冬天室内温度较室外高,热量就会通过房屋的外围结构(外墙、门、窗、屋顶等)向室外传递,使室内温度降低,造成热的损失;夏天室外温度高于室内,热量就会通过房屋外围结构向室内传递,使室内温度升高。 为了保持室内有适宜于人们生活、工作的温度,房屋的外围结构所采用的建筑材料必须具有一定的保温隔热性能,以保室内冬暖夏凉的环境,减少供热和降温用的能量消耗,从而达到节能的目的。 建筑保温隔热材料是建筑节能的物质基础。热的传递是通过对流、传导、辐射三种途径来实现的,保温隔热材料是指对热流具有显著阻抗性的材料或材料复合体;保温隔热材料是防止住宅、生产车间、公共建筑及各种暖气设备(如锅炉、暖气管道等)中热量散失的材料。 在建筑工程中保温隔热材料主要用于墙体和屋顶保温隔热;热工设备、热力管道的保温,有时也用于冬季施工的保温,同时,在冷藏室和冷藏设备上也大量地使用。 绝大多数建筑材树的导热系数介于0.023-3.49W/(m·k)之间,通常把导热系数值不大0.23W /(m·K)的材料称为保温隔热材料,工程上习惯称为绝热材料。 保温隔热材料的保温隔热机理 导热 是指物体各部分直接接触的物质质点(分子、原子、自由电子)作热运动而引起的热能传递过程。 对流 是指较热的液体或气体因热膨胀使密度减小而上升,冷的液体或气体就补充过来,形成分子的循环流动,这样,热量就从高温的地方通过分子的相对位移传向低温的地方。 热辐射 是一种靠电磁被来传递能量的过程。 保温隔热材料的结构基本上可分为纤维状结构、多孔结构、粒状结构或层状结构。具有多孔结构的材料中的孔一般为近似球形的封闭孔,而纤维状结构、粒状结构和层状结构的材料内部的孔通常是相互连通的。 下面对几种典型的保温隔热机理作简单介绍。 保温隔热材料 通常所指保温隔热材料是指导热系数小于0.23w/(m2·K)的材料。 一般建筑保温隔热材料按材质可分为两大类: 第一类:无机保温隔热材料 一般是用矿物质原料制成,呈散粒状、纤维状或多孔状构造,可制成板、片、卷材或套管等形式的制品,包括石棉、岩棉、矿渣棉、玻璃棉、膨胀珍珠岩、膨胀蛭石、多孔混凝土等;第二类:有机保温隔热材料

天然气长输管道干空气干燥技施工工法

天然气长输管道干空气干燥施工工法 河北华北石油工程建设有限公司 张宝林郭江波倪春江王凯黄长明 0 前言 长距离输气管道水压试验和清管后,管道内仍有少量水。在投产前如果不进行干燥,不仅引发管道内壁和附属设备的腐蚀,使所输送的产品受到污染,而且更严重的是在一定压力和温度的作用下,天然气与水结合形成结晶状水合物。在长期运行状态下,晶状水合物会越积越多,使管道截面积越来越小,摩擦阻力增大而引起输送效率的下降,最终会完全堵塞管道,形成冰堵。 国外天然气长输管道干燥技术起步较早,发展也较为迅速,但我国应用相对较晚。90年代后,随着大口径、高压、大排量天然气长输管道的建设,逐渐认识到管道干燥的必要性,并对后期建成的大型输气管道进行了干燥处理。 天然气长输管线干燥方法的多种多样,且每种干燥方法又有其优缺点,见表0-1。 表0-1 各种干燥方法的对比表 从上表可以看出,干空气法应用最多、最广。干空气法的主要优点如下: 1) 空气来源广,不受地区限制。 2) 空气无毒、无味、不燃、不爆,对环境无害,可以任意排放。 3) 既适用于陆地管道,也适用于海底管道。 4) 受管径、管道长度的影响相对最小。 5) 干燥成本低。 6) 易与管道建设和水压试验相衔接。 7) 干燥效果好,露点可达到-22℃以下。 我公司结合自身设备的技术特点,对干空气法管道干燥施工技术进行了研究,取得了较好的效果。2006年2月,《大口径输气管道干燥工艺方法研究》获华北石油管理局度技术创新二等奖。关于该项技术的论文在石油天然气安装技术中心站2006年会上被评为一等奖。

