离散数学期末考试试题

离散数学期末考试试题
离散数学期末考试试题

离散数学试题(A卷及答案)

一、证明题(10分)

1) ( -P A ( —Q A R)) V (Q A R)V (P A R)= R

证明:左端 =(-P A-QAR) V ((Q V P)A R£((—P A-Q)AR)) V((Q V P)A R)

:=(^P V Q) A R)V(( Q V P ) A R匕(一(P V Q )V(Q V P)) A R

:=(「P V Q )V( P V Q )) A fcT A R置换):=R

2) x(A(x) —.B(x)) := - x A(x) _._x B(x)

证明:x ( A(x) > B(x)〉= x ( f(x) V B(x))= x—A(x) V x B(x)=—- x A(x)V x B(x)=- x A(x) -l x

B(x)

、求命题公式(P V (Q A R)) >(P A QA R)的主析取范式和主合取范式(10分)

证明:(P V (Q A R))「(P A Q A R>=— (P V (Q A R)) V (P A QA R))

二(—P A ( 一QV -R) )V (P A Q A R)

二(一P A — Q)V ( -P A -R)) V (P A Q A R)

二(_PA _Q R) V (_P A _QA 一R) V ( _P A QA _R)) V ( _PA _QA _R)) V (P A Q R)

二m0V m1V m2V m7

u M3V M4V M5V M6

三、推理证明题(10分)

1)C V D,(C V D)》-E, -E >(A A -B), (A A证明(1) xP(x)

—B)r(R V S)「:R V S(2)P(a)

(1) (C V D)—;「E(3) -x(P(x) >Q(y) A R(x))

明:

(2) -E >(A A -B)(4)P(a) >Q(y) A R(a)

(3) (C V D)—.(A A -B)(5)Q(y) A R(a)

⑷(A A -B)_. (R V S)(6)Q(y)

V D)_ (R V S)(7)R(a)

(5) (C

⑹C V D(8)P(a)

⑺R V S(9)P(a) A R(a)

2)-x(P(x) —;Q(y) A R(x)) , xP(x)二Q(y) A(10) x(P(x) A R(x))

x(P(x) A R(x))(11)Q(y) A x(P(x) A R(x))

四、设m是一个取定的正整数,证明:在任取耐1个整数中,至少有两个整数,它们的差是m的整数倍证明设

印,a2,…,a m1为任取的1个整数,用m去除它们所得余数只能是0, 1,…,m- 1,由抽屉原理可知,耳,a2,…,a m d这m+ 1个整数中至少存在两个数a s和a t,它们被m除所得余数相

同,因此a s和a的差是m的整数倍。

五、已知A、B、C是三个集合,证明A-(B U C)=(A-B) n (A-C) (15分)

证明???x 三A- ( B U C) :j x 三 A A XP ( B U C) =xw A A( x^B A x^C):二(x 三 A A x^B)A( xwA

A x「O = x - (A-B)A x. (A-C) = x ? (A-B)A( A-C)「?A- (

B U C) = (A-B)A( A-C)

六、已知R、S是N上的关系,其定义如下:R={| x,y 三N A y=x }, S={| x,y 三N A y=x+1}。求

R1、R*S、S*R、R {1,2}、S[{1,2}] ( 10 分)

12 2 2 解:R-={| x,y e NA y=x } , R*S={| x,ywNA y=x +1}, S*R={| x,y eN A y= (x+1) },

七、若f:A T B 和g:B T C是双射,则(gf ) -1=f-1g-1(10 分)。

证明:因为f、g是双射,所以gf: A T C是双射,所以gf有逆函数(gf) -1: C T A。同理可推f-1g-1: C T A是双射。

因为 € f-1g:=存在z ( € g-1 € f-1厂二存在z ( € f € g):二 € gf:= €( gf) -1,所以(gf) -1=f-1g-1。

R {1,2}={<1,1>,<2,4>} , S[{1,2}]={1,4}。

八、(15分)设是半群,对A中任意元a和b,女口b必有a*b^ b*a,证明:

