初中应用题的几种类型

初中应用题的几种类型
初中应用题的几种类型

?平均数问题公式(一个数+另一个数)÷2

反向行程问题公式路程÷(大速+小速)

同向行程问题公式路程÷(大速-小速)

行船问题公式同上

列车过桥问题公式(车长+桥长)÷车速

工程问题公式 1÷速度和

盈亏问题公式(盈+亏)÷两次的相差数

利率问题公式总利润÷成本×100%

盈亏(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数 1 每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3 速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6 加数+加数=和

和-一个加数=另一个加数

7 被减数-减数=差

被减数-差=减数

差+减数=被减数

8 因数×因数=积

积÷一个因数=另一个因数

9 被除数÷除数=商

被除数÷商=除数

商×除数=被除数和差问题

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或小数+差=大数) 图形面积、周长、体积……那些个要吗?晕,@_@|| 因式分解,三角不等式,一元

二次方程,和差化积,三角函数,两角和公式,倍角半角,正弦余弦。。。。那啥啥的,都要吗?昏迷中。。。。。。小学数学图形计算公式 ----上

1 正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2 正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高小学数学图形计算公式 ----下

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b;-b≤a≤b

|a-b|≥|a|-|b|

-|a|≤a≤|a|圆的一般方程

x2+y2+Dx+Ey+F=0

注:D2+E2-4F>;0 一元二次方程

ax^2+bx+c=0(a、b、c是实数a≠0)

x^2+2x+1=0 弧长公式

l=a*r

a是圆心角的弧度数r >;0

扇形面积公式

s=1/2*l*r

柱体体积公式

V=s*h

圆柱体

V=π*r2h 圆柱侧面积

S=c*h=2π*h

圆锥侧面积

S=1/2*c*l=π*r*l

六年级上册分数应用题专项练习题

六年级上册分数应用题专项练习题 1、已知一等腰三角形的顶角和一个底角的度数之比是1:2,则这个三角形按角的大小分类是什么三角形? 2、某班男生与女生的人数比为7:5 (1)全班有48人,求男生与女生各有多少人? (2)男生有28人,求女生有多少人? (3)女生有20人,求全班有多少人? (4)若男生比女生多8人,求全班共多少人? 3、要配制一种盐水,盐与水的比为2:5。 (1)要配制140克这种盐水,需要盐多少克? (2)现有盐40克,需要多少克水? (3)现有水100克,可以配制成多少克这种盐水? (4)已知盐比水少60克,求一共有多少克这种盐水? 4、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少? 5、一个长方形面积是24平方分米,它的长与宽的比是3:2,这个长方形的周长是多少? 6、一个直角三角形的周长为36厘米,三条边的长度比是3:4:5,这个三角形的面积是多少平方厘米? 7、一个三角形的面积是24平方厘米,底和高的比是3:1,这个三角形的底和高分别是多少厘米?

8、一个长方体的棱长总和是80厘米,长、宽、高的比是5:3:2。这个长方体的体积是多少立方厘米? 9、甲、乙、丙三个数的平均数是60。甲、乙、丙三个数的比是3:2:1。甲、乙、丙三个数各是多少? 10、学校把树按2:3;4分配给四、五、六三个年级。其中五年级植了90棵,四、六年级各应植树多少棵? 11、下图表示配制一种混凝土所用材料的份数。水泥、黄沙、石子的比是2:3:5。如果这三种材料都有18吨,当黄沙全部用完时,水泥还剩多少吨?石子又增加了多少吨? 12、两地相距60千米,甲乙两辆汽车同时从两地相向开出,小时后相遇。甲乙两车速度比是4:5。甲乙两车每小时各行多少千米? 13、被减数、减数与差的和是4200,被减数与减数的比是5:4,被减数与减数分别是多少? 14、学校买来树苗725棵,把这些树苗的按3:2发给中高年级,高年级能分得多少棵? 15、一堆煤,第一次运走了它的,第二次运走了21吨,这时余下的煤的吨数与运走的比是2:3,这堆煤原有多少吨? 16、某校原有科技书、文艺书共630本,其中科技书与文艺书的比是1:4。后来又买进一些科技书,这时科技书与文艺书的比是3:7。买进科技书多少本? 17、盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5。已知三种颜色的球共175个,红球有多

常见的百分数应用题的几种类型

常见的百分数应用题的几种类型 1、甲数是乙数的百分之几。 计算方法:甲数÷乙数(“是”字左边的数除以“是”字右边的数) 例题1:4是5的百分之几? 例题2:五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,达标率是多少? 例题3:有一台冰箱,原价2000元,降价400元,降了百分之几? 例题4:有一台电视,原价1200元,降了300元,价格降了百分之几? 例题5:有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几? 2、已知甲数比乙数多百分之几,求甲数。 计算方法:乙数×(1+百分之几)(单位“1”是已知量) 例题1:一个数比4多25%,求这个数。 例题2:一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果? 例题3:小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕 3、已知甲数比乙数多百分之几,求乙数。 计算方法:甲数÷(1+百分之几)(单位“1”是未知量) 例题1:5比一个数多25%,求这个数。例题2:蔬菜基地今年生产了2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨?