在此基础上,公司组织编制了《天然气长输管道干空气干燥施工工法》,先后在西气东输管道工程、陕京二线输气管道工程、马鞍山高压输气管道工程、西气东输冀宁联络线工程、淮武管道工程等项目中应用该项工法,累计干燥管道共计1028km,取得良好的效果。 1 工法特点 本工法有如下特点: 1) 本工法解决了使用多台小排量空压机作为空气源时,设备之间产生互相干扰而造成总排 量下降的难题。 2) 本工法解决了如何根据管道口径的大小,合理配置空压机的数量,以使干燥器生产出排 量和露点都符合要求的干空气。 3) 本工法根据不同的管段试压排水效果的不同,合理确定管道干燥施工过程中的清管及干 燥的工序流程,最大限度的提高管道干燥的进度和效果。 2 适用范围 本工法主要适用于大口径天然气长输管道的干燥施工,一般在有内涂层的管线上,管段干燥长度控制在150km以内,无内涂层的管线上管段干燥长度控制在100km以内,能达到比较好的综合效益。如遇特殊情况即:要求在站与站之间进行干燥,超过管线长度的最大极限,可考虑增加气源量以及使用耐磨损的清管器。 3 工艺原理 本工法是采用经过除油、过滤和脱水,形成露点达到-40℃的干燥纯净压缩空气,利用泡沫清管器辅助对管线进行吹扫干燥,使管道内壁附着的水分及管道低洼处积存的液态水蒸发,持续不断的使用干燥的空气进行置换,将管道内的湿空气排出管外,从而达到干燥管道的目的。 以西气东输6A标段为例,介绍本工法的工艺流程、操作要点。 4 工艺流程及操作要点 4.1 工艺流程 根据管段试压排水效果不同情况,首先发送一枚机械清管器进行初步扫水检验,并记录在此过程中的通球压力变化及通球时间;在清管器到达末端后,依据清管器的磨损情况和通出的管线内残留物来制订下一步的干燥工艺程序。 如果管段末端无明水,可发送2-3组泡沫清管器(每组2-3个泡沫清管器,每组之间最少相隔1小时)进行初步干燥。在末端每2小时测量一次露点,当露点达到-5℃以下时,发送磁力清管器;当露点达到-22℃以下时,发送带尼龙刷的清管器。然后密闭管段12小时后,测量末端露点达到规范要求后,对管线进行充气保护。 如果管段末端有明水,应继发送机械清管器,继续扫水至无明水后重复以上程序。 下面为西气东输6A标段干燥露点曲线图(见图4.1-1):

建筑保温隔热材料的介绍

建筑保温隔热材料介绍 作者:

---------------- 日期:

第五章建筑保温隔热材料随着各国工业化进程的发展,地球上可供人类利用的化石燃料已日渐枯竭,世界性能源危机的出路只有两条,即在开发新能源的同时注意节约能源。 建筑能耗在人类整个能源消耗中所占比例甚高(尤其是欧美发达国家,一般在30 %-50 %之间),故建筑节能意义重大。建筑保温隔热材料是建筑节能的物质基础,为了实现建筑节能的目标,就必须不断扩大和改进建筑保温隔热材料。 在建筑上合理采用保温隔热材料,可以减少基本建筑材料的用量;减轻围护结构的自重;提高建筑施工的工业化程度(隔热构件及制品适合工厂预制),大幅度节能降耗。 原来在建筑中使用的保温隔热材料,主要是基于改善居住舒适程度,如今已转移到节能上面。因此,使用建筑保温隔热材料对缓解能源危机以及提高人民的居住水平具有重要意义。建筑保温隔热材料的基本特性; 在任何介质中,当两处存在温差时,在温度高低两部分之间就会产生热量的传递,热量将由温度较高的部分通过不同方式自动向温度低的部分转移。 例如,就人们的住宅来讲,冬天室内温度较室外高,热量就会通过房屋的外围结构(外墙、门、窗、屋顶等)向室外传递,使室内温度降低,造成热的损失;夏天室外温度高于室内,热量就会通过房屋外围结构向室内传递,使室内温度升高。 为了保持室内有适宜于人们生活、工作的温度,房屋的外围结构所采用的建筑材料必须具有一定的保温隔热性能,以保室内冬暖夏凉的环境,减少供热和降温用的能量消耗,从而达到节能的目的。 建筑保温隔热材料是建筑节能的物质基础。热的传递是通过对流、传导、辐射三种途径来实现的,保温隔热材料是指对热流具有显著阻抗性的材料或材料复合体;保温隔热材料是防止住宅、生产车间、公共建筑及各种暖气设备(如锅炉、暖气管道等)中热量散失的材料。 在建筑工程中保温隔热材料主要用于墙体和屋顶保温隔热;热工设备、热力管道的保温,有时也用于冬季施工的保温,同时,在冷藏室和冷藏设备上也大量地使用。 绝大多数建筑材树的导热系数介于0.023- 3.49W/(m ? k)之间,通常把导热系数值不大 0.23W / (m ? K)的材料称为保温隔热材料,工程上习惯称为绝热材料。 保温隔热材料的保温隔热机理 导热 是指物体各部分直接接触的物质质点(分子、原子、自由电子)作热运动而引起的热能传递 过程。 对流是指较热的液体或气体因热膨胀使密度减小而上升,冷的液体或气体就补充过来,形成分子的循环流动,这样,热量就从高温的地方通过分子的相对位移传向低温的地方。 热辐射 是一种靠电磁被来传递能量的过程。 保温隔热材料的结构基本上可分为纤维状结构、多孔结构、粒状结构或层状结构。具有多孔结构的材料中的孔一般为近似球形的封闭孔,而纤维状结构、粒状结构和层状结构的材料内部的孔通常是相互连通的。

