以色列CQM产品-换热器自动清洗装置

介绍

制冷系统中节能减排的解决方案

由于制冷所需导致的花费是多少?

在空调系统的投资

空调系统(水冷式)的投资,

运营和维护成本

Electricidad

Agua Manten.

Inversi Inversió

ón Inicial

客户满意的价值(提供良好的A / C效果)

第一个问题:(水冷式制冷机)

冷凝器和蒸发器管路结垢是由于水中的污垢,碳酸盐,盐类,金属和水所携带微生物所造成的

管壁结垢降低了表面热交换效率并且影响了

管道的热交换系数

冷凝器管道内1毫米的累积结垢将会

增加30%的能源消耗

Typical A/C System

% change in energy consumption (Kwh)

per cubic ton at 4per cubic ton at 4°

°C Fuente: Philip Kotz, Air Conditioning Heating,

Piping and Air Conditioning Journal

+ 30%

100%

110%

120%

130%

140%

0.3

0.6

0.9

1.2

Grosor del deposito - mm

thickness of fouling (mm)

冷凝器管道内结垢的成本

消耗能源:

+15% a +30% (结垢厚度从 0.5 - 1.0 mm)

维护费用:

US$2000

US$2000 –– US$5000 /年(根据化学处理以及设备的情况)

投资:

+25%

(增加冷凝器所需表面30%,以弥补由于

结垢造成的损失)较低生产力

由于维护以及修理

600 TR A/C System

方案:

ATCS

水冷式A/C冷凝器全自动管道清洁系统化学品& 石化厂&电厂

CQM核心技术产品一:

(壳管式换热器管道自动清洁系统— ATCS)

?ATCS是维持壳管式热交换器持续清洁并满负荷工作的最高效自动在线解决方案

?唯有CQM的ATCS在使用过程中不产生水阻能耗问题!不会将机组出来的热水重新住回换热器内。

?连续单次的清洗方式使换热器内每根管路均可100%的彻底清洗,无需再次人为除垢,可彻底替代人工化学法清洗

?100%球体捕捉装置,杜绝球体丢失及隐形危险存在的可能,且无需频繁补充新球体

?卓越的全自动在线清洗,无需停机,无需使用化学清洗剂和软化剂,更环保,更有效

?清洁的同时,大大节约能耗(平均20-30%),并真正可靠地延长机组使用寿命。

ATCS 在冷凝器上的应用

球体捕捉器规格

ATCS :全自动在线清洗换热器的每根管路

Demo 演示

ATCS

水冷式A/C冷凝器全自动在线管道清洁系统

清洗周期示意图步骤

ATCS 自动在线管道清洁系统ATCS

应用在化工&石化厂的冷却系统上

卡梅尔烯烃有限公司

DSBG 死海工程

Gadiv 石化实业有限公司

Paz 阿什杜德炼油厂

Makhteshim Agan 集团

糖厂

ATCS 在电厂

针对凝汽器所使用的自动在线管道清洁系统

意大利都灵电厂

Energetika T?inec,

a.s 电厂

海发电站

柏森电站

对比人工定期化学清洗,ATCS 提供了最佳的节能

energy savings with

ATCS

periodic cleaning each 6 months

ATCS ATCS –

– Continuous Automatic Cleaning periodic cleaning

ATCS 使用最高效和生态的技术使冷凝器管道持久除垢保持清洁

?在线操作

?持续清洁

?小球物理技术?自动运行

?高效无负面影响100% 生产力100% 效率

零化学药剂

零人工维护

安全、低维护成本

管壳式换热器停工检修要求

管壳式换热器停工检修要求 兰州石化公司 一、总则 1 主题内容与适用范围 1.1 本要求规定了换热设备的检修内容、检修与质量标准、试验与验收。 1.2 本要求适用于操作压力在35MPa以下的石油化工钢制固定管板式、浮头式U形管式、螺纹锁紧环式等管壳式换热器及釜式重沸器。若有特殊要求的换热器应遵循其特殊的维护检修规程。 1.3 受压元件的检修遵照SHS 01004-2004《压力容器维护检修规程》。 2 编写修订依据 GB 151钢制管壳式换热器 国务院令(373)号《特种设备安全监察条例》 质技监局颁布TSG R0004-2009《固定式压力容器安全技术监察规程》 质技监局颁布TSG D0001-2009 《压力管道安全技术监察规程--工业管道》 HGJ 229-91 工业设备、管道防腐蚀工程施工及验收规范 二、检修内容 1 检修内容 1.1 抽芯、清扫管束和壳体。 1.2 进行管束焊口、胀口处理及单管更换。 1.3 检查修理管箱及内附件、浮头盖、钩圈、外头盖、接管等及其密封面,更换垫片并试压。