例题3:504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20%,参加体育兴趣小组的有多少人? 4、已知甲数比乙数少百分之几,求甲数。 计算方法:乙数×(1-百分之几)(单位“1”是已知量) 例题1:一个数比5少20%,求这个数。 例题2:有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几? 5、已知甲数比乙数少百分之几,求乙数。 计算方法:甲数÷(1-百分之几)(单位“1”是未知量) 例题1:4比一个数少20%,求这个数 例题2:弟弟身高144厘米,比哥哥矮12%,哥哥身高多少厘米? 6、甲数比乙数多百分之几。 计算方法:(甲数-乙数)÷乙数(两数的差除以“比”字右面的数) 例题:5比4多百分之几? 例题2:计划生产500个零件,实际生产600个,超过计划百分之几? 例题3:录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几? 7、甲数比乙数少百分之几。 计算方法:(乙数-甲数)÷乙数(两数的差除以“比”字右面的数) 例题1:4比5多百分之几?

六年级分数应用题----量率对应电子教案

分数乘法应用题(一)--------------量率对应 一、知识回顾 大家在完成下面的习题以后,回顾一下,咱们第一节课中“量”与“率”的含义 ①、 一堆沙中t 54,用去了3 1,用去了( )t ,还剩下( )。 ②、一堆煤有15t ,如果用去43t ,还剩下( )t ,如果用去4 3,还剩下( )t 。 ③、一堆煤共5t ,平均8天烧完,每天烧这些煤的( ),每天烧( )t 。 二、找单位“1”,用波浪线画出,并完成数量关系。 1、鸡的只数是鸭的9 5中,( )是单位“1”,数量关系( )。 2、苹果重量的7 3相当于西瓜的重量,( )是单位“1”,数量关系( )。 3、一件上衣降价10 1,( )是单位“1”,数量关系( )。 4、水结成冰后体积增加了10 1,( )是单位“1”,数量关系( )。冰融化成水以后体积减少了11 1,( )是单位“1”,数量关系( )。 5、5、800千克大米,吃了4 3,( )是单位“1”,数量关系( )。 找单位“1”的方法: 一、部分数和总数 在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。 二、两种数量比较 分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。 三、原数量与现数量 有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。 三、看图列算式 “1” 360米 列式: ( )米 少 92 “1” 100吨 列式: 多 1/4 ( )吨

(完整版)六年级数学分数应用题专项练习

六年级分数应用题专项练习一、判断。 1、4米长的钢管,剪下1 4米后,还剩下3米。() 2、20千克减少1 10后再增加 1 10,结果还是10千克。() 3、松树的棵数比柏树多1 5,柏树的棵数就比松树少 1 5。() 4、一桶油用去它的1 5后,剩下的比用去的多。() 二、解决问题。 1、根据已知条件,把问题和算式用线连起来。 养殖场有鸡3200只,第一只周卖出2 5,第二周卖出 3 8。 第一周卖出多少只?3200×3 8 第二周卖出多少只?3200×2 5 第二周比第一周少卖多少只?3200×2 5-3200× 3 8 两周一共卖出多少只?3200×(1-2 5- 3 8) 还剩多少只?3200×( 2 5+ 3 8) 2、某粮店上一周卖出面粉18吨,卖出的大米比面粉多1 6,粮店上周卖出大米 多少千克? 3、小红看一本书,第一天看了全书的1 5,第二天看了全书的 3 8,这时还剩51 页没看,这本书一共有多少页? 4、一辆汽车从A城去B城,行了总路程的3 8,离中点还有82千米,A城到B 城有多少千米?

5、一条路已修800米,剩下比已修少 4 1,剩下多少米? 6、一个养兔厂养白兔100只,黑兔是白兔的53,灰兔又占黑兔的4 3,灰兔多少只? 7、某工地有640吨水泥,第一次用去总数的83,第二次用去余下的8 3,两次共用去水泥多少吨? 8、学校去年植树120棵,今年植树的棵树比去年的3/4多5棵,今年植树多少棵? 9、学校今年植树120棵,比去年的3/5多5棵,去年植树多少棵? 10、商店运来苹果49吨,比运来橘子的2倍少4 3吨,运来橘子多少吨?

39分数应用题 转分率类型精选

分数应用题 转分率类型精选 1. 一根绳子长24米,第一次剪去85,第二次剪去的是第一次的52 。还剩下多少 米? 2. 3. 修一条8千米的路,第一天修了全长的103,第二天修了第一天的53 。还剩下 多少千米没修? 4. 看一本书240页的故事书,第一天看了51,第二天看的是第一天的85 ,两天 一共看了多少页? 5. 一桶油,第一次用去12千克,第二次用去余下的31 ,还剩12千克。这桶油 多少千克? 6. 一条绳子第一次用去13 米,第二次用去余下的1 3 ,还剩6米,这条绳子原来 长( )米。 7. 粮店有一批大米,第一周售出了36%,第二周售出余下的25%,第三周售出第二周售出后下的40%,还剩180千克.粮店原有大米多少千克? 8. 化肥厂计划生产一批化肥,第一天生产了全部任务的1 6 ,第二天又生产了余 下任务的14 ,第三天又生产了前两天生产后余下的1 5 ,结果还剩下50吨没 有完成。问化肥厂计划生产化肥多少吨? 9. 修一条8千米的路,第一天修了21千米,第二天修了余下的53 。第二天修了 多少千米?还剩下多少千米没修?

