地震波

地震波
地震波

地震波

地震被按传播方式分为三种类型:纵波、横波和面波[1]。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。

[编辑本段]

地震纵波和横波

我们最熟悉的波动是观察到的水波。当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。这个波列是水波附近的水的颗粒运动造成的。然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。这样,水波携带石击打破的水面的能量向池边运移并在岸边激起浪花。地震运动与此相当类似。我们感受到的摇动就是由地震波的能量产生的弹性

地震波

岩石的震动。

假设一弹性体,如岩石,受到打击,会产生两类弹性波从源向外传播。第一类波的物理特性恰如声波。声波,乃至超声波,都是在空气里由交替的挤压(推)和扩张(拉)而传递。因为液体、气体和固体岩石一样能够被压缩,同样类型的波能在水体如海洋和湖泊及固体地球中穿过。在地震时,这种类型的波从断裂处以同等速度向所有方向外传,交替地挤压和拉张它们穿过的岩石,其颗粒在这些波传播的方向上向前和向后运动,换句话说,这些颗粒的运动是垂直于波前的。向前和向后的位移量称为振幅。在地震学中,这种类型的波叫P波,即纵波(图2.1),它是首先到达的波。

图2.1 地震P波(纵波)和S波(横波)运行时弹性岩石运动的形态

弹性岩石与空气有所不同,空气可受压缩但不能剪切,而弹性物质通过使物体剪切和扭动,可以允许第二类波传播。地震产生这种第二个到达的波叫S波,即横波。

在S波通过时,岩石的表现与在P波传播过程中的表现相当不同。因为S波涉及剪切而不是挤压,使岩石颗粒的运动横过运移方向(图2.1)。这些岩石运动可在一垂直向或水平面里,它们与光波的横向运动相似。P和S波同时存在使地震波列成为具有独特的性质组合,使之不同于光波或声波的物理表现。因为液体或气体内不可能发生剪切运动,S波不能在它们中传播。P和S波这种截然不同的性质可被用来探测地球深部流体带的存在(见第6章)。

带偏光眼镜以减弱散射光的人可能熟悉光的偏振现象,只有S波具有偏振现象。只有那些在某个特定平面里横向振动(上下、水平等)的那些光波能穿过偏光透镜。传过的光波称之为平面偏振光。太阳光穿过大气是没有偏振的,即没有光波振动的优选的横方向。然而晶体的折射或通过特殊制造的塑料如偏光眼镜,可使非偏振光成为平面偏振光。

当S波穿过地球时,他们遇到构造不连续界面时会发生折射或反射,并使其振动方向发生偏振。当发生偏振的S波的岩石颗粒仅在水平面中运动时,称为SH波。当岩石颗粒在包含波传播方向的垂直平面里运动时,这种S波称为SV波。

大多数岩石,如果不强迫它以太大的幅度振动,具有线性弹性,即由于作用力而产生的变形随作用力线性变化。这种线性弹性表现称为服从虎克定律,是以与牛顿同时代的英国数学家罗伯特·虎克(1635~1703年)而命名的。这种线性关系由图2.2所示的加重物的弹簧伸展来表示。如果重物的质量加倍,线性弹簧的伸展也加倍,如果重物回到原来大小,则弹簧回到原来位置。相似地,地震时岩石将对增大的力按比例地增加变形。在大多数情况下,变形将保持在线弹性范围,在摇动结束时岩石将回到原来位置。然而在地震事件中有时发生重要的例外表现,例如,当强摇动发生于软土壤时,会残留永久的变形,波动变形后并不总能使土壤回到原位,在这种情况下,地震烈度较难预测。我们将在本书后面谈到这些关键的非线性效果。