6常压干燥制备SiO2气凝胶的研究

常压干燥制备SiO2气凝胶的研究 吕鹏鹏赵海雷刘欣 (北京科技大学材料学院,北京100083) 摘要为解决超临界干燥法制备气凝胶的缺点,以水玻璃为硅源,经常压干燥制备了SiO2气凝胶。研究老化工艺条件和置换溶剂种类对SiO2气凝胶结构和性能的影响,并通过表面改性制备出具有良好疏水性的SiO2气凝胶。制得的气凝胶密度可低达0.123g/cm3,孔隙率为94.79%,比表面积为360.50 m2/g。 关键字SiO2气凝胶常压干燥老化溶剂置换表面改性 气凝胶是一种由原子团簇交联形成三维纳米多孔骨架、并在孔隙中充满气态分散介质的一种高分散固态材料[1]。由于其独特的三维纳米多孔结构,气凝胶具有低密度、高孔隙率、高比表面积、低热导率、低光折射率和低声传播速度[2-6]等性能,因此在光学、热学、电学、声学和力学等领域具有十分巨大的应用潜力。 气凝胶的制备过程分为溶胶-凝胶过程和湿凝胶的干燥过程。硅源前驱体通过水解形成含硅溶胶,调节pH使溶胶胶粒发生缩聚形成凝胶,凝胶骨架间充满了液态溶剂,通过超临界干燥法将骨架间隙的溶剂抽出,同时保持纳米多孔网络骨架不变,形成密度低、气孔率高的气凝胶材料。 但是运用超临界干燥法制备气凝胶的条件很苛刻,制备周期耗时长,对设备要求高,能耗大,操作危险性高,制备工艺复杂,使得气凝胶的生产成本非常高,这些严重制约了气凝胶的工业化大规模生产。 因此常压下干燥制备气凝胶引起了大家广泛的关注,采用常压干燥新工艺制备SiO2气凝胶已成为气凝胶趋向实际应用的关键。同时,一般SiO2多是采用有机硅为硅源(正硅酸乙酯或正硅酸甲酯),这样的硅源价格昂贵,成本高,也限制了SiO2的广泛应用。本文利用廉价的水玻璃为硅源,通过常压干燥制备了SiO2气凝胶粉体。研究了老化工艺条件、置换溶剂种类以及表面改性对材料结构和性能的影响。 1 常压干燥法 1.1常压干燥机理 通过溶胶-凝胶法制得的湿凝胶是由三维多孔的纳米SiO2骨架和充填于其中的溶剂组成的半固态物质,在湿凝胶的干燥过程中,由于微小孔隙中弯液面会产生一定的毛细管压力作用,使得当液体从孔隙蒸发时凝胶骨架会发生收缩;当应力超过网络的强度时,凝胶就会碎裂。因此,在干燥过程中,只有当湿凝胶孔隙液体蒸发时凝胶结构不发生塌陷,且

常用保温材料与阻燃材料

EPS板 EPS板(可发性聚苯乙烯板)具有质轻、价廉、导热率低、吸水性小、电绝缘性能好、隔音、防震、防潮、成型工艺简单等优点,因而被广泛用作建筑、船舶、汽车、火车、冷藏、冷冻等保温绝热、隔音、抗震材料。 EPS板(又称苯板)是可发性聚苯乙烯板的简称。由可发性聚苯乙烯珠粒经加热预发泡后在模具中加热成型而制得的具有闭孔结构的聚苯乙烯泡沫塑料板材。是由原料经过预发、熟化、成型、烘干和切割等制成。它既可制成不同密度、不同形状的泡沫制品,又可以生产出各种不同厚度的泡沫板材。广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。 应用:又称苯板,广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。EPS板保温体系是由特种聚合胶泥、EPS板,耐碱玻璃纤维网格布料和饰面材料组成。集保温、防水、防火,装饰功能为一体的新型建筑构造体系。该技术将保温材料置于建筑物外墙外侧,不占用室内空间,保温效果明显,便于设计建筑外形。

保温机理:EPS泡沫是一种热塑性材料,每立方米体积内含有300-600万个独立密闭气泡,内含空气的体积为98%以上,由于空气的热传导性很小,且又被封闭于泡沫塑料中而不能对流,所以EPS是一种隔热保温性能非常优良的材料。 挤塑聚苯乙烯泡沫塑料(XPS) 与EPS板相比,该产品具有以下两个突出特点:⑴密度和机械强度高;⑵长期吸水率低。不足之处是不易粘贴,且价格高。 执行标准:GB/《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》 主要特点:(1) 具有特有的微细闭孔蜂窝状结构,与EPS板相比,具有密度大、压缩性能高、导热系数小、吸水率低、水蒸气渗透系数小等特点。在长期高湿度或浸水环境下,XPS 板仍能保持其优良的保温性能,在各种常用保温材料中,是目前唯一能在70%相对湿度下两年后热阻保留率仍在80%以上的保温材料。 (2) 由于XPS板长期吸水率低,特别适用于倒置式屋面和空调风管。 (3) 还具有很好的耐冻融性能及较好的抗压缩蠕变性能。 硬质聚氨酯泡沫塑料(PUR) 性能特点:⑴导热系数小。在至今已有的保温材料中,该产品的导热系数是最低的;⑵使用温度较高;⑶抗压强度较高;⑷化学稳定性好,耐酸碱。 执行标准:QB/T3806-1999《建筑物隔热用硬质聚氨酯泡沫塑料》 主要特点及设计选用要点 (1) 使用温度高,一般可达100℃,添加耐温辅料后,使用温度可达120℃。 (2) 聚氨酯中发泡剂会因扩散作用不断与环境中的空气进行置换,致使导热系数随时间而逐渐增大。为了克服这一缺点,可采用压型钢板等不透气材料做面层将其密封,以限制或减缓这种置换作用。 (3) 现场喷涂聚氨酯泡沫塑料使用温度高,压缩性能高,施工简便,较EPS板更适于屋面保温。 (4) 用于管道(尤其是地下直埋管道)和屋面保温时,应采取可靠的防水、防潮措施。同时应考虑导热系数会随时间而增大,尽量采用密封材料作保护层。 (5) 由于使用温度较高,多用于供暖管道保温。