1.4 更换部分螺栓、螺母。 1.5 壳体保温修补及防腐。 1.6更换管束或壳体。 三、检修与质量标准 1 检修前准备 1.1 掌握运行情况,备齐必要的图纸资料。 1.2 准备好必要的检修工具及试验胎具、卡具等。 1.3 内部介质置换清扫干净,符合安全检修条件。 2 检查内容 2.1 宏观检查壳体、管束及构件腐蚀、裂纹、变形等。必要时管板采用表面检测,固定管板换热器管子采用涡流检测抽查或抽管检查。 2.2 检查防腐层有无老化、脱落。 2.3 检查衬里腐蚀、鼓包、褶折和裂纹。 2.4 检查密封面、密封垫。 2.5 检查紧固件的损伤情况。对高压螺栓、螺母应逐个清洗检查,8.8级及以上的螺栓应进行无损探伤抽检。 2.6 检查基础有无下沉、倾斜、破损、裂纹,及其他地脚螺栓、垫铁等有无松动、损坏。2.7 腐蚀检查 由专业单位对冷换设备进行腐蚀检查,主要检查管板、管箱、换热管、折流板、壳体、防冲扳、小浮头螺栓、接管及联接法兰等。 检查重点: (a)易发生冲蚀、汽蚀的管程热流入口的管端、易发生缝隙腐蚀的壳程管板和易发生冲蚀的壳程入口和出口; (b)容易产生坑蚀和缝隙腐蚀、应力腐蚀的靠近入口侧管板的换热管管段; (c)介质流向改变部位,如换热设备的入口处、防冲挡板、折流板处的壳体及套管换热器的U型弯头等; (d)对壳体应检查应力集中处是否产生裂纹; (e)换热管壁厚抽查;浮头式、U形管式、螺纹锁紧环式按照管子数量5%,每根管子3-5个点抽查,固定管板式根据设备腐蚀情况可考虑按照管子数量1%且每程不少于一根进行抽管检查。 (f)外观检查空冷管束翅片结垢和变形脱落情况,构架、风筒的腐蚀情况,叶片的裂纹;(g)空冷器管束的管外测厚抽查(可拆去部分翅片),管内可采用内窥镜检查、内管涡流探伤或管内喷水型探头超声波探伤; (h)空冷器重点检查正对集合管入口附近的换热管管端的冲刷腐蚀和集合管尾端的几排换热管的垢下腐蚀。 (i)高压临氢、有硫化氢或氯离子应力腐蚀的管板应做表面无损检测。 3 检修与质量标准 3.1 在换热器管束抽芯、装芯、运输和吊装作业中,不得用裸露的钢丝绳直接捆绑。移动和起吊管束时,应将管束放置在专用的支承结构上,以避免损伤换热管。 3.2 管束内、外表面结垢应清理干净。 3.3 管箱、浮头有隔板时,其垫片应整体加工,不得有影响密封的缺陷。 3.4 管束堵漏,在同一管程内,堵管数一般不超过其总数的10%。在工艺指标允许范围内,可以适当增加堵管数。 3.5 所用零部件应符合有关技术要求,具有材质合格证。

换热器化学清洗方案

精心整理 换热器 化学清洗方案 *************公司 *****年*月**日 换热器化学清洗处理方案 1、编制依据 本方案根据换热器进行化学清洗、预膜处理的相关技术数据和技术要求编制成,同时还参照了下列技术文件: (1)DL/T957-2005《火电厂凝汽器化学清洗、预膜导则》 (2)SD135-86《锅炉化学清洗导则》 (3)HG/T2387-92《工业设备化学清洗质量标准》 (4)《内蒙古华能集团兴安热电换热器、凝汽器化学清洗处理方案》 2、结垢原因及危害 (1)、正常的结垢原因及危害 换热器循环冷却水中含有大量的盐类物质、腐蚀产物和各种微生物,由于未对其进行水处理,换热器运行一段时间后水侧会结有大量的钙镁碳酸盐垢及藻类、微生物淤泥、粘泥等,这些污垢牢固附着于铜管内表面,导致传热恶化、循环压力上升、机组真空度降低,影响机组的运行效率,造成较大的经济损失。 (2)、清洗后换热效率降低的原因及危害 一般来讲,按照正常的清洗工艺和选择合适的清洗药剂清洗后的换热器系统,换热效果在1-2年内是不会出现换热效率下降的,但是如果不按照正常的工艺来清洗,还有就是如果选择的药剂不正确,就会导致整个系统清洗不干净,甚至会出现严重腐蚀设备管

精心整理 线的事情。正常的清洗工艺是:试压→水冲洗→黏泥剥离→水冲洗→酸洗除垢→水冲洗→钝化预膜→水质处理 选择的清洗剂必须是根据水垢的成份的情况而定,结垢的成份和原因不同,所选用的清洗剂也不同,否则会发生清洗不干净或者清洗过腐蚀的情况。 3、清洗原理 钙镁碳酸盐水垢易溶于强酸,反应放出二氧化碳气体,生成易溶于水的物质而达到清洗除垢的目的,其溶解反应方程式为: CaCO3+2H+=Ca2++H2O+CO2 Mg(OH)2+2H+=Mg2++2H2O 在清洗过程中,H+会对金属机体产生腐蚀,并出现氢脆现象,因此清洗剂中要加入相应的缓蚀剂;溶解产生的Fe3+、Cu2+等氧化性离子会造成金属机体的点蚀、镀铜等现象,因此清洗液中还需加入掩蔽剂。 4、化学清洗前的准备工作 4.1断开与换热器无关的其它系统。 4.2开启换热器水侧高点放空阀和蒸汽侧低点导淋阀,以保证清洗过程中反应产生的大量气体能够及时排放和清洗液的充满度;同时通过导淋阀监测清洗过程中换热器铜管的泄漏情况。 4.3为了监测系统的清洗效果及清洗过程中设备的腐蚀情况,在清洗施工前,将相当于设备材质的标准腐蚀试片、监测管段分别悬挂于清洗槽中。 5、换热器化学清洗、预膜处理 化学清洗流程: 试压→水冲洗→黏泥剥离→水冲洗→酸洗除垢→水冲洗→钝化预膜→水质处理 5.1试压 试压的目的是为了在模拟状态下对清洗系统的泄漏情况进行检查。 5.2水冲洗 水冲洗的目的是清除设备内松散的污物,当出口处冲洗水目测无大颗粒杂质存在时,水冲洗结束。 5.3酸洗除垢 水冲洗结束后,在清洗槽内循环添加“**牌换热器清洗剂”,控制清洗主剂浓度在3~