图2.2 当施加的力加倍时,弹簧的伸展也加倍

弹簧的运动提供了极好的启示,说明当地震波通过岩石时能量是如何变化的。与弹簧压缩或伸张有关的能量为弹性势,与弹簧部件运动有关的能量是动能。任何时间的总能量都是弹性能量和运动能量二者之和。对于理想的弹性介质来说,总能量是一个常数。在最大波幅的位置,能量全部为弹性势能;当弹簧振荡到中间平衡位置时,能量全部为动能。我们曾假定没有摩擦或耗散力存在,所以一旦往复弹性振动开始,它将以同样幅度持续下去。这当然是一个理想的情况。在地震时,运动的岩石间的摩擦逐渐生热而耗散一些波动的能量,除非有新的能源加进来,像振动的弹簧一样,地球的震动将逐渐停息。对地震波能量耗散的测量提供了地球内部非弹性特性的重要信息,然而除摩擦耗散之外,地震震动随传播距离增加而逐渐减弱现象的形成还有其他因素。

由于声波传播时其波前面为一扩张的球面,携带的声音随着距离增加而减弱。与池塘外扩的水波相似,我们观察到水波的高度或振幅,向外也逐渐减小。波幅减小是因为初始能量传播越来越广而产生衰减,这叫几何扩散。这种类型的扩散也使通过地

球岩石的地震波减弱。除非有特殊情况,否则地震波从震源向外传播得越远,它们的能量就衰减得越多。

[编辑本段]

波的性质

敲击音叉产生的纯音调具有某种频率。那个频率表示声波在一秒钟内挤压和扩张的次数,或对水波和其他类型的震动,在一秒钟内起落的次数。频率单位以赫表示,写为Hz,这一个度量单位是为纪念亨利·赫兹而命名的,他是德国物理学家,1887年首次发现电磁波。1赫等于每秒一个旋回的涨落。峰脊之间的时间是波动周期;等于相应的波的频率的倒数。

人类可以察觉20~20 000赫频率之间的声音。一地震的P波可从岩石表面折射到大气中去,如果其频率是在听得见的频率之内,人耳就可能听到这个波运行时的轰鸣声。在波动频率低于20

地震波

赫时,人们将感觉到地面振动而听不到地震波运行的声音。

最简单的波是简谐波,即具有单一频率和单一振幅的正弦波,如框图2.1所示。实际地震记录波形包含着多种波长的波,短波长的波叠加在较长波长的波上,如图2. 10所示。由法国物理学家傅里叶首次于1822年将复杂的波列定量表达为各种不同频率和振幅的简谐波的叠加,如图2.3所示。较高阶的谐波的频率是最低频的基波频率的整数倍。实际记录的地面运动可用傅里叶方法,即由计算机分别考察各谐波组分来进行分析

波动

波动可用一些特定的参量来描述。考察框图2.1中以实线画出的正弦波,它表示时刻t位于x处的质点波动位移为y。假设波的最大幅度为A,波长λ是两个相邻波峰之间的距离。

一完整的波(从一个波峰到下一个波峰)走过一个波长的时间称为周期T。这样,波速v是波长除以周期。

v =λ/T

波的频率f,是每秒钟走过的完整波的数目,所以

f = 1/T

一个波的确实位置取决于它相对于波起始的时间和与起始点的距离,图中细线描绘的波是第一个波向前面移动一个短距离,称之为由于这一移动而出现了相移。

框图2.1 两个正弦波之间的相位移动

图2.3 3个简单波形及其叠加产生的复杂波形

波列也可在时间上向前或向后推移,这样,峰值不再在原来的时间或地点发生。当这些移动的波叠加在一起时形成,复杂的波形,虽然其组合成分在幅度和频率上完全相同。这个移动的大小是以一个重要的叫“相位”的量来度量的,它是波相对其起始点的距离。我们将看到它在地震对大型建筑物结构的破坏上有很大影响

[编辑本段]

P波和S波的速度

1989年10月17日当洛马普瑞特地震袭击时,我在伯克利家中突然感到房屋摇动,我开始计时。10秒钟后摇动突然变的特别厉害,这表示S波已经到达。P波总是首先从震源来到,因为

地震波

它们沿同一路径传播时比S波速度快。利用波的这一特性,我可以计算出这个地震的震源在80多千米以外。

P波和S波的实际传播速度取决于岩石的密度和内在的弹性。对线弹性物质而言,当波与运行方向无关时,波速仅取决于两个弹性性质,称为弹性模量:岩石的体积模量k和剪切模量μ。