气凝胶的制备

气凝胶具有超轻、低密度、纳米微孔,特征是,具有超细蜂窝孔尺寸和多孔结构,由相互连接的聚合链连接而成。孔径一般低于 100 nm,气凝胶颗粒尺寸通常小于 20nm。它可以由无机材料(如二氧化硅、氧化铝等),有机材料(如聚酰亚胺、碳等),或混合材料(如凝胶玻璃等)而制得。 气凝胶是世界上最轻的固体材料,因其颜色呈现出淡蓝色,因此也被称为“蓝烟”,也有人将其称为“固体空气”。这也被列入了基尼斯世界纪录。复合气凝胶密胺海绵气凝胶毯具有柔软﹑易裁剪﹑密度小、防火阻燃﹑绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。 气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500 g/cm-3范围内可调。(空气的密度为0.00129 g/cm-3)。 气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为

气凝胶。在90年代中后期,随着常压干燥技术的出现和发展,90年代中后期普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。 气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。在溶胶凝胶过程中,通过控制溶液的水解和缩聚反应条件,在溶体内形成不同结构的纳米团簇,团簇之间的相互粘连形成凝胶体,而在凝胶体的固态骨架周围则充满化学反应后剩余的液态试剂。 为了防止凝胶干燥过程中微孔洞内的表面张力导致材料结构的破坏,采用超临界干燥工艺处理,把凝胶置于压力容器中加温升压,使凝胶内的液体发生相变成超临界态的流体,气液界面消失,表面张力不复存在,此时将这种超临界流体从压力容器中释放,即可得到多孔、无序、具有纳米量级连续网络结构的低密度气凝胶材料。

气凝胶——超级绝热保温材料

气凝胶——超级绝热保温材料 气凝胶——改变世界的神奇材料 二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是 3迄今为保温性能最好的材料。因其具有纳米多孔结构(1~100nm)、低密度(1,500kg/m)、低介电常数(1.1~2.5)、低导热系数(0.003~0.025 w/m?k)、高孔隙率(80,,99 8,)、高比表 2面积(200~1000m/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用前景,被称为“改变世界的神奇材料”。 气凝胶的特性及应用 特性应用 在所有固体材料中热导率最低,建筑节能材料, 热学轻质,保温隔热材料, 透明,浇铸用模具等。 超低密度材料密度 ICF以及X光激光靶 3(最低可达3kg/m) 高比表面积,催化剂,吸附剂,缓释剂、离子交孔隙率多组分。换剂、传感器等 低折射率, Cherenkov探测器, 光学透明,光波导, 多组分, 低折射率光学材料及其它器件 声学低声速声耦合器件

低介电常数,微电子行业中的介电材料,电学高介电强度,电极,超级电容器高比表面积。 弹性,高能吸收剂,机械轻质。高速粒子捕获剂 气凝胶的发展 世界上第一个气凝胶产品是1931年制备出的。当时,美国加州太平洋大学(College of the Pacific)的Steven.S. Kistler提出要证明一种具有相同尺寸的连续网络结构的固体“凝胶”,其形状与湿凝胶一致。证明这种设想的简单方法,是从湿凝胶中去除液体而不破坏固体形状。如按照通常的技术路线,很难做到这一点。如果只是简单地让湿凝胶干燥,凝胶将会收缩,常常使原来的形状破坏,破裂成小碎片。也就是说,这种收缩经常是伴随着凝胶的严重破裂。Kistler推测:凝胶的固体构成是多微孔的,液体蒸发时的液一气界面存在较大的表面张力,该表面张力使孔道坍塌。此后,Kistler发现了气凝胶制备的关键技术(Kistler,1932)。 Kistler研究的第一个凝胶是通过硅酸钠的酸性溶液浓缩制备的SiO凝胶。2 然而,他试图通过把凝胶中的水转变成超临界流体的方式来制备气凝胶却没有成功。Kistler再尝试首先用水充分洗涤二氧化硅凝胶(从凝胶中去掉盐),然后用乙醇交换水,通过把乙醇变成超临界流体并使它跑掉,第一个真正的气凝胶形成了。Kistler的气凝胶与现在制备的二氧化硅气凝胶类似,是具有相当大的理论研究价值的透明、低密度、多孔材料。在之后的几年时间里,Kistler详尽地表征了他的二氧化硅气凝胶的特性,并制备了许多有研究价值的其它物质的气凝胶材料,包括:A10 , W0 , Fe0 , Sn0、酒石酸镍、纤维素、纤维素硝酸盐、233232 明胶、琼脂、蛋白、橡胶等气凝胶。 后来,Kistler离开了太平洋大学,到Monsanto公司供职。Monsanto公司