管壳式换热器维护检修规程

管壳式换热器维护检修规程 二○○七

目录 1总则 (83) 2完好标准 (94) 3换热器的维护 (85) 3.1 维护 (85) 3.2 常见故障和处理方法 (86) 4 换热器的检验 (86) 4.1外部检查 (86) 4.2内外部检查 (86) 4.3压力试验 (87) 4.4定期检验 (89) 5 换热器的修理 (89) 5.1检修周期及内容 (89) 5.2 检修方法及质量标准 (90) 6 试车与验收 (96) 7 维护检修的安全注意事项 (98) 82

1 总则 1.1 适用范围 参照原化学工业部颁发的《换热器维护检修规程》(HG25004-91)以及其它有关资料, 编制本规程。 本规程适用于设计压力不大于6.4MPa(g),设计温度大于-20℃、小于520℃钢制管壳 式单管板或双管板换热器,包括冷却器、冷凝器、再沸器等换热设备的维护检修。 本规程与国家或上级有关部门的规定相抵触时,应遵循国家和上级有关部门制定的一 切规定。从国外引进的换热器,还应遵循原设计所采用的规范和标准中的有关规定。 1.2 结构简述 管壳式换热器(包括固定管板式、浮头式、U形管式以及填料函式)主要由外壳、管板、 管束、顶盖(封头)等部件构成。 板,与壳体焊接相连。为了减小 温差引起的热应力,有时在壳体 上设有膨胀节。浮头式换热器的 一端管板固定在壳体与管箱之 间,另一端可以在壳体内自由伸 缩。U形管式的换热管弯成U形, 两端固定在同一管板上,管束可以 自由伸缩。填料函式换热器的一端管板固定,另一端填函密封可以自由伸缩。双管板换热 器(如图1)一端的内管板直接固定在壳体上,外管板与管箱相连接,另一端的内管板以填料 函结构与壳体连接,外管板与管箱连接;采用双管板结构的优点是当管板与换热管连接部 位发生泄漏时,换热器的管程和壳程中进行换热的两种介质各自漏入大气而不会互相串 混。双管板换热器用于引进部分的干区,以防止一旦管板与换热管连接处发生泄漏时,水 或蒸汽与介质相混。 2 完好标准 2.1 零、部件 2.1.1 换热器的零、部件及附件完整齐全,壳体、管程、封头的冲蚀、腐蚀在允许范围 内,管束的堵管数不超过总数的10%,隔板、折流板、防冲板等无严重的扭曲变形。 83

换热器中污垢的种类及清洗方法(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 换热器中污垢的种类及清洗方 法(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

换热器中污垢的种类及清洗方法(标准版) (一)结垢危害分析 (1)无论结垢是否为腐蚀介质,都会加速金属的腐蚀,如异物附着管壁产生电位差后导致腐蚀。 (2)传热表面结垢,传热效率下降。结垢严重会引起堵塞。 (3)管内污垢使管内径变小,流速相应增大,压力损失增加。 (4)由于结垢使导热性能下降,管壁温度升高形成局部过热,可能产生爆裂等事故。 (5)结垢导致的经济损失,除了能量损耗外,也增加了设备维修与清洗费用。 (二)污垢常见种类 1.水垢 在工业上所见到的无机盐污垢大多是从水中析出,即以水垢形

式出现,受热表面上水受热蒸发,盐的局部浓度增大,当离子浓度积增大到高于盐浓度积、溶液饱和或过饱和时,即生成结晶盐垢沉积到金属表面。水垢种类主要有碳酸盐水垢、硅酸盐水垢、硫酸盐水垢、磷酸盐水垢、含油水垢及混合型水垢等。 水垢的热阻要比金属大6—1m00倍。 2.锈垢 锈垢是由于钢铁在环境介质的化学或电化学作用下,在其表面生成难溶的二价或三价铁的氧化物或氢氧化物。 3.微生物污垢或生物黏泥 微生物在繁殖过程中分泌的粘稠液,将环境中的无机盐、淤泥、腐蚀产物及油污等粘结在一起,而形成的淤泥状沉积物。 4.油脂垢 是由油脂沉积的沙、泥土、盐粒及设备表面质变的产物等以粘稠状富油沉淀(三)清洗 鉴于结垢的危害,区别于结垢的种类,必须采用相应合理有效的清洗方法,并做好过程监测,从而恢复生产和装置的生产效率。