当向岩石立方块表面施加一均匀压力时,其体积将减小,其单位体积的体积变化作为所需压力大小的度量,称为体积模量。当P波穿过地球内部传播时发生的就是这种类型的变形;因为它只引起体积变化,所以在流体中也可以发生,与在固体中一样。通常体积模量越大,P波的速度就越大。

第二种变形类型是,在向岩石立方块体两相对的面上施加方向相反的切向力时,这体积方块将受剪切而变形,而没有体积变化。同样,圆柱状岩心两头受大小相等方向相反力扭曲时也发生这种变形。岩石对剪切或扭曲应力的抵抗越大,其刚性就越大。S波通过剪切岩石而传播,剪切模量给出其速度的量度。通常是剪切模量越大,S波速度就越大。

P波和S波速度的简单公式在下面给出。这些表达式与已经提到的波的重要性质一致:因为流体的剪切模量是0,剪切波在水中的速度为0,因为两个弹性模量总是正的,所以P波比S波传播得快。

因为地球内部的强大压力,岩石的密度随深度增大。由于密度在P波和S波速度公式中的分母项上,表面看来,波速度应随其在地球的深度增加而减小。然而体积模量和剪切模量随深度而增加,而且比岩石密度增加得更快(但当岩石熔融时,其剪切模量下降至0)。这样,在我们的地球内部P和S地震波速一般是随深度而增加的,在第6章中将进一步讨论。

虽然某一给定岩石弹性模量是常数,但在一些地质环境里岩石不同方向上的性质可以显着变化。这种情况叫各向异性,这时,P波和S波向不同方位传播时具有不同速度。通过这种各向异性性质的探测,可以提供有关地球内部地质状况的信息,这是当今广泛研究的问题。但在以下的讨论中将限制在各向同性的情况,绝大多数地震运动属于这种情况。

[编辑本段]

地质构造对地震波的影响

当水波遇到界面时,如陡岸,会从边界上反射回来,形成一列向岸外传出的水波,与向岸内传来的水波重叠。当海洋波斜射入浅滩时,波在海水深度变浅时走得较慢,落在海水较深处

地震波

的波的后面。其结果是波向浅水弯曲。于是波前在它们击岸前转向越来越平行海滩(图2.4)。折射这一名词描述波传播中由于传播路径上条件变化产生波前方向变化的现象。反射和折射也是光线通过透镜和棱柱时人们熟知的性质。

弹性模量和波速

均质各向同性的固体可由两个常数:k和μ来描述其弹性,两常数都可表示为单位面积的力。

k是体积模量,表示不可压缩性。

花岗岩:k约为27×1010达因/厘米2;

水:k约为2×1010达因/厘米2。

μ是剪切模量,表示其刚性。

花岗岩:μ约为1.6×1010达因/厘米2;

水:μ为0。

密度为ρ的弹性固体内,可以传播两种弹性波。

P波,速度vP =√(k+3/4μ)/ρ。

花岗岩:vP=5.5千米/秒;

水:vP=1.5千米/秒。

S波,速度vS=√μ/ρ。

花岗岩:vS=3.0千米/秒;