天然气输送管道除水干燥技术

天然气输送管道除水干燥技术 耿良田于洪喜(胜利油田油气集输公司) 摘要天然气输送管道投产前进行除水与干燥处理,可以抑制投产过程产生水合物或防止输气海管的腐蚀。文章讨论了输气管道除水与干燥工艺技术,明确了清管器的设计、选型原则。除水与干空气干燥工艺应用表明,聚氨酯材料制作的直板型清管器具有较好的耐磨性和密封性,干空气干燥是短距离输气管道干燥处理的最佳方案。 主题词天然气管道除水干燥清 管器 1·管道除水技术 通常新建天然气管道投产前都要进行充水、清管、试压操作。除水工艺应根据干燥工艺确定。经过除水工艺后,除个别的低洼管段外,绝大部分的水已被清除,但在过大的内壁面上会留下一层薄水膜,厚度一般介于0·05~0·15mm之间。除水工艺一般采用多个清管器组成的清管列车一次完成,也可多次发送单个清管器分步完成,采用何种形式要视管道情况及干燥方式确定。对于距离较长的海底输气管道,除水不能进行分段处理,一般采用清管列车将试压水排出管道,清管列车由干空气、干燥天然气等介质推动,干空气、干燥天然气吹扫干燥随之进行或转入真空干燥。对于陆上输气管道,一般采用分段干燥处理,每段长度约50~100km,因此可采用多次单独发送清管器的方式除水。管道内壁越光滑,清管器的密封性能越好,水膜的厚度越薄,积水量就越少。采用干燥剂进行干燥的输气管道,排水过程与干燥工程往往同时进行。排水列车和干燥剂列车都是由多个清管器组成的,组成排水列车的多个清管器间隔形成淡水段塞(海水试压,清除盐份)和空气段塞;组成干燥剂列车的多个清管器间隔形成多个干燥剂段塞。显然除水后输气管内剩余水量的多少与后续的干燥时间成正比,排水效果在很大长度上取决于排水清管器的选型设计,良好的清管器设计是保证排水以及干燥效果的关键。摩擦阻力小、密封性能好,经过清管器的液体泄漏量少,干燥空气经过清管器向前窜漏量小是清管器设计应遵循的基本原则。根据文献介绍的不同类型的清管器实验结果及运行效果可知,直板型清管器具有良好的密封作用,适于排水干燥处理,具有以下特点: (1)直板型清管器经过直线管段的液体泄漏量可以忽略。 (2)相对于皮碗,直板更简单,逆向流动影响小。遇低速逆向流动,密封直板直至清管器反向运动至焊缝处才开始变形,直板型清管器对于内涂层输气海管是安全的选择。 (3)导向板、密封板布置及清管器的长度对清管器经过弯头处的窜漏特性影响明显,清管器有效长度以1·45~1·60D为宜。 (4)因周向焊缝产生的密封板磨损量占总磨损量的40%,聚氨酯是加工制作导向板和密封板的最佳选材。 2·管道干燥技术 常见的干燥工艺方法有干空气干燥法、干燥剂干燥法、氮气干燥法、真空干燥法和净化天然气干燥法等。 (1)干空气干燥法。这种方法分为除水和干燥两个阶段。除水程序可采用清管列车或分多次单发扫线清管器除水,干空气干燥将空气脱水处理,使其露点降至-60℃甚至更低后送入管线,由于管道内壁水蒸汽的分压和干空气流的水蒸汽分压之间存在差值,所以当低露点的空气进入管道后会促使残留在管道内壁上的水蒸发,并通过气流将蒸发出的水带出管外。干燥合格管内空气露点可以达到-20℃,甚至达到-40℃。研究证明,管道经过干空气干燥至露点-18℃以下时,管内壁的腐蚀速度明显降低甚至完全停止,干燥合格后的管道空管放置10个月甚至

常见保温隔热材料

膨胀蛭石 膨胀后的蛭石用途十分广泛,但其主要用途仍是作建筑材料。美国1986年消费结构中,用作灰浆和水泥预混合料及轻质混凝土骨料的膨胀蛭石占52%;英国用作混凝土、涂墙泥、水泥混凝剂的占40%。蛭石的主要用途见表。应用领域主要用途:建筑轻质材料轻质混凝土骨料(轻质墙粉料、轻质砂浆)耐热材料壁面材料、防火板、防火砂浆、耐火砖、刹车片保温、隔热吸声材料地下管道、温室管道保温材料,室内和隧道内装、公共场所的墙壁和天花板冶金钢架包覆材、制铁、铸造除渣高层建筑钢架的包覆材料、蛭石散料农、林、园艺园艺方面高尔夫球场草坪,种子保存剂、土壤调节剂、湿润剂、植物生长剂、饲料添加剂、各种园艺培养土海洋捕鱼业钓铒其他方面吸附剂、助滤剂、化学制品和化肥的活性载体、污水处理、海水油污吸附、香烟过滤嘴,炸药密度调节剂。 膨胀蛭石 膨胀珍珠岩 1、产品介绍:膨胀珍珠岩是珍珠岩矿砂经预热、瞬时高温焙烧膨胀后制成的一种内部为蜂窝状结构的白色颗粒状的材料。其原理为:珍珠岩矿石经破碎形成一定粒度的矿砂,经急速加热(1000℃以上),矿砂中水分汽化,在软化的矿砂粒子内部膨胀,形成多孔结构,体积膨胀到原来的10-30倍的非金属矿产。珍珠岩根据其膨胀技术条件及用途不同分为三种形态,开放孔(open cell),闭孔(closed cell),中空孔(balloon)。 2、主要特性: ·轻质·多孔·隔热·不燃

·吸音·耐水·无毒·抗腐蚀 3、(含量%) 4、应用领域: ·建筑:轻质骨料、轻质保温材、防火材、保温砂浆等·工业:深冷、低温工程绝热、工业设备、管道绝热等·农园艺:土壤改良剂、无土栽培基质、农药缓逝剂等·其它:助滤剂、填料、研磨材料、炼钢过程的集渣材等 膨胀珍珠岩 4、性能指标:

保温隔热材料概述

国内外保温隔热材料的研究现状 随着工业化进程的推进和节约能源理念的深入人心,绝热材料得到了迅猛发展。过 去单一的保温材料已经不能满足现阶段的使用现状,于是更多复合型、环保性保温材料逐 渐受到市场的关注和开发利用。目前使用的保温材料有以下几种。 (1)YT无机活性墙体保温材料 YT无机墙体保温隔热材料是以天然优质耐高温轻质材料为骨料,天然植物蛋白纤维, 优化组合多种无机改性材料和固化材料,经过工厂化生产配制,真正给客户提供一个单组 分的、完整的产品并具有保温、隔热、防火、抗水、轻质、隔音、抗开裂、抗空鼓、抗脱落、使用寿命同墙体等各种性能融为一体的A级不燃绿色环保墙体保温隔热节能材料,冬 季可提高室内温度6-10℃,夏季可降低室内温度6-8℃。满足国家50%-65% 的节能要求。银通A级不燃YT无机活性墙体隔热保温绿色节能系统属无网隔热保温系统,银通YT A级 不燃绿色节能产品直接用于各类基层墙体,不需加设网格布及锚栓(不会产生热桥)、不 需做抗裂砂浆等材料和工序,并在保温层上直接做涂料饰面和面砖饰面,达到粘结牢固、 不开裂、不渗水、使用寿命与墙体一致的起保温隔热节能和装饰作用的构造系统。 (2)矿渣棉及其制品 矿渣棉是以工业废料高炉矿渣为主要原料,辅加适量的熔剂型材料,熔化后用高速离 心法或喷吹法制成的一种具有保温、隔热、吸声、防震等多功能的无机纤维材料。表观密 度为114~130kg/m3,导热系数为0.044~0.046W/(m·k),最高使用温度600℃特点是:质量轻、导热系数低、不燃、防蛀、耐化学腐蚀、吸音性好且价格低廉;但 是其吸水性大、弹性小、可作填充用。目前国内矿渣棉生产能力达3000吨/年的就有80 家,生产企业有180家左右,设计能力55万吨。 (3)岩石棉及其制品 岩石棉是以火山玄武岩为主要原料,外加一定数量的石灰石或少量萤石,经1450℃以上高温熔化,用蒸汽或压缩空气喷吹,或用多级离心机离心加压而制成的一种人工无机短 纤维。表观密度为80~110kg/m3,导热系数为0.041~0.050W/(m·k),纤维长2~15cm,直径4~10μm,渣球含量(0.5mm渣球)5%~10%,吸湿率≤1%,使用温度700℃。其特

碳气凝胶的常压干燥制备及结构控制

2004 年10月 The Chinese Journal of Process Engineering Oct. 2004 碳气凝胶的常压干燥制备及结构控制  秦仁喜,沈 军,吴广明,周 斌,王 琴,倪星元,郭艳芝  (同济大学波耳固体物理研究所,上海 200092) 摘要:研究了碳气凝胶在常压条件下的制备过程和干燥方法. 用扫描电镜、比表面测量仪及孔径 分布仪对其结构进行了表征与测试. 通过改变催化剂和溶剂的用量,可以实现碳气凝胶的颗粒直径 及孔洞由纳米到微米级的连续调节. 通过降低催化剂浓度并以丙酮进行溶剂替换,成功实现了碳气 凝胶的常压干燥. 常压干燥样品具有250~650 kg/m3的低密度和250~550 m2/g的高比表面积. 分析 了其溶胶?凝胶反应机理,围绕毛细压力和材料强度等方面探讨了其常压干燥的实现途径. 关键词:碳气凝胶;常压干燥;毛细压力 中图分类号:TQ127.1 文献标识码:A 文章编号:1009?606X(2004)05?0429?05 1 前 言  碳气凝胶是一种多孔网络状的非晶碳材料,一般通过高温碳化有机气凝胶而得到. 以间苯二酚(Resorcinol)与甲醛(Formaldehyde)经溶胶?凝胶反应生成的有机气凝胶(简称RF气凝胶)具有孔洞率高、比表面积大和密度变化广等优点,是迄今为止常温常压下热导率最低的固态材料[约0.012 W/(m?K)][1]. RF气凝胶碳化后生成的碳气凝胶(即CRF碳气凝胶)不仅继承了RF气凝胶的大部分优点,而且具备优良的电化学性能,在超级双电层电容器、可充电电池、燃料电池、分子筛、海水淡化及催化剂载体等方面极具应用潜力[2?7],因而成为一种应用前景相当广阔的新型碳素电极材料. 经溶胶?凝胶反应生成的RF有机湿凝胶一般要通过超临界干燥工艺[6]处理,增加了实验的成本和风险,严重制约了碳气凝胶的实际应用. 目前为了获得常压干燥的碳气凝胶,主要采用掺入纤维来提高材料强度的方式制备碳气凝胶[2?5],往往只能得到薄膜样品. 本工作研究了碳气凝胶块体材料的常压干燥制备过程,讨论了其实现常压干燥的途径. 2 实 验  2.1 凝胶的制备  将间苯二酚与甲醛以1:2的摩尔比混合,以碳酸钠为催化剂,再加入去离子水作溶剂,搅拌均匀,密封后置入烘箱中,分别以25, 50和90o C处理1, 1和3 d,最后生成RF湿凝胶. 间苯二酚与催化剂的摩尔比简称R/C比,实验中分别取500, 1000和1500等数值;间苯二酚和甲醛占总溶液的质量分数简称M值,实验中分别取20%, 30%和40%等数值.  2.2 溶剂替换  用丙酮进行溶剂替换,浸泡样品3次,彻底替换样品中的水和其它杂质,然后在室温常压条件下干燥,待丙酮自然挥发干净后,即可得到干燥的RF气凝胶. 收稿日期:2003?09?24,修回日期:2003?12?25 基金项目:上海市自然科学基金资助项目(编号: 02ZE14101);上海市纳米科技与产业发展促进中心资助项目(编号: 0216nm035); 上海市重点学科建设资助项目;德国大众汽车基金资助项目 作者简介:秦仁喜(1979?),男,湖北省洪湖市人,硕士研究生,从事纳米多孔材料的研究.