13 管壳式换热器检修规程

管壳式换热器检修技术规程 1. 总则 本规程适用于净化车间的管壳式换热器的检验与检修。 2. 净化现有管壳式换热器的技术性能参数及结构参数。 2.1 中温换热器 管程壳程 工作压力:2.25Mpa 2.25Mpa 设计压力:2.5Mpa 2.5Mpa 工作温度:170/255℃ 265/205℃ 设计温度:170/260℃ 410/210℃ 工作介质:半水煤气变换气 压力试验:3.56Mpa 4.0Mpa 换热面积:647m2 筒体厚度:25/14 材质:OCr18Ni10Ti OCr18Ni10Ti 规格:Dg1200×14/1400×25 Φ19×2 2.2 二段换热器 前段后段 管程壳程管程壳程 设计压力 MPa 2.2 2.2 2.2 2.2 工作温度℃ 250~300 483~462 200~250 462~415 介质二次碱洗气变换气一次碱洗气变换气换热面积m2 65 65 (按管子外径计) 水压试验压力(壳、管程)3.3MPa 筒体规格:Dg1000×20/Dg800×16 Dg1000×20/Dg800×16 筒体材质:12CrMo 12CMro 封头规格:Dg800×16 Dg800×16 封头材质:12CrMo 12CrMo 列管规格:Φ25×2.5 Φ25×2.5 列管数量:U型1163根 U型1163根 设备总高:3331mm 5551mm 2.3 变换气煮沸器 管程壳程 操作压力 Mpa 0.04 2.2 操作温度C 110 155~120 工作介质碳酸钾溶液变换气(饱和) 换热面积(按管子外径计算):453m2 水压试验压力:2.7Mpa 筒体规格:Dg1300×(16+2)/Dg1100×(14+2)(图标) 筒体材质:复合钢板主体20g+1Cr18Ni9Ti(图标) 列管规格:Φ25×2 列管材质:1Cr18Ni9Ti

板式换热器在线清洗方案及操作步骤

板式换热器维护保养得必要性 板式热交换器虽说经久耐用,但长期使用后,由于密封圈发生劣化、污渍附着等原因难以维持原有的性能,有时会发生漏液等各种问题。为了使板式热交换器更加长久地、安定地、在最佳状态下能够得以使用,定期进行维修保养是不可或缺的。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德在保证密封圈等各种更滑零部件库存的同时,还根据客户的需要,提供各种丰富的服务,例如,派遣熟练的技术人员进行上门维修保养以及“取回厂检查整修”的“全套餐服务”等等。 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德公司积累了丰富的技术经验,并将最先进的传热板技术传播到了全世界。这样的 ARD艾瑞德板式换热器(江阴)有限公司艾瑞德才能够提供“放心”和“信赖”的维修保养服务。若长期不注意维护保养...

拆解清洗服务方案 为了使客户的板式热交换器维持在最佳状态,ARD艾瑞德板式换热器(江阴)有限公司艾瑞德凭借多年多年积累的技术经验,提供“拆解、清洗”“改善作业”“当 地服务”等丰富的服务菜单,开展维修保养服务。 维修保养服务以“取回厂检查整修”和“现场清洗维护”为主,“取回厂检查整修”将客户的板式热交换器主机取回保养,在恢复最佳状态后送返。“现场清洗维护” 是公司专业工程师携带专业设备到用户现场进行作业,时间短,效率高,不会耽误客户生产经营。此外,还提供咨询等各种服务菜单,帮助客户维持板式热交换器的最佳状态。 客户可以根据使用条件和状况选择服务种类,因此可以通过多种方式维护机器的最佳运转状态。 拆卸清洗维护步骤:

板式换热器在线清洗方案 清洗工艺方式有:循环、喷淋等、浸泡。 清洗工艺步骤及操作标准 一.首先根据换热器的换热面积及结垢厚度,计算出需要准备的清洗剂 原液数量。 二. 根据换热器的管路容积,准备好盛清洗剂的容器,能满足循环需要 即可,容器内表面要求干净无氧化层或者使用非金属材质的容器。 三. 根据换热器内部循环压力要求,准备好可供循环的工业离心泵,准 备好泵与换热器及容器的连接管路,必要时要制作法兰连接。 四. 根据垢层厚度或者是清洗时间来确定是否需要对清洗剂原液进行稀 释,稀释比例根据情况不同可控制在 1:1~1:5 之间。 五. 在容器内倒入足够量的清洗剂并连接好管路,开启关对换热设备进 行循环清洗。换热设备不用拆卸,可在线清洗。 六. 循环清洗过程中由于清洗剂与垢质发生化学反应,在溶液槽内可发现有明显溶解的垢质杂质及泡沫。 七. 清洗一段时间后,在溶液内加入清洗剂原液提高溶液浓度继续清洗。 八. 清洗一段时间后,把循环管路的进、出口调换进行反循环清洗。 九. 清洗过程中要时刻对溶液进行测试,保持溶液浓度在有效范围之内,直到溶液浓度长时间再没有变化时,说明换热设备已经清洗干净。 十. 在容器内换入清水进行循环清洗置换,把残留在设备内的已经剥离的垢质和其它杂质冲洗干净,清洗过程也需要调换进、出口管路进行反复冲洗。 十一.使用清洗剂也可对设备进行浸泡清洗。

板式换热器反冲洗清洗方法的原理

板式换热器反冲洗清洗方法简介 通过对板式换热器换热原理,结垢、堵塞原因的分析,我们提出一种换热器反冲洗清洗维护方法。该方法是利用系统高压水所产生的能量,对换热面上的垢层进行反向冲击,使之脱离换热器板片,排出循环系统。经过长期实践,事实这种方法效果十分明显。 板式换热器反冲洗清洗方法操作过程 板式换热器一次侧排污操作方法: A、关闭换热器一次侧接口处供回水球阀1、2,打开一次侧排污球阀4,和一次侧排气阀3,使换热器内一次侧留存的水全部泄空; B、关闭一次侧排污阀4,迅速打开换热器一次侧回水球阀2,当排气阀3见水后,关闭换热器一次侧回水球阀2; C、打开换热器一次侧排污球阀4,泄空换热器一次侧存水,迅速打开一次供水球阀1,进行排污,待排出的液体澄清后,关闭排污球阀,上述操作连续进行2次; D、打开换热器排气阀3,同时开启一次回水球阀2,待换热器内充满水后,打开供水球阀1,恢复正常运行,换热器一次侧反冲洗清洗完成。