水:vS=0千米/秒。

图2.4 大洋波浪冲上一坡状海滩发生弯折,波锋平行于海滩

像声、光或水波一样,地震波也可在一边界上反射或折射,但和其他波不同的特点是,当地震波入射到地球内的一反射面时,例如一P波以一角度射向边界面时,它不但分成一反射

地震波

的P波和一折射的P波,还要产生一反射S波和折射S波,其原因是,在入射点边界上的岩石不仅受挤压,还受剪切。

换句话说,一入射P波产生4种转换波(图2.5)。由一种波型到另一种波型的波型增殖也发生于SV波斜入射于内部边界时,会产生反射和折射的P波和SV波。在这种情况下反射和折射的S波总是SV型,这是因为当入射的SV波到达时岩石质点在一与地面垂直的入射面里横向运动。相反,如果入射的S波是水平偏振的SH型,则质点在垂直于入射平面且平行于边界面的方向上前后运动,在不连续界面上没有挤压或铅垂方向的变形,这样不会产生相应的新的P波和SV波,只有SH型的一个反射波和一折射波。从物理图像形象地分析,垂直入射的P波在反射界面上没有剪切分量,只有反射的P波,根本没有反射的SV波或SH波。以上讨论的波型转换的种种限制,在全面理解地面运动的复杂性和解释地震图中的地震波各种图像时是至关重要的。

图2.5 一P波在两种类型的岩石界面上的反射和折射(a)和地震P波和S波的传播途径在地质构造中受到反射和折射(b)

本书后面要讨论到许多特殊的地震效应,它们都能用波的反射和折射完善地加以解释。例如,考虑一S波从深部震源垂直向上传播到地面。由于在地表入射和反射的波列叠加到一起,因此近地表处波的振幅将加倍,能量则变为4倍。这个预测与许多矿工的经验是一致的,他们在许多情况下没有意识到发生了一个强震。1976年中国

唐山破坏性地震就是这种情况。在井下工作的煤矿工人仅感到中等摇动,只是由于断电他们才知道发生了问题。但当他们上到地表时,才惊恐地发现整个城市已变为废墟;这次地震最终造成了24万人丧失生命。

建筑在较厚土壤上的,诸如在沿河流冲积河谷中的沉积物上的建筑物,地震时易于遭受严重破坏,其原因也是波的放大和增强作用。当我们振动连在一起的两个弹簧时,弱的弹簧将具有较大的振动幅度。类似地,当S波从地下深处传上来时,穿过刚性较大的深部岩石到刚性较小的冲积物时,冲积河谷刚性小的软弱岩石和土壤将使振幅增强4倍或更大,取决于波的频率和冲积层的厚度。在1989年加利福尼亚的洛马普瑞特地震时,建在砂上和冲填物上的旧金山滨海区的房屋比附近不远建在坚固地基上相似的房屋破坏更大(图2.6)。

图2.6 1989年洛马普瑞特地震后旧金山滨海区建在人工填埋的地基上一套公寓建筑倒塌的景象

[编辑本段]

地球的地震共振

地震波的反射和折射有时可使地震能量汇集于一地质构造中,如冲积河谷,因为那里在近地表处有较软岩石或土壤。稍后将讨论的1985年墨西哥城和1989年洛马普瑞特地震时严重破坏的特殊分布区可以用此原因解释(图2.7)。其效应与在一个屋子里面声波能被墙多次反射形成回音汇集能量一样。在地震时,P波和S波从远处传来,折射入谷地,它们的速度在刚性小的岩石中减低,它们在谷底下传

地震波

播直到接近谷边缘时,部分能量折射回到盆地中。这样,波开始往复传播,类似池塘中的水波。不同的P波和S波交织,回转的波峰叠加在射入的波峰上,引起幅度的变化。这时每一叠加波的相位是关键,因为当交切的波位相相同时能量会加强。通过这种“正干涉”,地震能量在某些频率波段汇集起来。如果没有波的几何扩散和摩擦耗散,即振动的岩石和土壤使一些波能转化为热,波的干涉造成的振幅增长真可能造成灾难性的后果。

可以从另一种角度去认识在限定的地质构造中地震波的效应。如同在池塘里看到的交叉水波一样,干涉的地震波可产生驻波,表观上,干涉波似乎站住不动了,地面

似乎纯粹作上下震动。同样地,当弦乐器如竖琴的弦被拨动时,也产生驻波。一般来说,地震时,往往在一河谷或类似的构造中激发许多不同频率和振幅的P波和S波,松软土壤能增强在许多频段上的运动,与音乐中的情况一样,产生显着的泛音或高阶振型。如果布设足够的地震波记录仪器,有时能够识别出这种泛音。