2020年气凝胶复合材料项目可行性研究报告

2020年气凝胶复合材料项目可行性研究报告 2020年4月

目录 一、项目概况 (3) 二、项目实施的必要性 (3) 1、有利于满足公司“产品多元、市场利基”的战略及业务发展的需要 (3) 2、丰富公司产品结构以匹配不同客户的差异化需求 (4) 3、利用多种材料复合技术提升公司产品的竞争力 (5) 三、项目实施的可行性 (5) 1、气凝胶应用领域繁多、应用前景广阔 (5) 2、公司拥有成熟的生产技术与专利保护 (6) 3、拥有先进的仪器设备与丰富的试验数据库 (6) 四、项目投资概算 (7) 五、项目环保情况 (7) 1、废气、粉尘 (7) 2、噪声 (7) 3、固体废弃物 (8) 六、项目时间周期和进度 (8)

一、项目概况 SiO2气凝胶是一种具有丰富纳米微孔结构的新型材料,其特点为导热系数非常低,因此可应用在需要进行保温、隔热的热管理应用场景中。公司通过将SiO2气凝胶与ePTFE膜等其他辅助材料复合,不仅提升了SiO2气凝胶材料本身的性能,还克服了传统气凝胶易碎、掉粉的问题,极大拓宽了材料的应用领域,可以作为隔热保温材料应用于消费电子、汽车、新能源、航空航天、军工等领域,具有较为广阔的市场空间。 二、项目实施的必要性 1、有利于满足公司“产品多元、市场利基”的战略及业务发展的需要 公司的产品开发战略是以ePTFE膜等微观多孔材料核心技术体系为主干,通过改性、填充、复合等工艺手段,不断研究开发具有声、电、磁、热、防水透气、气体管理、耐候耐化学等物理化学特性的产品分支。 目前公司ePTFE膜及其组件业务已覆盖“声、电、气”等方向。根据公司测试评估结果以及目前公司在“热学”方面取得的研发成果,ePTFE膜及其组件在“热学”方向的产业化应用将是公司下一步战略 规划的重要环节。SiO2气凝胶材料天然具有良好的隔热保温性能,是理想的热管理材料。随着SiO2气凝胶复合材料的应用技术不断成熟,

高性能气凝胶隔热材料的应用

高性能气凝胶隔热保温材料 高性能气凝胶隔热保温材料是一种分散介质为气体的凝胶材料,是满足温度使用范围在-200℃~800℃的柔性或刚性高性能隔热保温材料。该材料中孔隙的大小在纳米数量级,可有效抑制空气对流传热和固相热传导,是一类高性能保温隔热材料。 气凝胶材料的简介: 纳米多孔气凝胶(简称气凝胶)材料是一种分散介质为气体的凝胶材料,是由胶体粒子或高聚物分子相互聚积构成的一种具有网络结构的纳米多孔性固体材料,该材料中孔隙的大小在纳米数量级。其空洞率高达80-99.8%,孔洞的典型尺寸为1-100纳米,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m?K)。正是由于这些特点使气凝胶材料在航空航天、船舶、建筑、新能源、石油化工、服装、催化剂、电化学等方面有很广阔的应用潜力。 按照气凝胶成分划分气凝胶可以分为氧化硅气凝胶、氧化锆气凝胶、氧化铝气凝胶和炭气凝胶等。其中氧化硅气凝胶使用温度可达600℃,氧化锆气凝胶使用温度可达1300℃,炭气凝胶使用温度高达2000℃。 气凝胶材料的应用:(一)气凝胶在石油化工方面的应用 据报道操作人员在开采海底油田和气田时的一项关键需求,是输送未加工炭氢化合物的能力,它们经常处于高温高压状态下,而且沿海底的输送距离也越来越长。若没有充分的绝热,这些炭氢化合物将发生冷却并生成水合物或蜡化,最终堵塞流送管,对操作人员产生巨大的成本,气凝胶卓越的保温性能可以很好的解决这一问题。 (二)气凝胶在船舶上面的应用