板式换热器二次侧排污操作方法 A、关闭换热器二次侧接口处供回水球阀5、6,打开二次侧排污球阀8,和二次侧排气阀7使换热器内二次侧的存水全部泄空; B、关闭二次侧排污阀8,迅速打开换热器二次侧回水球阀6,当排气阀7见水后,关闭换热器二次侧回水球阀6; C、打开换热器二次侧排污球阀8,泄空换热器内的水,迅速打开二次供水球阀5,进行排污,待排出的液体澄清后,关闭排污球阀,上述操作连续进行3-5次; D、打开换热器排气阀7,同时开启二次回水球阀6,待换热器内充满水后,打开供水球阀5,换热器一次侧恢复正常运行。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

换热器清洗标准

气化车间煤气水分离、酚回收换热器换热效果不好时需要清 洗的标准 由于气化车间物料中含有大量的焦油、粉尘、造成换热器在使用过程中污堵,降低了换热器的换热效果,使控制指标偏离设计值,在2018年度煤气水分离、酚回收换热器换热效果急剧下降,换热器清洗维护费用过大,已影响了装置的正常运行。 针对此情况在2019年1月17日技术研发中心,组织生产计划部、机动部、气化车间召开关于煤气水分离、酚回收装置换热器清洗标准,来保障装置正常运行,经会议研究讨论决定,气化车间制定出煤气水分离和酚回收换热器需要清洗时的标准,生产计划部和技术研发中心对其进行确认,气化车间按此标准执行。 车间根据运行需求将换热器清洗标准制定如下: 一、煤气水分离工段:煤气水分离装置为保证油水分离效果,控制初焦油分离器(F623a/b04A/B/C/D)操作温度70-75℃,最终油分离器(F623a/b05A/B/C/D)操作温度40-45℃,温度过高会造成油水乳化。 控制初焦油分离器操作温度依靠换热器余热回收器(C623a/b01)、含尘煤气水换热器(C623a/b02A/B/C/D)和含尘煤气水换热器(C623a/b04A/B/C/D)换热效果决定,控制最终油分离器操作温度依靠换热器煤气水冷却器(C623a/b06A/B/C/D)换热效果决定。 1.气化车间会议讨论决定,含尘煤气水(TIA623a/b011)高

于80℃时,车间根据实际运行情况,申请对C623a/b01、C623a/b02A/B/C/D和C623a/b04A/B/C/D换热器清洗。 2.煤气水冷却器出口(TIA623a/b023)温度高于50℃时,车间根据实际运行情况,要求清理换热器C623a/b06A/B/C/D。 3.排查依据如下:因主要控制点为管程含尘煤气水出口温度,清洗标准依据管程设计温度值定。 二、酚回收装置:酚回收装置为保证高负荷处理气化炉产水,合格外送稀酚水,需要控制脱酸塔进料温度125-130℃,萃取塔进料温度40-45℃,外送稀酚水温度夏季控制35-37℃(冬季温度控制40-50℃),脱酸塔塔釜温度控制155-160℃,水塔塔釜温度控制100-105℃,酚塔塔釜温度195-205℃,水塔顶部冷却器出口温度25-30℃,酚塔顶部冷却器出口温度25-30℃,三级分凝冷却器出口温度45-50℃,粗酚换热器出口80℃,水塔进料温度70-75℃,醚系统温度控制20-30℃,温度过高或者过低都会影响酚回收装置正常运行。 控制脱酸塔进料温度依靠酚水一级换热器(C62401A/R)、酚水