有时大地震可以引起整个地球像铃一样振动起来。自18世纪起数学家们分析了一个弹性球的振动。1911年英国数学家勒夫(Love)曾预计,一个像地球同样大的钢球将具有周期约一小时的基本振动,并将有周期更小的泛音。然而在勒夫的预言过半个多世纪以后,地震学家对即使是最大的地震是否真具有足够的能量去摇动地球,并产生深沉的地震音乐仍然没有把握。不难想象,地震学家们首次观测到地球自由振荡时是如何惊喜若狂。1960年5月智利大地震时,在世界各地当时仅有的少数特长周期的地震仪上,清楚地记录到极长周期的地震波动持续了许多天,测得的振动最长周期是53分,与勒夫预计的60分相差不多。这些地面运动记录的分析首次给出了明确的证据,理论上预计的地球的自由振荡确实被观测到了。

图2.7 1989年洛马普瑞特地震时滨海区建筑物受损情况

1989年洛马普瑞特地震时,在滨海区填充地面沉降可达5英寸之多,特别是在原来的

海滨沙地上面又覆盖了人工填充物,其建筑物大多完全毁坏。毁坏或严重受损的建筑

用黑色块表示;受毁不那么严重但也不能居住的建筑用灰色块表示;实心圆表示记录

强地面运动的仪器,用于比较软土壤与附近岩石地基上的摇动

当一地震源释放能量之后,地球的共振振动在不再受力的方式下持续,这时其振动频率仅取决于弹性地球的本身性质。确切的数学模拟基本原理,依然类似于对拨动弦乐器的分析。希腊人在2 000多年前就认识到,音乐的谐波只取决于琴弦的长度、密度和绷紧程度(图2.8)。这种自由振动叫本征

地震波

振动。同样,被拨动了的地球内的本征振动,取决于其地质构造的大小、密度和整个内部的弹性模量。

图2.8 一弹性绳的振动状态

弹性球体仅有两种不同类型的本征振动。一类叫T型或环型振荡,仅包括地球岩石的水平移动;岩石的颗粒在球面——地球表面或一些内部界面上往复运动。第二类叫S型或球型振荡,球型振荡的运动分量既有沿半径方向的,也有水平方向的。

近年来测量由大地震产生的球型和环型本征振动,提供了推断地球内部构造的全新的方法,我们将在本书第6章回到这一主题。

[编辑本段]

地震面波——沿地面的地震波

当P波和S波到达地球的自由面或位于层状地质构造的界面时,在一定条件下会产生其他类型地震波。这些波中最重要的是瑞利波和勒夫波。这两类波沿地球表面传播;岩石振动振幅随深度增加而逐渐减小至零。由于这些面波的能量被捕获在表面才能沿着或近地表传播,否则这些波将向下反射进入地球,在地表只有短暂的生命。这些波类似在伦敦的圣保罗大教堂“耳语长廊”(译者注:或中国天坛回音壁)的墙面上捕获的声波,只有耳朵靠近墙面时才能听到从对面墙上传来的低语。

地震波

勒夫波是地震面波中最简单的一种类型。它们是以1912年首次描述它们的勒夫的姓名命名的。如图2.9所示,这个类型的波使岩石质点运动类似SH波,运动没有垂向位移。岩石运动在一垂直于传播方向上在水平面内从一边到另一边。虽然勒夫波不包括垂直地面运动的波,但它们在地震中可以成为最具破坏性的,因为它们常具有很大振幅,能在建筑物地基之下造成水平剪切。

图2.9 勒夫波和瑞利波传播过程中近地表岩石的运动

相反,瑞利面波具有相当不同的地面运动。于1885年首次由瑞利(Lord Rayle igh)描述,它们是地震波中最近似水波的。岩石质点向前、向上、向后和向下运动,沿波的传播方向作一垂直平面,质点在该平面内运动,描绘出一个椭圆。勒夫波和瑞利波的速度总比P波小,与S波的速度相等或小一些。从地面运动类似性看,球型(S 型)自由振荡是传播的瑞利波的驻波,环型(T型)自由振荡则与勒夫波对应。