(1) 对A中每个元a,有a*a= a。

(2) 对A中任意元a和b,有a*b*a= a。

(3) 对A中任意元a、b和c,有a*b*c = a*c。

证明由题意可知,若a*b= b*a,则必有a= b。

(1) 由(a*a)*a= a*( a* a),所以a*a= a。

(2) 由a*( a*b*a) = (a*a)*( b*a) = a*b*( a*a) = (a*b*a)* a,所以有a*b*a= a。

(3) 由(a*c)*( a* b* c) = (a*c*a)*( b*c) = a*( b*c) = (a* b)* c = (a* b)*( c*a*c) = (a*b*c)*( a*c),所以有a*b*c = a* c o

九、给定简单无向图G= ,且| V| = m I E = n。试证:若n A + 2,贝V G是哈密尔顿图

证明若n A c m:+ 2,贝V 2n》n i-3mF 6 (1 )。

若存在两个不相邻结点u、v使得d( u) + d( v ) v n,则有2n=送d(w) v mb ( n—2)( n—3) + m= n i- 3mF

w^V

6,与(1)矛盾。所以,对于G中任意两个不相邻结点u、v都有d( u ) + d( v) A n所以G是哈密尔顿

图。

离散数学试题(B卷及答案)

一、证明题(10分)

1) ((P V Q) A -(—P A ( —Q V -R))) V ( —P A -Q) V ( ~P A — R)二T

证明左端二((P V Q)A (P V (Q A R))) V -((P V Q)A (P V R))(摩根律):=((P V Q)A (P V Q)A (P V R)) V

—((P V Q)A (P V R))(分配律)=((P V Q)A (P V R)) V _((P V Q)A (P V R))(等幕律)=T (代入)

2) -x(P(x) > Q(x)) A -xP(x) h x(P(x) A Q(x))

证明—x(P(x) > Q(x)) A -xP(x) :=- x((P(x) >Q(x) A P(x))二- x(( ~P(x) V Q(x) A P(x)):二- x(P(x) A

Q(x)) h xP(x) A - xQ(x) h x(P(x) A Q(x))

二、求命题公式(一P 》Q)》(P V -Q)的主析取范式和主合取范式(10分)

解:(一P >Q) >(P V -Q)=—( -P >Q) V (P V —Q)二—(P V Q) V (P V — Q)= (—P A —Q)V (P V — Q) = (—P V P

V -Q)A ( —Q V P V —Q)= (P V —Q)= MJ m0V m2V m3

四、例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是 退化的)面积不超过 1/8 (10分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形 (可能是退化的)面积不超过小正方形的一半,即

1/8。

五、 已知 A 、B 、C 是三个集合,证明 A n (B U C )=(A n B ) U (A n C ) ( 10分)

证明:■/ x 三 A n ( B U C ):=x 三 A A x 三(B U C ):=x 三 A A ( x 三B V x 三 C ):二(x 三 A A x 三 B )V ( x 三 A A x 三 C ) u x ? (A n B )V A n d x (A n B )U ( A n C ).?.A n ( B U C ) = (A n B )U ( A n C ) 六、 -={A 1, A 2,…,A n }是集合 A 的一个划分,定义 R={<a , b >|a 、b € A , I=1 , 2,…,n},贝U R 是A 上的等

价关系(15分)。

证明:-a € A 必有i 使得a € A ,由定义知aRa ,故R 自反。

-a,b € A ,若 aRb ,贝U a,b € A ,即卩 b,a € A ,所以 bRa,故 R 对称。

_

a,b,c € A ,若 aRb 且 bRc ,则 a,b € A 及 b,c € A 。因为 i 丰 j 时 A n A=",故 i=j ,即 a,b,c € A ,所以 aRc ,