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

管壳式换热器的检修

97 科技资讯  科技资讯 SCIENCE & TECHNOLOGY INFORMATION2009 NO.22 SCIENCE & TECHNOLOGY INFORMATION 动力与电气工程 化工工业中不同介质之间存在有大量热交换,其中很大部分的热交换是通过换热器来完成的。换热设备是化肥,化工,炼油工业及其他许多工业部门应用最广泛的设备,在化工企业的建设中换热设备占总投资很大比重。因此保证换热设备安全运行对其维护和检修质量是非常重要的。 1 管壳式换热器的类型特点 常用的管壳式换热器有固定管饭式、浮头式和“U”型管式。 (1)固定管板式换热器是将两端管板直接与壳体焊接在一起。主要由外壳、管板、管束、封头等主要部件组成。壳体中设置有管束,管束两端采用焊接、胀接或胀焊并有的方法将管子固定在管板上,管板外周围和封头法兰用螺栓紧固。固定管板式换热器的结构简单、造价低廉、制造容易、管程清洗检修方便,但壳程清洗困难,管束制造后有温差应力存在。当换热管与壳体有较大温差时,壳体上还应设有膨胀节。 (2)浮头式换热器一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,也就是壳体和管束热膨胀可自由。故管束和壳体之间没有温差应力。一般浮头可拆卸,管束可以自由地抽出和装入。浮头式换热器的这种结构可以用在管束和壳体有较大温差的工况。管束和壳体的清洗和检修较为方便,但它的结构相对比较复杂,对密封的要求也比较高。 (3)U形管式换热器是将换热管炜成U形,两端固定在同一管板上。由于壳体和换热管分开,换热管束可以自由伸缩,不会由于介质的温差而产生温差应力。U形管换热器只有一块管板,没有浮头,结构比较简单。管束可以自由的抽出和装入,方便清洗,具有浮头式换热器的优点,但由于换热管做成半径不等的U形弯,最外层换热管损坏后可以更换外,其它管子损坏只能堵管。同时,它与固定管板式换热器相比,由于换热管受弯曲半径的限制它的管束中心部分存在空隙,流体很容易走短路,影响了传热效果。 2 管壳式换热器的失效形式 换热器常见的损坏形式是腐蚀而泄 露,壳体减薄。腐蚀的部位主要在换热管、换热管与管板的连接处及壳体。2.1换热管的腐蚀 换热管的腐蚀有两种情况。一种是管 内和管外介质对管壁的腐蚀,使得整个管壁减薄。另一种是管壁的局部腐蚀,特别在换热管入口的管段腐蚀。另外,由于换热管在轧制过程本身存在质量缺陷,如夹渣、裂缝、夹皮和气孔等,材质不均匀造成介质对管板的点蚀,使用后缺陷暴露而导致换热管减薄泄漏。 2.2管子与管板连接处的腐蚀 换热管与管板的连接形式有胀接,焊接或者胀接焊接并有。换热器运转一段时期后,封口焊缝的腐蚀或经腐蚀将封口焊缝的内部缺陷暴露而发生泄漏。另一种情况是因操作中冷热交变应力的影响或本身质量差,致使胀接处出现松弛而发生泄漏。由于胀接、焊接的应力存在,很容易在管板、胀焊区发生裂纹,特别是在有应力腐蚀的场合。另外换热管的管口因胀接时材料冷作硬化或管子与管板封口焊接的热输入量的影响,管口处耐腐蚀能力降低而产生腐蚀泄漏。再有换热管因管头退火处理不当或换热管材质塑性不好,管子胀接后管头出现裂纹,使用后缺陷扩展而导致泄漏。2.3壳体的腐蚀 壳体的腐蚀有整体减薄,由于材质不均匀等缺陷造成的局部腐蚀和点蚀。当壳体材质与折流板等不同材质其他元件长期接触时,在接触部位很容易产生电化学腐蚀。另外,壳体的焊接部位对于不锈钢材质的壳体材料不可避免的容易产生晶间贫铬从而增加了晶间腐蚀的可能。再者由于焊接应力的存在,在有应力腐蚀的介质中也容易产生应力腐蚀。 3 换热管及封管泄漏的检查 常用的检验方法有水压试验检查法,气压试验检验法,氨渗漏试验检查法。另外有些专业检修单位还可以对管子进行涡流探伤。 3.1水压试验检查法 换热器灌水后发现管子本身泄漏或有明显的漏点,应先修理后再进行试验。在试压检查时需注意:(1)检查设备有无损伤和变形,确认无异常现象,且外表面保持干燥。配设压力试验临时管线,建立试压系统,应能保证充水、完全放空和排水。(2)换热设备液压试验充液时,应从高出将空气排干净。(3)压力试验,必须采用两个量程相同,经过校验,并在有效期内的压力表。压力表的量程宜为试验压力的2倍。但不得低于1.5倍和 高于3倍,精度不得低于1.5级,表盘直经不 得小于100mm。(4)压力表应安装在换热设备的最高处和最低处,试验压力值应以最高处的压力表读数为准,并用最低处的压力表读数进行校核。(5)液压试压时,压力应缓慢上升,达到试验压力后,保压时间不应少于30min,然后将压力降至设计压力,保持足够长的时间对所有焊缝和检查。(6)对于不锈钢材料还应控制水中Cl离子的含量不超过25PPm。(7)出现泄露有时会出现由上而下一片换热管接头出现泄漏的情况,这可能是假象,必须找到真正的漏点。3.2气压试验检验法 气压试验检验法与水压试验法类似,由于气压试验相对与水压试验危险程度比较高,因此除以上注意事项之外,还需注意试压是要缓慢升压,升压过程中需严密监视设备的外观变形情况,有无异常响声。试验压力比水压试验较低。然后用肥皂水检查焊缝及管板封管部位。发现漏点做好标记,泄压检修。 3.3氨渗漏试验检查法 对于工作压力较高密封要求严或管程工作压力高于壳程工作压力的换热器。采用水压试验壳体不能达到承受试验压力。可采用氨渗漏的方法进行检查。壳体应先用氮气进行置换,因为氨在空气中的爆炸极限以体积计算为15%~28%,所以要求置换气体的体积为置换空间的3倍~5倍。置换好后充氮气至0.2MPa,再充氨气达0.235MPa进行氨渗漏试验,将湿的酚酞试纸贴于管板上。试纸变红处说明有氨气泄露,做好标记对泄露部位处理。氨渗漏试验需注意:(1)由于压力低,对于极小的渗漏,检验时间(保压时间)将是相当长的,一般情况约为10小时~l2小时。(2)试验完毕,仍然要用氮气置换合格,排放的氨需要插入水中吸收,不能直接排入空气中,以免造成环境污染或人员伤害。 4 换热器的检修 4.1堵管 经过试压试验或经氨试漏检查出由于腐蚀而泄露的换热管简单的方法就是堵管。对于管口比较规整的管子,换热管与管板为焊接形式可以将堵头加工成圆柱状,一端打盲孔的形式,这样堵头与管板焊接时焊接变形主要集中在堵头上,减少管板的焊接应力。对于换热管与管板为胀接形 管壳式换热器的检修 王岗波 (中国化工沧州大化集团机修车间 河北沧州 061000) 摘 要:本文摘要介绍了管壳式换热器的结构类型特点,失效形式及试压方法,简要介绍了对换热器检修方法及注意事项。关键词:管壳式换热器 换热管 腐蚀 检修中图分类号:TQ05文献标识码:A文章编号:1672-3791(2009)08(a)-0097-02