10. 一条公路,3天修了整个公路的15 ,剩50千米,10天修了剩下的1 2 还剩 多少? 11. 化肥站新到化肥450吨,第一天卖出总数的5 2 ,第二天卖出的是第一天的9 8,第二天卖出化肥多少吨? 12. 120米, 这条公路全长多少米? 13. 一本书200页,刘叔叔第一天看了它的41,第二天看了剩下的32 ,第三天应 从哪一页看起? 14. 小明看一本180页的故事书,第一天看了51,第二天看了余下的83 ,第三天 他应该从哪一页开始看起? 15. 有300个桃子,大猴子拿走31,小猴子拿走余下的41 。小猴子拿走了多少 个桃? 16. 化肥站新到化肥450吨,第一天卖出总数的52 ,第二天卖出的相当于第一 天的98,第二天卖出多少吨? 17. 水果店运来82筐水果,第一天卖出26筐,第二天卖出剩下的85,第三天全 部卖完,第三天卖出多少筐? 18. 修一条800米的路,第一天修了全长的103,第二天修了第一天的52 。第 二天修了多少米?还剩下多少米没修? 19. 张明看一本240页的书,第一天看全书的1/6,第二天看余下的3/8,还剩多少页没看? 20. 一本书共80页,小红第一次看了它的41,第二次看了余下的32 ,还剩多少页

求比“1”少(多)几分之几是多少的分数应用题教学设计

《求比“1”少(多) 几分之几是多少的分数应用题》教学设计陕西省商洛市商州区沙河子镇高砭小学----张延成 一、教学内容 人教版小学数学六年级上册《求比“1”少(多)几分之几是多少的分数应用题》。 二、教学目标 1、学生理解并掌握求比“1”少(多)几分之几是多少的分数应用题(部分数与总数比较)的基本数量关系,能运用“画图”策略正确解决。 2、构建相对扎实的数学模型,发展学生分析、比较的抽象思维能力。 3、使学生感受“数形结合”以及“对应”的思想方法,积累数学活动的经验。 三、教学重点 理解数量关系。 四、教学难点 根据多几分之几或少几分之几找出所求量的对应分率。 五、教具准备 多媒体课件 六、教学过程 (一)、创设情境、提出问题,突出问题意识。 出示两条数学信息: 1 1、某电脑商城笔记本电脑原价4000元,现在降低了 4 1 2、某电脑商城笔记本电脑原价2500元,现在提高了 5 提问:看到这些信息,你最想知道的会是什么呢? 根据学生提出的问题,将信息和问题完整地叙述出来。

例1、某电脑商城笔记本电脑原价4000元,现在降低了4 1 ,现在的价格是多少元? 例2、某电脑商城笔记本电脑原价2500元,现在提高了5 1 ,现在的价格是 多少元? [这一教学环节,提供了学生感兴趣的现实生活境情,并根据情境中的信息提出问题,培养了学生的问题意识;让学生能从数学的角度去尝试解决生活中的实际问题,加强了学生用数学的意识。] (二)、尝试解决、建立模型,加强策略和合作意识。 出示例1: 某电脑商城笔记本电脑原价4000元,现在降低了 4 1 ,现在的价格是多少元? 1、读题找出条件和问题,尝试画线段图,再列式解答 [画线段图是解决问题的重要策略,为了培养学生问题解决的策略意识,因此,我让学生画线段图辅助理解题意,从而把握数量关系。] 2、学生汇报结果(利用实物投影仪展示学生的解题方法) 方法一: 先让学生说自己的解题思路。 提问:①谁是单位“1”?

六年级数学应用题大全(含答案)

六年级数学应用题大全(含答案) 六年级数学应用题1 一、分数的应用题 1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶? 2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米? 3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米? 4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个? 5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋? 6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇? 7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米? 六年级数学应用题2 二、比的应用题 1、一个长方形的周长是24厘米,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米? 2、一个长方体棱长总和为 96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少? 3、一个长方体棱长总和为 96 厘米,高为4厘米,长与宽的比是 3 ∶2 ,这个长方体的体积是多少? 4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4 ∶3,男生有多少人? 5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克? 6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?

六年级上分数百分数应用题分类总结

六年级分数、百分数应用题分类总结 第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘) 1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱? 2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米? 3、水果店运来苹果20筐,运来的橘子的筐数是苹果的12%,运来橘子多少筐? 4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米? 5、水果店进苹果36箱,进的梨的箱数是苹果的12%(5/8)。(1)进的梨的箱数是多少? (2)进的梨的箱数比苹果少多少箱? (3)进的梨和苹果共有多少箱? 6、小红体重42千克,小方体重38千克,小明的体重相当于小红和小方体重总和的50%,小明体重多少千克? 7、从邮电局汇款需要交1%的汇费,寄2000元需要交多少汇费? 8、王格尔塘镇中小学和洒索玛小学的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,洒索玛小学有学生750人,哪个学校的男生多?多多少人?