[编辑本段]

地震波的波序

由于不同地震波类型的速度不同,它们到达时间也就先后不同,从而形成一组序列,它解释了地震时地面开始摇晃后我们经历的感觉。记录仪器则可以让我们实际看到地面运动的状态,如图2.10所示。

从震源首先到达某地的第一波是“推和拉”的P波。它们一般以陡倾角出射地面,因此造成铅垂方向的地面运动,垂直摇动一般比水平摇晃容易经受住,因此一般它们不是最具破坏性的波。因为S波的传播速度约为P波的一半,相对强的S波稍晚才到达。它包括SH和SV波动:前者在水平平面上,后者在垂直平面上振动。S波比P波持续时间长些。地震主要通过P波的作用使建筑物上下摇动,通过S波的作用侧向晃动。

图2.10 地震记录波形

上边3条地震记录是在日本记录的震级为1.8的局部小震;下边3条是在德国记录到的挪威海中发生的5.1级地震;地震波到达的顺序是相同的,虽然小震没有面波发育,每一地震用3条地震记录图代表,每条记录一个不同的摇动方向:东-西(E)、北-南(N)和上-下(Z)

正好是S波之后或与S波同时,勒夫波开始到达。地面开始垂直于波动传播方向横向摇动。尽管目击者往往声称根据摇动方向可以判定震源方向,但勒夫波使得凭地面摇动的感觉判断震源方向发生困难。下一个是横过地球表面传播的瑞利波,它使地面在纵向和垂直方向都产生摇动。这些波可能持续许多旋回,引起大地震时熟知的描述为“摇滚运动”。因为它们随着距离衰减的速率比P波或S波慢,在距震源距离大时感知的或长时间记录下来的主要是面波。图2.10所示的地震记录,勒夫波和瑞利波比P波和S波持续的时间长5倍多。

类似于音乐乐曲最后一节,面波波列之后构成地震记录的重要部分,称之为地震尾波。地震波的尾部事实上包含着沿散射的路径穿过复杂岩石构造的P波、S波、勒夫波和瑞利波的混合波。尾波中继续的波动旋回对于建筑物的破坏可能起到落井下石的作用,促使已被早期到达的较强S波削弱的建筑物倒塌。

面波扩展成为长长的尾波是波的频散一例。各种类型的波通过物理性质或尺度变化的介质时都会发生这一效应。细看水塘中的水波显示,具短波长的波纹传播在较长波长的波纹前面。波峰的速度不是常数而取决于波的波长。当一块石头打到水中之后,随时间的发展,原来的波开始按波长不同被区分开来,后来较短的波脊和波槽越来越传播到长波的前面,地震面波传播中也有类似现象。

不同地震波的波长变化很大,长至数千米,短至几十米,这样地震波很可能发生频散。图2.11显示一典型面波从地面到较深处岩石质点运动随深度的变化。既然为面波,绝大部分波的能量被捕获在近地表处,到一定深度后岩石实际已不受面波传过的影响,这一深度取决于波长,波长越长,波动穿入地球越深。一般地讲,地球中的岩石越深,穿行其中的地震波速越快,所以长周期(长波长)面波一般比短周期(短波长)的传播快些。这种波速度的差异,使面波发生频散,拉开成长长的波列。但与水波相反,较长的面波是首先到达的。

图2.11 水波或地震面波中水或岩石质点的椭圆运动轨迹

随深度增大椭圆变小直至最后消失,椭圆运动可能是顺时针的、也可能是逆时针的

我们还需要理解波的另一种性质,才能完成对地震波运动奇妙世界的全部了解,这就是波的衍射(绕射)现象(图2.12)。当一列水波遇到一障碍,如一突出水面的垂直管子,波能的大部分能量反射走了,但有些波将绕着管子进入阴影,因而管子后面的水并不完全平静。事实上所有类型的波的衍射——无论是水、声或地震波都引起它们从直线路径偏移,暗淡地照亮障碍物后面的区域。