故R 传递。

总之R 是A 上的等价关系。

七、 若f:A T B 是双射,则f 1:B T A 是双射(15分)。

证明:对任意的x € A ,因为f 是从A 到B 的函数,故存在 y € B ,使<x,y > € f , <y,x > € f -1

。所以,f -1

是满射。

对任意的x € A,若存在y 1,y 2€ B,使得<y 1 ,x > € f -1

且<y 2,x > € f -1

,则有<x,y 1> € f 且<x,y 2> € f 。因为f 是函

数,则y 1=y 2。所以,f -1是单射。

因此f -1

是双射。

八、 设<G, *>是群,<A, *>和<B , *>是<G *>的子群,证明:若 A U B= G,则A =

G 或B= G ( 10分)。

证明 假设A M G 且B M G 则存在 a A a

B ,且存在b B, b'A (否则对任意的 a A , a B ,从而A =B ,即A

U B= B,得 B = G 矛盾。)

三、推理证明题(10分) 1)(P

(Q_.S)) A ( —R V P) A Q :.R >S 证明:(1) R 附加前提

(2) -R V P P (3) P

T(1) (2),1

(4) P >(Q >S) P (5) Q >S T(3)(4),l (6)

Q P

(7) S T(5)( 6),l

(8)

R_.S CP

2) —x(P(x) V Q(x)) , - x —P(x)二.x Q(x) 证

明:⑴-x —P(x) P (2) —P(c)

T(1),US

(3) -x(P(x) V Q(x)) P (4) P (c) V Q(c) T(3),US (5) Q(c) T(2)(4),I (6) x Q(x)

T(5),EG

对于元素a

*b.二G,若a*b.二A因A是子群,a-1“,从而a-1* ( a*b) = b . A,所以矛盾,故a*b.「A。同理

可证a* b FB,综合有a* b .-'A U B= G

综上所述,假设不成立,得证A= G或B= G

九、若无向图G是不连通的,证明G的补图G是连通的(10分)。

证明设无向图G是不连通的,其k个连通分支为G i、G2、…、G k。任取结点u、v € G,若u和v不在图G 的同一个连通分支中,则[u, v]不是图G的边,因而[u, v]是图G的边;若u和v在图G的同一个连通分支中,不妨设其在连通分支G i (1 < i < k )中,在不同于G i的另一连通分支上取一结点w,则[u , w]和[w , v]都不是图G的边,,因而[u , w]和[w , v]都是G的边。综上可知,不管那种情况,u和v都是可达的。由u和

v的任意性可知,G是连通的。

一、选择题.(每小题2分,总计30)

1. 给定语句如下:

(1) 15是素数(质数)

(2) 10能被2整除,3是偶数。

(3) 你下午有会吗?若无会,请到我这儿来!

(4) 2x+3>0.

(5) 只有4是偶数,3才能被2整除。

(6) 明年5月1日是晴天。

以上6个语句中,是简单命题的为( A),是复合命题的为(B),是真命题的为(C),是假命题的是(D),

真值待定的命题是(E)

A:①⑴(3)(4)(6) ②(1)(4)(6) ③(1) (6) B: ①⑵(4) ②⑵(4)(6) ③⑵(5)

C:①(1)(2)(5)(6) ②无真命题3( 5) D: ①(1)(2) ②无假命题③(1)(2)(4)(5)

E:①⑷(6) 笑(6) ③无真值待定的命题

2. 将下列语句符号化:

(1)4是偶数或是奇数。(A)设p:4是偶数,q : 4是奇数

(2)只有王荣努力学习,她才能取得好成绩。(B)设p:王荣努力学习,q :王荣取得好成绩

(3)每列火车都比某些汽车快。(C)设F(x):x是火车,G(y):y是汽车,H(x,y):x 比y快。

A:① p V q ② p A q ③ p q B: ① p q ② q p ③ p A q

C:①-x y ((F(x) A G(y)) (H(x,y)) ②-x (F(x) y(G(y) A H(x,y)))③-x (F(x) A y(G(y) A

H(x,y)))

,R2是(B),R 3是(C)。

3.:R1 是(A)

A B C:①自反的,对称的,传递的

反对称的⑤对称的4.设S={①,{1} , {1 , 2}},则有

(1) (A) S

(3)P(S)有(C)个元数。

A:①{1,2} ② 1 B:

②反自反的,对称的③自反的

⑥自反的,对称的,反对称的,传递的

(2) (B) S

(4)( D)既是S的元素,又是S的子集

③{{1,2}}④{1}

C:⑤3 ⑥6⑦7⑧8 D: ⑨⑴⑩①

二、证明(本大题共2小题,第1小题10分,第2小题10分,总计20分)

1、用等值演算算法证明等值式(p A q)V (p人一q)二p

2、构造下面命题推理的证明

如果今天是星期三,那么我有一次英语或数学测验;如果数学老师有事,那么没有数学测验;今天是星期三且数学老师有事,所以我有一次英语测验。

三、计算(本大题共4小题,第1小题5分,第2小题10分,第3小题15分,总计30分)

1、设P x, y为x整除y, Qx为x :: 2,个体域为'1,2?,求公式:

-x y Px,y > Q x 的真值。

2、设集合A 31,2,3,4] A上的关系R」£1,1 , 1,2 , 2,1 , 2,3 , 3,4二求出它的自反闭包,对称闭包和传递

闭包。

3、设A =〈1,2,4,8,12,24,1上的整除关系R&1总「印耳?A?整除a^f, R是否为A上的偏序关系?若是

则:

1、画出R的哈斯图;(10分)

2、求它的极小元,最大元,极大元,最大元。(5分)

四、用推导法求公式p、q:」?p的主析取范式和主合取范式。(本大题10分)答案:

选择题

1. A:③ B: ③ C:③ D:① E:②

2.A: ① B: ② C:②

、证明题

1.证明左边=((p A q) V p)A( (p A q) V「q))(分配

律)

二p A( (p A q) V「q)) (吸收

律)

二p A( (p V -q) A (q V r))(分配律)

二p A( (p V -q) A 1)(排中

律)

二p A (p V r)(同一

律)

二p(吸收律)

2.解:p:今天是星期三。

q : 我有一次英语测验。

r我有一次数学测验。

s : 数学老师有事。

前提: L (q V r) , s t-1r , p A S

结论:q

证明:①p A s前提引入

②p①化简

③p->(q V r)前提引入

④q V r②③假言推理

⑤s①化简

⑥STF前提引入

⑦⑤⑥假言推理

⑧q④⑦析取三段论

3.A:③B: ④ C:⑥

4.A: ①B: ③C:⑧D:⑩

推理正确。

三、计算

-x y P x,y > Q x

r = y P 1,y > Q 1 上P 2,y > Q 2

=P 1,1> Q 1上p 2,1> Q 2P 1,2> Q 1上P 2,2 > Q 2 P 1,1 =1,P 1,2 =1,P 2,1 =0,P 2,2 =1,Q 1 =1,Q 2 =0

.二1》1上0》0打[[1 > 1讥[1 > 0

=1

该公式的真值是1,真命题。

—x y P x,y 》Q x 二-x P x,1 )Qx P x,2 > Q x

或者=P1,1 > Q1 P1,2 >Q1 P 2,1 > Q 2 P 2,2 > Q 2

T > T T > T F > F T > F

=T T ] iT F := T T := T

2、r(R)二「1,1., 1,2 , 2,1, 2,3 , 3,4 , 2,2 , 3,3 , 4,4 :?

s(R) —1,1 , 1,2, 2,1, 2,3., 3,4, 3,2 , 4,3;?

t(R) —1,1, 1,2 , 2,1, 2,3, 3,4 ,1,3, 2,2, 2,4 , 1,4. /

3、(1)R是A上的偏序关

系。

(2)极小元、最小元是1,极大元、最大元是24。

四、

p ) q )- - -p q p

-p _q P

-p

=p q _q

-p _q p q

二Z (2,3)

二主合取范式口(0,)

安徽大学2004-2005学年第二学期《离散数学》期末考试试卷( A卷)参考答案

一、单项选择

1在自然数集N上,下列哪种运算是可结合的?( )