换热器清洗方案完整版本

换热器清洗方案 一、施工范围: 换热器为材质,清洗时不可用强酸性,只能用弱酸性酸来进行处理内部垢质。 二、施工前准备: 1、根据换热器管道的材质、结构,决定清洗的方式、 循环路线的划分、系统的连接以及与无关系统的 隔绝 2、清洗范围水容积和表面积、金属重量、系统沿程 阻力,决定清洗设备的流量计储量、临时系统的 通流面积和布置、安装及废液的处理和排放。 3、取样测定锈蚀量、附着物和垢积量后,决定药液 浓度,温度和清洗液流速以及清洗时间。 4、根据与清洗液接触的材质,按要求选择加工试片, 并进行编号和记录其表面尺寸及重量,以备清洗 之后的检查对比,评估清洗效果。 三、清洗材料 1、无洛托品—401C 2、表面性活性剂—306D 3、732树脂—302 4、草酸—402 5、832除垢剂

以上材料专对金属材质除垢专用 四、清洗技术要求 1、按国家清洗行业标准进行清洗; 2、我公司利用来回循环设备对症下药配调进行机械设 备来回循环清洗3—4个小时即可 3、清洗后达到对换热器无任何损伤,并在原来氧化铭保 护膜表层再次形成氧化铭保护膜,铁、铭、碳及众多 不同元素同时保护; 4、被清洗的金属表面清洗,无残留的氧化铁皮,渣物, 无腐蚀及点蚀和铜蚀现象; 5、固定设备上的阀门不应受到腐蚀和损伤。 五、施工安全措施 1、安全工作方针和目标 1.1 方针:安全第一,预防为主。 1.2 目标:杜绝重大死亡和火灾,杜绝重大设备和交通事故。 2、安全生产纪律 2.1、工现场的工作人员,应遵守现场安全操作规程,对所有工人必须进行安全技术教育。 2.2、加施工人员严格遵守有关安全技术的各种规程、规范和施工图纸、技术文件的要求。 2.3、施工前,应以单项施工方案为依据,进行安全、技术交底,做到工作任务明确,物体重量明确,安全措施明确。

换热器清洗方式优缺点对比

换热器清洗方式优缺点对比 换热器(热交换器)是工业生产领域中应用十分广泛的热量交换设备,包括石油、化工、工业制冷、水泥、制盐、冶金、生物制药、造纸等工业领域。 然而工业换热器普遍存在换热效率不足的问题。换热器使用一段时间就会在管壁上结一层垢,据研究表示,0.1mm厚的污垢的热阻可以让1mm厚的换热管的导热热阻忽略不计。如此低的传热效率,使得管式换热器长期处于低效率的运行状态,随着换热技术的发展,污垢已经成为强化换热的主要障碍,需要定期对换热器进行清洗。 目前换热器清洗的方式主要分为物理清洗、人工清洗和化学清洗三种方法,下面来分析下各种清洗方法的优缺点。 1、物理清洗 主要包括胶球清洗、管刷清洗、超声波清洗等。 (1)胶球清洗:即在冷却水循环管路里投放表面粗糙的胶球,利用胶球与管壁间的摩擦实现清洗换热管。目前胶球清洗方法是最常用最普遍的清洗方法,但此方法并不能有效清洗到所有管道,只能对部分水力特性较好的换热管道进行清洗,同时对金属碳酸盐等硬垢去除效果不佳,随着时间推移,污垢仍然会在管壁累积。此外,胶球清洗系统要求投放数量较多的胶球,但胶球回收率低,部分电厂需要人工投球收球,统计收球率,导致了运行成本及人工成本的升高。 (2)管刷清洗:在每根换热管内都安装一个毛刷,利用反冲向原理,改变冷凝管道内的水向,推动毛刷低速前进清洗。与胶球清洗一样,其缺点也是硬垢去除效果不佳,且管刷清洗的成本更高。 (3)超声波清洗:利用超声波产生的强烈空化作用及振动将工件表面的污垢剥离脱落,同时还可将油脂性的污物分解、乳化。其缺点是需要选择合适的超声波功率和频率大小以及清洗液的温度,费用高昂,还需长期案例验证。 2、人工清洗 主要是采用高压水射流进行换热器清洗。该方法对泥沙等软垢有较好的去除效果,但对硬垢去除效果不佳,同时必须停机清洗,不仅会造成一定的停机损失,此外无法及时清除换热器内的积垢。 3、化学清洗 即在冷却水循环管路内投放盐酸、缓蚀阻垢剂和杀菌灭藻剂以及粘泥剥离剂等化学药剂清洗积垢。这种方法进行换热器清洗效果较好,但存在两点问题:首先,化学清洗频繁使用后,会腐蚀换热管,降低设备的使用寿命,存在安全隐患。其次,化学清洗方法运行成本高,污染环境。

管壳式换热器设计课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (1) 第二章管壳式换热器简介 (2) 第三章设计方法及设计步骤 (4) 第四章工艺计算 (5) 物性参数的确定 (5) 核算换热器传热面积 (6) 传热量及平均温差 (6) 估算传热面积 (8) 第五章管壳式换热器结构计算 (10) 换热管计算及排布方式 (10) 壳体内径的估算 (12) 进出口连接管直径的计算 (13) 折流板 (13) 第六章换热系数的计算 (19) 管程换热系数 (19) 壳程换热系数 (19) 第七章需用传热面积 (22) 第八章流动阻力计算 (24) 管程阻力计算 (24) 壳程阻力计算 (25) 总结 (27)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