图2.12 海波被绕射传播到海角屏蔽的后面海面

理论和观察一致得出:长波比较短的波向平静带偏折更多。就是说,像频散一样绕射是波长的函数。对地质解释最重要的一点是P波和S波及面波没有被异常的岩石包体完全阻止,一些地震能量绕过地质构造绕射,另一些通过它们折射。

在 ansys 中如何 施加 地震波

三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据: -0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1 acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度 SOLVE

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震波使用说明

地震波使用说明 此目录下提供了四类场地土的地震波时程曲线和上海人工波。 按照场地土类型(1,2,3或4),选择时程曲线。在定义时程工况时,对于多遇或罕遇地震,按比例调整时程曲线的最大值。中国抗震规范规定,作为抗震计算中底部剪力法和振型分解反应谱法的补充方法,对于特别不规则,特别重要的和较高的结构应采用时程分析法进行多遇地震下的补充计算。 可取多条时程曲线的计算结果的平均值与振型分解反应谱法计算结果的较大值。 采用时程分析法时,应咱建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。 其加速度时程最大值可按规范中对于多遇和罕遇地震在不同烈度下的值。 弹性时程分析时,每条时程曲线计算所得结构底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构底部剪力的平均值不应小于振型分解反应谱法计算结果的80% 。 可使用弹塑性时程分析法计算罕遇地震下结构的变形。 时程分析是一个承受随时间变化的指定荷载结构的逐步动态反应分析,可以是线性或非线性的。 此章对时程分析进行一般的描述,特别是线性时程分析。 定义时程函数 用户可使用“从文件中添加函数”,导入已定义的文本文件,即实测的时程曲线;也可使用程序内置的时程函数。

时程函数定义对话框 时程函数定义对话框中的条目解释如下: ?函数名 通过在编辑框中直接键入以指定或修改时程函数的名称。 ?函数文件 1.在函数文件域点击浏览按钮以调出一个对话框,在此可找出包含时程函数的 文本文件名。注意文件名显示在文件名框中 2.在 "要跳过的标题行" 编辑框中输入一个希望ETABS在文本文件中跳过的 行数。 3.在 "每行要跳过的前缀字符" 编辑框中输入一个希望ETABS在文本文件中 每行要跳过的字符数。 4.在 "每行的点数" 编辑框中输入一个数告诉ETABS文本文件每行的绘图点 数。

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论 摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。 关键词:时程分析、有限元软件、钢筋混凝土剪力墙 Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same. Keywords: time history analysis, finite element software, reinforced concrete shear walls 一、引言 在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。由于结构的刚度不是无限大,在结构上的加速度反应与基础输入的加速度并不相同。在很多时候,结构的加速度比基础输入的加速度更大,即对输入的加速度有一个动力放大效应。在单自由度弹性体系中,体系最大绝对加速度与地面运动最大加速度的比值,即称为动力系数[2] (1) 动力系数与结构的动力学特性和输入的地震波的频率特性有关。它与地震系数k的乘积即为单自由度体系的地震影响系数。 因此,从原理上讲,时程分析是将地震波的加速度时程曲线作用到结构的基础约束处,得到上部结构的各种地震反应。但是在不同的软件中,其实现方