A. a*b=a-b

B. a*b=max{a,b}

C. a*b=a 2b

D. a*b=a b(mod 3)

2下列代数系统中,哪个是群?( )

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

安徽大学期末试卷离散数学上卷及参考答案.doc

安徽大学20 09 — 20 10 学年第 1 学期 《离散数学(上)》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 题 号 一 二 三 四 五 总分 得 分 一、单选题(每小题2分,共20分) 1. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) A.R ∪I A B.R C.R ∪{〈c,a 〉} D.R ∩I A 2. 设X={a,b,c},I x 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等 价关系,R 应取( ) A. {〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C. {〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 3. 下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 4. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

厦门大学离散数学2015-2016期末考试试题答案年

一(6%)选择填空题。 (1) 设S = {1,2,3},R 为S 上的二元关系,其关系图如右图所示,则R 具有( )的性质。 A. 自反、对称、传递; B. 反自反、反对称; C. 自反、传递; D. 自反。 (2) 设A = {1, 2, 3, 4}, A 上的等价关系 R = {, , , } A I , 则对应于R 的A 的划分是( )。 A. {{a }, {b , c }, {d }}; B. {{a , b }, {c }, {d }}; C. {{a }, {b }, {c }, {d }}; D. {{a , b }, {c , d }}。 二(10%)计算题。 (1) 求包含35条边,顶点的最小度至少为3的图的最大顶点数。 (2) 求如下图所示的有向图中,长度为4的通路的数目,并指出这些通路中有几条回路,几条由3v 到4v 的通路。 23 三 (14%) (1) 求 )()(p r q p →→∨ 的主析取范式,主合取范式及真值表; (2) 求 )()),(),((x xH y x yG y x xF ?→?→??的前束范式。 四 (8%) 将下列命题符号化:其中 (1), (2) 在命题逻辑中,(3), (4) 在一阶逻辑中。 (1) 除非天下雨,否则他不乘公共汽车上班; (2) 我不能一边听课,一边看小说; (3) 有些人喜欢所有的花; 厦门大学《离散数学》课程试卷 学院 系 年级 专业 主考教师: 张莲珠,杨维玲 试卷类型:(A 卷)

(4)没有不犯错的人。 五(10%)在自然推理系统P中构造下面推理的证明: 如果他是计算机系本科生或者是计算机系研究生,则他一定学过DELPHI语言且学过C++语言。只要他学过DELPHI语言或者C++语言,那么他就会编程序。因此如果他是计算机系本科生,那么他就会编程序。 六(10%)在自然推理系统中构造下面推理的证明(个体域:人类): 每个喜欢步行的人都不喜欢坐汽车,每个人或者喜欢坐汽车或者喜欢骑自行车。有的人不喜欢骑自行车,因而有的人不喜欢步行。 七(14%)下图给出了一些偏序集的哈斯图,判断其是否为格,对于不是格的说明理由,对于是格的说明它们是否为分配格、有补格和布尔格(布尔代数)。 八(12%)设S = {1, 2, 3, 4, 6, 8, 12, 24},“ ”为S上整除关系, (1)画出偏序集> ,S的哈斯图; < (2)设B = { 2, 3, 4, 6, 12},求B的极小元、最小元、极大元、最大元,下界,上界。 九(8%)画一个无向图,使它是: (1)是欧拉图,不是哈密尔顿图; (2)是哈密尔顿图,不是欧拉图; (3)既不是欧拉图,也不是哈密尔顿图; 并且对欧拉图或哈密尔顿图,指出欧拉回路或哈密尔顿回路,对于即不是欧拉图也不是哈密尔顿图的说明理由。 十(8%)设6个字母在通信中出现的频率如下: 12 13 :c :b% 45 :a% % :e% :f 9 5 : d% % 16 用Huffman算法求传输它们的最佳前缀码。要求画出最优树,指出每个字母对应的编码,n个按上述频率出现的字母需要多少个二进制数字。 并指出传输)2 ( n 10≥

相关文档
最新文档