9、小强在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了多少元? 10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡? 11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少? 12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是多少? 13、王格尔塘镇中心小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人? 14、王格尔塘镇中心小学开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸? 15、海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。海豹的寿命大约是多少年? 第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数) 1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几? 2、某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几?

《求一个数比另一个数多(或少)几分之几的分数应用题》的教学案例

《求一个数比另一个数多(或少)几分之几的分数应用题》教学案例 教学目标: 1.通过学习,学生能够掌握解答“求一个数比另一个数多(少)几分之几的应用题”的方法,并正确解答这样的实际问题。 2.学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。 教学重难点: 理解并掌握求一个数比另一个数多(少)几分之几的应用题的数量关系,并能正确解答实际问题。 教学准备:多媒体课件 教学过程: 一、创设情境,设疑导入: 师:同学们,今天有许多老师来了解我们班的教学情况,希望大家能像平时一样,踊跃的发言,积极的思考,把你最闪亮的一面展现给在座的老师们,有没有信心? 师:同学们,今天来听课的教师有20人,我们班的男同学有25人,根据这两个条件,你能提出用分数解决的问题吗? 学生可能提出以下问题, ①.听课教师人数是我们班男同学的几分之几? ②.我们班男同学的人数是听课教师的几分之几? ③.我们班的男同学比听课教师多几分之几? ④.听课教师比我们班的男同学少几分之几? …

1、请学生口头列式解答①.②题并说一说怎样想的。 提问:解答这类题目的关键是什么?结果是什么数? 2、质疑:“我们班的男同学比听课教师多几分之几?同学们还会解答吗? 揭示并板书课题:求一个数比另一个数多(或少)几分之几的应用题 【设计意图】:这里教师从实际出发,根据老师听课的情形,创设了问题情境。启发学生根据“听课教师有20人”和“班级男同学有25人”两个条件,提出一系列问题。既有旧知识,又有新知识。在解决就知识的过程中,既复习了旧知,又引出了新知。从而顺利地导入新课,自然而然地开始了新课的学习。激发了学生参与的热情,和急切想解决问题的求知欲望。 二、师生互动,探究新知 1、出示例1 花园里有菊花40盆,兰花50盆, 兰花比菊花多几分之几? (1)读题,找出已知条件和要求问题。 (2)根据题意画出线段图。 (3)根据线段图理解题中的数量关系: “兰花比菊花多几分之几”就是指谁占谁的几分之几?(兰花比菊花多的盆数是菊花盆数的几分之几)把谁看做单位“1”?“兰花比菊花多多少盆”题目有没有直接告诉?怎么办? (4)学生尝试列式计算,个别板演,教师点评: 方法1: (50–40)÷40=1/4 方法2: 50 ÷40–1 =1/4

最新六年级分数的应用题及详细答案

六年级分数的应用题 1、一缸水;用去1/2和5桶;还剩30%;这缸水有多少桶? 2、一根钢管长10米;第一次截去它的7/10;第二次又截去余下的1/3;还剩多少米? 3、修筑一条公路;完成了全长的2/3后,离中点16.5千米;这条公路全长多少千米? 4、师徒两人合做一批零件;徒弟做了总数的2/7;比师傅少做21个;这批零件有多少个? 5、仓库里有一批化肥;第一次取出总数的2/5;第二次取出总数的1/3少12袋;这时仓库里还剩24袋;两次共取出多少袋? 6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7;两车经过多少小时相遇? 7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元? 8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只? 9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米? 分数应用题的答案: 1、分析:用去1/2和5桶;还剩30%;可以理解为;5桶所占的分率为1-1/2-30% (从 单位1中去掉1/2和30%);当然;也可以画线段图来理解。所以列式为:5÷(1-1/2-30%) 2、分析:第一次截去它的7/10;第二次又截去余下的1/3(题中的7/10的单位1为“它” 也就是一根钢管10米;1/3的单位1是第一次截去后余下的钢管的长度;两个分数的单位1不相同;所以要统一单位1;即都转化为这根钢管的几分之几);显然;“第一次截去它的7/10”不用再转化了;重点是“第二次又截去余下的1/3”转化为第二次截去了这根钢管的几分之几;解决了这个问题;就迎刃而解了。 第二次截去了余下(就是1-7/10)的1/3;就是第二次截去了1×(1-7/10)×1/3; 就是第二次截去了这根钢管的(1-7/10)×1/3=1/10 所以10对应的分率为 单位1减去第一次截去了单位1的几分之几再减去第二次借去了单位的几分之几 列式为:(1-7/10)×1/3=1/10 10÷(1-7/10-1/10) =省略自己计算 3、修筑一条公路;完成了全长的2/3后,离中点16.5千米;这条公路全长多少千米? 分析:由题中的“完成了全长的2/3后,离中点16.5千米”条件可知道;2/3已经超过了