板式换热器清洗方法

板式换热器清洗方法 点击次数:252 发布时间:2009-5-9 18:45:59 近年来,板式换热器以其重量轻、占地面积小、投资少、换热效率高、组装灵活、结垢易于清除等特点,及其在供热工作中所起的作用,越来越受到供 热企业的高度重视,并逐步推广使用,以取代原有的管壳式换热器。但 由于板式换热器流通截面较小,结垢后容易产生堵塞,使板式换热 器的换热效率降低,影响了设备的安全和用户的正常用热。因此,解决板式 换热器的清洗,防止水垢的形成,将成为确保安全生产和经济运行的重要课题。 1.板式换热器结垢堵塞的主要原因及其危害板式换热器在使用过程中,由于水处理设备运行不当,水质控制不达标,将不合格的软化水注人供热系统中,使水中的钙、镁、碳酸盐遇热后分解为碳酸钙和氢氧化镁沉淀物钻结在换热器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成了换热器换热效率的降低以及热能的严重浪费,从而影响了供热的效果,给供热单位造成了严重的负面影响。 2 板式换热器结垢的清洗方式 2.1 清洗剂的选择 清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。根据换热器结垢和工艺、材质和水垢成分分析得出:. 1)换热器流通面积小,内部结构复杂,清洗液若产生沉淀不易排放。 2)换热器材质为镍钦合金,使用盐酸为清洗液,容易对板片产生强腐蚀,缩短换热器的使用寿命。 通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加人缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。 通过对水垢样本的化学试验研究表明,甲酸能够有效地清除水垢。通过酸液浸泡试验,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。 2.2 清除水垢的基本原理

换热站板片清洗技术规范

换热站板片清洗技术规范-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

板式换热器原理 板式换热器是由许多波纹形的传热板片,按一定的间隔、通过橡胶垫片压紧组成的可拆卸的换热设备。板片组装时,两组交替排列,板与板之间用粘结剂把橡胶密封板条固定好,起作用是防止流体泄漏并使两板之间形成狭窄的网形流道,换热板片压成各种波纹形,以增加换热板片面积和刚性,并使流体在低流速下形成湍流,以达到强化传热的效果。板上的四个角孔,形成了流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量交换。 特点:(1)体积小、占地面积小;(2)传热效率高;(3)组装灵活;(4)金属消耗量低;(5)热损失小;(6)拆卸、清洗、检修方便;(7)板式换热器缺点是密封周边较长,容易泄漏,不能承受高压。 板式换热器有哪几部分组成有什么作用 板式换热器主要由传热板片、密封垫片、两端压板、压紧螺栓、支架等组成。 板片材料不锈钢304,316,316L和317的区别 板式换热器板片的材料常用有304,316,316L和317。这四种材料是用得最普遍的,其中,又以304最为常见。304是一种通用型的不锈钢,其广泛应用于需要有良好综合性能(耐腐蚀性和成型性)的设备中,其性价比最高。 316和317相比304而言,二者都含有钼,但317的含钼量要高于316。二者总的性能要优于304的不锈钢。316不锈钢可以应用于硫酸浓度低于15%和高于85%的介质中,316具有良好的抗氧化物侵蚀的性能,通常用于海洋环境。 316L的最大碳含量为0.03,主要用于焊接后不能进行退火和需要最大耐腐蚀性的用途中。

管壳式换热器

目录 一、管壳式换热器概述 (2) 二、换热管与管板的连接方式及特点 (2) 2.1、焊接 (2) 2.2、胀接 (3) 2.3、胀接加焊接 (3) 2.3.1、先胀后焊 (3) 2.3.2、先焊后胀 (4) 2.4、胶接加胀接 (4) 三、管壳式换热器的主要形式与结构 (4) 3.1、固定管板式换热器 (4) 3.2、浮头式换热器 (5) 四、换热器的主要强度计算(管板) (6) 五.换热器的主要强度计算(圆平板) (8) 5.1、基于圆平板的强度计算 (8) 5.2、基于安置在弹性基础上的圆平板的强度计算 (9) 六.心得体会 (10)

一、管壳式换热器概述 管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。管壳式换热器具有可靠性高、适应性广等优点,在各工业领域中得到最为广泛的应用。近年来,尽管受到了其他新型换热器的挑战,但反过来也促进了其自身的发展。在换热器向高参数、大型化发展的今天,管壳式换热器仍占主导地位。 二、换热管与管板的连接方式及特点 2.1、焊接 换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用最为广泛的一种连接方法。在采用焊接连接时,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。采用焊接连接时,换热管间距离不能太近,否则受热影响,焊缝质量不易得到保证,同时管端应留有一定的距离,以利于减少相互之间的焊接应力。换热管伸出管板的长度要满足规定的要求,以保证其有效的承载能力。在焊接方法上,根据换热管和管板的材质可以采用焊条电弧焊、#$%焊、&’(焊等方法进行焊接。对于换热管与管板间连接要求高的换热器,如设计压力大、设计温度高、温度变化大,以及承受交变载荷的换热器、薄管板换热器等宜采用#$%焊。常规的焊接连接方法,由于管子与管板孔之间存在间隙,易产生间隙腐蚀和过热,并且焊接接头处产生的热应力也可能造成应力腐蚀和破坏,这些都会使换热器失效。目前在国内核工业、电力工业等行业使用的换热器中,换热管与管板的连接已开始使

相关文档
最新文档