随着远洋运输、海上油田的发展,与之配套的海上钻井平台、石油运输船、液化天然气(LNG)船,液化石油气(LPG)船等发展迅速。这些特种船舶对于隔热保温和防火分隔提出了更高的要求,也成为气凝胶材料应用新的平台。 (三)气凝胶在建筑方面的应用 气凝胶卓越的保温性能让他可以在建筑保温方面具有十分强大的潜力,相对于目前使用的聚苯泡沫气凝胶不仅保温隔热效果更好,而且不可燃烧,可以有效的防止火灾的发生。气凝胶的耐老化性能也十分良好,可以保证外保温体30年不老化。目前气凝胶的成本相对较高,等将来工艺更加的优化,成本下降,必将在建筑保温方面大量应用。同时由于气凝胶的透光性,使其可以用来制作透光屋顶。 (四)气凝胶在航空航天方面的应用 目前,气凝胶已经在航空航天需要隔热保温的地方中大量使用。其中有一项就是在航空航天用热电池上的应用,使用气凝胶材料作为隔热保温层完美的解决了航空航天对热电池高性能的要求,下图为某种热电池的隔热气凝胶材料。 (五)气凝胶在其他方面的应用 气凝胶卓越的隔热保温性能使得他在电化学、服装、新能源、催化剂等方面也有十分强大的应用潜力。由于气凝胶的孔隙都是纳米级的,比表面积很大这使得他吸附能力较大,可以在用来做催化剂的载体;由于其吸附性,同时密度极低,所以也可以用来储氢;他良好的保温性可以用来制作服装,只需要很薄的一层就可以达到很好的保温效果。 作为隔热保温材料,可用于超声速飞行器的热防护,装甲车、船舶等的大功率发动机隔热,工业用高温炉的隔热以及高效热电池、绿色智能建筑的保温等;作为防火分隔材料,可用于大型船舶、高层建筑物中防火门、防火舱壁的制造;可用于特种服装(防寒服、消防服、防弹背心)制造、隔音材料、催化剂载体等。

建筑保温隔热材料的概述

第三章建筑保温隔热材料的概述 3.1保温隔热材料的概念 保温隔热材料是指具有防止建筑物内部热量损失或隔绝外界热量传入的材料。一般 将其中用于高温环境,导热系数小于0.23W/(m·k)的材料称为轻质耐火材料(轻质绝热 材料);将用于较低温环境,导热系数小于0.14W/(m·k)的材料统称为保温材料;将导 热系数小于0.05W/(m·k)的材料称为高效保温隔热材料。在建筑领域,保温材料主要负 责围护结构在冬季保持室内适当温度的能力,传热过程常按照稳定传热考虑,并以传热 系数值或热阻值来评价。隔热材料主要负责围护结构在夏季隔离热辐射和室外高温的影响,使室内温度保持适当温度的能力,传热过程按24h为周期的周期性传热来考虑,以 夏季室外计算温度条件下(较热天气下)围护结构内表面最高温度值来评价。 3.2保温隔热材料的绝热原理 在任何介质中,当两处存在温差时,热量都会由温度高的部分传递至温度低的部分。 热量传递的基本方式主要有热传递、热对流和热辐射三种。所有物质的热现象都是物质 内部粒子相互碰撞、振动、传递和运动的结果。绝热材料均是由固相和气相构成,其制 品在使用过程中,随着体积密度、气孔率的不同,导热方式和能力也有差别。 在主晶相和基质固相中,热量主要以热传导方式进行,组成晶体的质点牢固地处在 一定的位置,相互间存在一定的距离,质点只能在平衡位置附近作微小的振动,而不能 像气体分子那样杂乱地自由运动,所以也不能像气体那样依靠质点间的直接碰撞来传递 热能。金属中热传导主要靠自由电子的运动来实现,而非金属晶体中,晶格振动是它们 的主要导热机构。热量是由晶格振动的格波来传递的,这种格波分为声频支和光频支。 在温度不太高的传热过程中,光频支格波的能量很微弱,主要是声频支格波作出贡献。 根据气体热传导依靠气体分子碰撞的原理,我们可以推断,晶体热传导是声子碰撞的结果。在很多晶体中热量传递的速度是很缓慢的,这是因为晶格振动并非是线性的,晶格 间存在着一定的耦合作用,声子间会产生碰撞而使声子的平均自由程减小。格波间相互 作用越强,声子间碰撞几率越大,相应的平均自由程越小,热导率也就越低。所以,这 种声子间碰撞引起的散射是晶格中热阻的主要来源。此外,晶体中的各种缺陷、杂质以 及晶粒界面都会引起格波的散射,这也等效于声子平均自由程的减小,从而降低热导率。相对的,在高温环境中,固体材料中分子、原子等质点的转动和振动都会辐射出相应的 高频电磁波。这种在低温时表现很弱的热辐射,在高温条件下却成为材料的重要热传导途径[29]。 与固体导热相比,气体的绝热性能更为优越。在气孔中,热量主要以辐射和热对流 方式进行,尤其在高温阶段。材料中封闭的微小气孔内空气不产生对流,处于相对静止 的状态,热量传递相当缓慢,所以热导率较小;相反,对于那些孔隙粗大且连通的气孔,空气可能产生热对流,从而增加了热导率。多孔、粉末和纤维材料中这种绝热机制表现 十分突出。这是因为在材料内气孔形成了连续相,其热导率在很大程度上受到气孔相热 导率的影响。而且,一些具有显著各向异性的材料和膨胀系数较大的多相复合材料,由 于存在大的内应力而产生微裂纹,气孔会以扁平微裂纹的形式出现并沿着晶界发展,使 热流受到严重的阻碍。这样,即使气孔率很小的材料,其热导率也会明显减小。 3.3保温隔热材料的分类 保温隔热材料按结构特点可分为纤维材料、粒状材料和多孔材料。 按使用温度可分为:①低温绝热材料(使用温度小于900℃)如硅藻土砖、石棉、 膨胀蛭石、矿棉等;②中温绝热材料(使用温度在900~1200℃),如硅藻土砖、膨胀 珍珠岩、轻质粘土砖和耐火纤维等;③高温绝热材料(使用温度大于1200℃),如轻质 高铝砖、轻质刚玉砖、轻质镁砖、空心球制品及高温耐火纤维制品等[30]。

相关文档
最新文档