六年级奥数分数应用题经典例题加练习带答案

一.知识的回顾 1.工厂原有职工128人,男工人数占总数的1 4 ,后来又调入男职工若干人,调入后男工人数占总人数的 2 5 ,这时工厂共有职工 人. 【解析】 在调入的前后,女职工人数保持不变.在调入前,女职工人数为1 128(1)964 ?-=人, 调入后女职工占总人数的23155-=,所以现在工厂共有职工3 961605 ÷=人. 2.有甲、乙两桶油,甲桶油的质量是乙桶的5 2 倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的 4 3 倍,乙桶中原有油 千克. 【解析】 原来甲桶油的质量是两桶油总质量的55 527 =+,甲桶中倒出5千克后剩下的油的 质量是两桶油总质量的44 437 =+,由于总质量不变,所以两桶油的总质量为 545()3577÷-=千克,乙桶中原有油2 35107 ?=千克. 【例 2】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比 元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变? 【解析】 (1)设二月份产量是1,所以元月份产量为: ()10 11+10%= 11 ÷,三月份产量为:110%=0.9-,因为 10 11 >0.9,所以三月份比元月份减产了 (2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775?-,现价和原价比较为:0.9775<1,所以价格比较后是价 降低了。

【巩固】 把100个人分成四队,一队人数是二队人数的1 13倍,一队人数是三队人数的11 4 倍,那么四队有多少个人? 【解析】 方法一:设一队的人数是“1”,那么二队人数是:13 113 4 ÷= ,三队的人数是:141145÷=,345114520++= ,因此,一、二、三队之和是:一队人数51 20 ?,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51?(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人). 方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=人(人). 【例 3】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的 25,美术班人数相当于另外两个班人数的3 7,体育班有58人,音乐班和美术班各有多少人? 【解析】 条件可以化为:音乐班的人数是所有班人数的22 527 =+,美术班的学生人数是所 有班人数的33 7310 =+,所以体育班的人数是所有班人数的2329171070--=,所以所 有班的人数为295814070 ÷=人,其中音乐班有2 140407?=人,美术班有 3 1404210 ?=人.

分数应用题的分类

分数应用题的分类 根据分数应用题的特点,可以把分数应用题分成三大类: 一、求一个数是另一个数的几分之几(或百分之几、), 1 :求一个数是另一个数的几分之几? 例:六年级<1>有男生30人,女生24人,女生是男生的几分之几? 方法是:一个数十另一个数 算式:30 - 24 = 这里“是”是关键词,也就是“是”字后面的是单位“ 1” 2:求一个数比另一个数多几分之几(或百分之几、几倍)。 例:甲数是5,乙数是4,甲数比已数多几分之几》? 方法是:(甲数-乙数)十乙数这里的关键词是“比”,比字后边的是单位“ 1”。 算式:(5-4 )* 4 = 3:求一个数比另一个数少几分之几(或百分之几、几倍) 例:甲数是5,已数是4,已数比甲数少几分之几》? 方法是:(甲数-乙数)十甲数= 这里的关键词是“比”,比字后边的是甲数,所以甲数是单位“ 1”。算式:(5- 4 )- 5 = 此类题型特点:分率未知,求分率,用除法计算。 二:求一个数的几分之几(或百分之几、)是多少。 1、求一个数的几分之几(或百分之几、)是多少。 例、小明看一本60页的故事书,第一天看了这本书的 -,第一天看的多少页? 3 (这里“这本书”是单位“ 1”,是谁的2谁就是单位“ 1” .) 3 特点:单位“ 1”的量已知,用乘法计 算。解题方法:单位“ 1”的量x所求数量的对应分率=所求数量 2 算式:60 X =40 (页) 3 2、求比一个数多几分之几的数是多少。 1 某校六年级有男生120人,女生比男生多-,女生有多少人? 5 特点:单位“ 1”的量已知,用乘法计算。“多”是加法 方法是:单位“1”的量X (1+几分之几)=(1+几分之几)对应量 1 算式:120 X (1 + 丄)= 5 3、求比一个数少几分之几的数是多少。 1

已知一个数的几分之几是多少求这个数的应用题

已知一个数的几分之几是多少求这个数的应用题 教学目标: 1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能 熟练地列方程解答这类应用题。 2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应 用题的能力。 教学重点: 弄清单位“1”的量,会分析题中的数量关系。 教学:难点: 分数除法应用题的特点及解题思路和解题方法。 教学过程: 一、复习 1、出示复习题:

根据测定,成人体内的水分约占体重的, 而儿童体内的水分约占体重的,六年级学生小明的体重为35千克,他体内的水分有多少千克? 2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。 3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

小明的体重×=体内水分的重量 4、指名口头列式计算。 二、新授 1、教学例1的第一个问题:小明的体重是多少千克? (1)读题、理解题意,并画出线段图来表示题意:

(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 小明的体重×=体内水分的重量(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的; 不同点是已知条件和问题变了) (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)

(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重× =体内水分的重量,反过来,体内水分的重量÷=小明的体重)

2、解决第二个问题:小明的体重是爸爸的, 爸爸的体重是多少千克? (1)启发学生找到分率句,确定单位“1”。 (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。 (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图) 爸爸: 小明:

六年级分数应用题专项练习题

六年级分数应用题专项练习题 1、某校参加数学竞赛的男生人数比女生人数的 4 倍少8 人,比女生人数的 3 倍多24人,这个学校参加数学竞赛的男生有多少人?女生有多少人? 2、修一条长200 米的水渠,已经修了80米,再修多少米刚好修了这条水渠的3/5 ? 3、一本书600页,第一天看了它的1/4 ,第二天看了它的2/5 ,两天一共看了多少页? 4、爱达花园小学向希望工程捐款,六(1)班捐的占六年级的 1/3 ,六年级捐的占全校捐款的1/4 ,全校共捐款2400元,六(1)班捐了多少元?(用两种方法解答) 5、甲乙两地相距60 千米,汽车从甲地开往乙地,当汽车超过全程中 点10 千米时,还剩下全程的几分之几? 6、学校去年植树120棵,今年植树的棵树比去年的3/4 多5棵,

今年植树多少棵? 7、学校今年植树120棵,比去年的3/5 多5棵,去年植树多少棵? 8、一筐苹果,第一次卖出它的一半,第二次卖出的是第一次的 4/5 ,还剩下这筐苹果的几分之几没有卖? 9、一个乒乓球从25 米的高空下落,每次弹起的高度是下落高度的2/5 ,它第四次下落后又能弹起多少米? 10、一批加工服装的任务按4:5 分配给甲、乙两个车间,实际甲车间生产了450 套,超过分配任务的1/4 。这批服装共有多少套? 11、某年七月份雨天是晴天的2/3 ,阴天是晴天的2/5 ,这个月晴天有几天? 12、商场有白、蓝、花布一共1380米,白、花布米数的比是5 :

6, 花布的米数是蓝布的3/2 倍,三种布各有多少米? 13、三组同学采集树种,甲组、乙组、丙组的工作效率的比是5: 3: 4。甲组采集了15 千克,乙组比丙组少采集多少千克? 14、甲数是乙数的3/5 ,丙数是甲数的2/3 ,丙数是乙数的几分之几? 15、每台拖拉机每小时耕地5/7 公顷,8台拖拉机45 分钟耕多少 公顷? 16、一根绳子,第一次剪去它的1/2 ,第二次剪去剩下的1/3 ,第 三次剪去又剩下的1/4 ,剩下的绳子是原来的几分之几? 17、含盐量为1/10 的盐水300 克,要把它变成含盐量为1/4 的盐水,需要加盐多少克? 18. 一项工程,甲单独做10天完成,乙单独做8 天完成,甲每天 比乙少做()%

分数应用题三种基本类型

分数应用题三种基本类型 分数应用题存在三种基本量:对应分率、对应量、单位“1” 看见分率几几 ,要想到它的单位“1”和对应量是什么。也就是要弄清楚谁是谁的几几 ,从而得到数量关系式为: 单位“1”×对应分率=对应量 如:一桶油用去了25 。25 表示把一桶油平均分成5份,用去的占这样的2份。即用去的是(占)一桶油的25 。 25 是用去的对应分率, 它的对应量是用去的数量,单位“1”是一桶油,其关系式为: 一桶油×25 =用去的 一. 求分率 1.求一个数是另一个数的几分之几,就是用一个数÷另一个数。 2.求一个数比另一个数多几分之几或少几分之几 ,就是求多的或少 的是单位“1”的几分之几,用多的或少的÷单位“1”。分两步:先 求出多的或少,再用多的或少的÷单位“1”(比后面的量) 二.求对应量 1.求一个数的几分之几是多少,就是求对应量,用“一个数×几几 ”,即单位“1” ×几几 =对应量。 2.求比一个数多几分之几或少几分之几的数是多少,用“一个数×

(1+几几 )。 如:A 比B 多或少几几 ,把比多或少几几 转化为是几几 , 即A 是B 的(1+几几 )。A=B ×(1+几几 ) 三.求单位“1” 1.已知一个数的几分之几是多少,求这个数。 用“是多少÷几几 ”,即对应量÷对应分率=单位“1” 2.已知比一个数多几几 或少几几 的数是多少,求这个数。 用“是多少÷(1+几几 )” 如:A 比B 多或少几几 ,把比多或少几几 转化为是几几 ,即A 是B 的(1+几几 )。已知A 求B ,B=A ÷(1+几几 )。 练:五年级有男生25人,女生20人 1、 男生是女生的几分之几?2、女生是男生的几分之几? 3、男生比女生多几分之几?4、女生比男生少几分之几? 五年级有男生25人,根据下面的条件求女生有多少人? 1. 女生是男生的45 。3、男生是女生的54 2. 女生比男生少15 。4、男生比女生多14

六年级分数应用题含答案

六年级分数应用题(含答案见附页) (说明:本专题试卷共三份,逐渐增加难度,教师可针对学生基础选题) A 卷 1.有甲、乙、丙三组工人,甲组4人的工作,乙组需要5人完成;乙组4人的工作,丙组需7人完成。一项工程,需甲组13人,乙组12人合作3天完成。如果让丙组10人去做,那么 天可以完成。 2.园林工人在街心公园栽种牡丹、芍药、串红、月季四种花。牡丹株数占其他三种花总数的 13 2;芍药株数占其他三种花总数的4 1 ;串红株数占其他三种花总 数的11 4。已知栽种月季60株,园林工人栽种牡丹、芍药共 株。 3.有西红柿、黄瓜、土豆各一筐,西红柿的7 5 和黄瓜的3 1 共重32千克;西红 柿的4 3和土豆的5 2共重31千克;黄瓜的9 7和土豆的5 4 共重48千克,三种蔬菜共重- 克。 4.甲、乙两只盒子里都有黑白两种颜色的棋子,已知甲盒子的94 是黑棋子, 乙盒子里有8 5是白棋子,并且甲盒子的棋子总数是乙盒子棋子总数的 16 9,那么两 只盒子里的白棋子的总数是棋子总数的 5.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的71 ,第二天它吃了剩下 的6 1,第三天它吃了剩下的5 1,第四天它吃了剩下的4 1,第五天它吃了剩下的3 1 , 第六天它吃了剩下的2 1 ,这时还剩下12个桃子,则第一天、第二天猴子共吃 桃 子。 6.一种彩色电视机,原来每台4200元,现在每台降价 10 1,现在每台 元。

7.一辆车,从甲地开往乙地,已行了75千米,这时还有全程的8 5没有行。甲、 乙两地相距 千米。 8.六(3)班有男生24人,女生25人,其中有46人达到了《国家体育锻炼标准》,则六(3)班的体育达标率为 (百分号前保留一位小数)。 9.水果店运来香蕉36筐,是苹果筐数的4 3,橘子的筐数是苹果的3 2,运来橘 子 筐。 10.花房里有三种花,月季花的盆数占总数的12.5%,菊花比月季花多48盆,其余12盆是君子兰。花房里有 盆花。 B 卷 1.某水果站有一批苹果,第一天批发出9 2 ,第二天批发出剩下的7 3 ,第三天运 进一批苹果,数量是第二天批发后剩下的一半,这时水果店存有苹果298千克,则水果站原有苹果 千克。 2.有150个桃子,幼儿园大班分到的3 1 与小班分到的2 1 相等。假设这150个桃 子全部分到了大、小两个班,那么这两个班各分到 个桃子。 3.五年级和六年级共有310人参加数学竞赛,已知六年级人数的83 等于五年 级人数的5 2 ,五年级参加数学竞赛的学生有 人。 4.学校植树,第一天完成计划的8 3,第二天完成了余下计划的3 2 ,第三天植树 55棵,结果超过计划的4 1 ,原计划植树 棵。 5.甲、乙两个仓库,乙仓库原有存货1200吨,当甲仓库的货物运走15 7,乙仓 库的货物运走31 以后,再从甲仓库取出剩下货物的 10 1存入乙仓库,这时,甲乙仓

(完整版)常见的百分数应用题有以下几种类型

常见的百分数应用题有以下几种类型: 昆阳七小:李蕊玲 1、甲数是乙数的百分之几。 计算方法:甲数÷乙数(“是”字左边的数除以“是”字右边的数) 例题1:4是5的百分之几?列式:4÷5=80% 例题2:五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,达标率是多少?列式:120÷160=0.75=75% 例题3:有一台冰箱,原价2000元,降价后卖400元,降了百分之几? 列式:400÷2000=0.2=20% 例题4:有一台电视,原价1200元,降了300元,价格降了百分之几? 例题5:有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、 2、已知甲数比乙数多百分之几,求甲数。计算方法:乙数×(1+百分之几)(单位“1”是已知量) 例题1:一个数比4多25%,求这个数。列式:4×(1+25%)=5 例题2:一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果? 例题3:小明家六月份用电180千瓦时,七月份比六月份多用了20%,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕 3、已知甲数比乙数多百分之几,求乙数。计算方法:甲数÷(1+百分之几)(单位“1”是未知量) 例题1:5比一个数多25%,求这个数。列式:5÷(1+25%)=4 例题2:蔬菜基地今年生产了2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨? 例题3:504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20%,参加体育兴趣小组的有多少人?

4、已知甲数比乙数少百分之几,求甲数。计算方法:乙数×(1-百分之几)(单位“1”是已知量) 例题1:一个数比5少20%,求这个数。列式:5×(1-20%)=4 例题2:有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几? 5、已知甲数比乙数少百分之几,求乙数。计算方法:甲数÷(1-百分之几)(单位“1”是未知量) 例题1:4比一个数少20%,求这个数。列式:4÷(1-20%)=5 例题2:弟弟身高144厘米,比哥哥矮12%,哥哥身高多少厘米? 6、甲数比乙数多百分之几。计算方法:(甲数-乙数)÷乙数(两数的差除以“比”字右面的数) 例题:5比4多百分之几?列式:(5-4)÷4=25% 例题2:计划生产500个零件,实际生产600个,超过计划百分之几? 列式: 例题3:录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几? 7、甲数比乙数少百分之几。计算方法:(乙数-甲数)÷乙数(两数的差除以“比”字右面的数) 例题1:4比5多百分之几?列式:(5-4)÷5=20% 例题2:化纤厂由于加强企业管理,每班的工人由800名减少到650名。现在每班工人数比原来减少了百分之几? 例题3:一个工厂扩建计划投资500万元,实际节约了45万元,节约投资百分之几? 例题4:一种电视机现在每台成本550元,比原来降低了100元,成本降低了百分之几? 8、打折计算方法:现价÷原价 例题:有一种商品原价100元,现价80元,这种商品是打几折出售?

六年级分数应用题易错题

六年级分数应用题易错题 8 2、一群兔子;白兔是黑兔的9 ;那么黑兔是兔子总数的( ) 1 3、小明比小号的体重重10 ;则小号比小明的体重轻( ) 或低)( ) 1 7、与它倒数的和的5是( ) 。 二、 判断题 2 2 1、 甲数十5二乙数十7;那么甲数一定大于乙数。( ) 2、 如果 a : b = 2 : 7,那么 a = 2;b = 7。( ) 1 2 3、 1米的铁丝;剪下3 ;还剩3米。() 4、 a 除以真分数所得的商一定大于 a 。() 1 1 1 8、 10米增加8米后再增加8 米;相当于比原来增加了 4米。 三、 选择题。 1、把5米长的铁丝截成25小段;每段占总长的( ) 。 、填空 题。 1、9克比 8克多( );比10克少( ) 5、甲是乙的19;则甲比乙 少( );则乙比甲多( 则乙是甲乙总数的( );则甲是甲乙总数的( ) 1 6 18米比() 少1 2 1 () 比18米多3。 3 );则乙是甲的 ( 4、田园水果店将苹果的价格先提高 10;再按新价降低10;最后的价格比原价( )(填咼

5、男生比女生多4 ;则女生比男生少4 0() 6假分数的倒数都比原数小。() 1 1 1 7、10米增加8后再增加8;相当于比原来增加了4 o (

1 1 1 1 A . 3200* (1 * 5) B . 3200 X (1 + 5) C . 3200* (1 — 5) D . 3200 X (1 — 5) 2 4、A 、B 、C 三人分杏子;B 得A 、C 总数的3 ;那么B 占总数的() 2 3 2 3 B . 5 C . 5 D .无法确定 1 5、已知a X 7 =b:8;且a 、b 是不为0的自然数;则( A . a >b B. a v b C . a = b D .无法比较 四、计算;能简便要简便 11 1、有一桶油;第一次取出总数的5 ;第二次取出总数的50 ; 克? ⑴两次共取出42千克; __________________________ 12 ⑵第二次比第一次多取出 5千克; _________________________________ ⑶还剩58千克; ________________________________ 5 2、李阿姨录入一份稿件;录入了 7后还剩700字;这份稿件共有多少字? i A . 25 i 24 1 26 D .无法确定 5 =c * 4 (a 、b 、c 均不为 0);那么 a 、 b 、 2、a * 1 = b * A . a >b > c B . b >a >c C . c >a >b c 从大到小的顺序排列是() 3、 清华同方某款电脑;现价3200元;现价比原价降低了 1 5;原价多少元?列式为() 5 8 ① 13X 9+ 13X 9 邑 ? 丄 ④ 19 — 19 X 20 五、解决问题 ②21 X 丄+么X 21 5 31 5 31 1 1 @( 6 X 8)X 6X 8 39 39 40 * 3 这桶油原来重多少千

六年级分数的应用题及详细答案

六年级分数的应用题 1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶? 2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米? 3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米? 4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个? 5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋? 6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇? 7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元? 8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只? 9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米? 分数应用题的答案: 1、分析:用去1/2和5桶,还剩30%,可以理解为,5桶所占的分率为1-1/2-30% (从 单位1中去掉1/2和30%),当然,也可以画线段图来理解。所以列式为:5÷(1-1/2-30%) 2、分析:第一次截去它的7/10,第二次又截去余下的1/3(题中的7/10的单位1为“它” 也就是一根钢管10米,1/3的单位1是第一次截去后余下的钢管的长度,两个分数的单位1不相同,所以要统一单位1,即都转化为这根钢管的几分之几),显然,“第一次截去它的7/10”不用再转化了,重点是“第二次又截去余下的1/3”转化为第二次截去了这根钢管的几分之几,解决了这个问题,就迎刃而解了。 第二次截去了余下(就是1-7/10)的1/3,就是第二次截去了1×(1-7/10)×1/3,就是第二次截去了这根钢管的(1-7/10)×1/3=1/10 所以10对应的分率为 单位1减去第一次截去了单位1的几分之几再减去第二次借去了单位的几分之几 列式为:(1-7/10)×1/3=1/10 10÷(1-7/10-1/10) =省略自己计算 3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米? 分析:由题中的“完成了全长的2/3后,离中点16.5千米”条件可知道,2/3已经超过了中点1/2,画线段图可以理解,16.5千米对应的分率为2/3-1/2 所以列式为16.5÷(2/3-1/2)

相关文档
最新文档