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

abaqus如何施加地震波

施加地震波: 1 *amplitude,name=amp,input=seismicdata.dat 输入地震波 2 *boundary,type=acceleration,amplitude=amp施加荷载 方法:module选load,在tools-----amplitude-----creat默认的continue在Edit A mplitude里面输入时间和加速度,点OK。点creat boundary condition,涌现对 话框creat boundary condition,选择acceleration/angular acceleration,continu e---选择要施加的边界---done----涌现对话框edit bondary condition对话框,在 amplitude里选择你所定义的时间和加速度。点ok就完工了。 在网上查了些方法: module选load,在tools-----amplitude-----creat默认的continue在Edit Amplitude 里面输入时间和加速度,点OK。点creat boundary condition,出现对话框creat boundary condition,选择acceleration/angular acceleration,continue---选择要施加的边界---done----出现对话框edit bondary condition对话框,在amplitude里选择你所定义的时间和加速度。点ok就完工了。 这是在CAE里输入地震波的方式,我用的方法是直接在inp文件里加地震波的。 首先在CAE里建好模型,定义两个分析步。 第一个分析步是加自重,采用线性加载的方式。 (a) 加载方式:ABAQUS在施加Gravity时,默认为Instantaneous(瞬时加载),如果把结构自重以瞬间加载方式加到结构上,相当于对结构施加了一个脉冲荷载,会引起结构在竖向的振动,在不考虑结构阻尼的情况,这种振动会一直持续下去。如果是混凝土结构,这种竖向振动也会造成混凝土受拉损伤,所以这种加载方式不太合理。 (b)新建加载方式:创建一个新的Amplitude,Type=smooth tpye,0时刻Am=0,然后再选择一个0.5s~1s时刻,Am=1,在这个区间内线性插值,实现幅值从0到1。这种方式加载要优于上述瞬时加载,但是在起初的0.5s(或者1s,即smooth tpye中设置的终点时间)内计算结果是不准确的,所以要把这部分的计算结果剔除,剔除方法就是,创建2个step,第一个step主要分析自重作用,待自重稳定后开始第二个step地震时程反应分析。 第二个分析步就是加地震波。 输入地震波有两种方法: 1、在如下位置加入下面加黑的字体部分。格式如下:时间,地震波,时间,地震波,时间, 地震波,时间, 地震波…………每行8个数据(我下到的地震波文件是不带时间的,自己用C++处理了一下)。%%%%%%%%%%%%%%%%%%%%%% *End Assembly *Amplitude, name=Amp-1 0.005, -7.5e-08, 0.01, -3.55e-07, 0.015, -7.03e-07, 0.02, -4.53e-07 0.025, 1.82e-06, 0.03, 7.01e-06, 0.035, 1.5e-05, 0.04, 2.49e-05 0.045, 3.54e-05, 0.05, 4.5e-05, 0.055, 5.2e-05, 0.06, 5.5e-05 ………………

有关地震和地震波的基本概念

教师启发学生活动

教学过程【导入新课】同刮风下雨一样,地震是一种自然 现象,这种自然现象与地球内部运动有关。地震 时,地面上下颠,左右晃,颠簸震撼,“如行舟于 江河大海之中”今天我们就共同来了解一下有关 地震和地震波的基本概念。 【讲授新课】 【板书】 一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 【讲解】 平常所说的震中一般是指微观震中,是由地震仪 器记录到的震相确定的。宏观真震中是地震破坏 最严重的中心。因地壳结构的不均匀性,断裂错 动情况的差异性等原因,微观震中和宏观震中一 般是不一致的,但相去不远,一般相差10千米内。 【板书】 震源深度:从地面到震源的距离 震源深度分类:浅源地震 中源地震 深源地震 【讲述】 类别震源深震例 同学们共同阅读课本震源、震中 和震源深度,之后共同来学习 课题有关地震和地震波的基本概念课时 1 时间

教学内容震源,震中距和震源深度,纵波和横波,震中距,地震三要素,震级、烈度和等震线 教学目标 通过对地震基本知识的了解,让学生掌握有关地震的一些基本概念,并且让学生学到一些基本的地震常识。 德育目标了解灾难,学会在灾难中迅速逃生,急中生智教学重点震源,震中和震源深度 教学难点横波和纵波 板书设计一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 二、纵波和横波 纵波:方向:与波的传播方向一致 传播地点:在地球内部传播 过程:在传播过程中,物质发生体积胀缩变化,传播速度较快。 横波:方向:震动方向与波传播的方向垂直 过程:物质发生剪切变形,体积不变 传播地点:只能通过固体传播,不能通过液体或气体传播,传播速度较慢。 三、震中距 类别地面现象 地方震100千米以内 近震100~1000千米 远震1000千米以外 四、地震三要素 地震发生的时间 地点 震级 五、震级、烈度和等震线 1、震级:地震本身能量的大小 2、烈度 3、震级与烈度的关系 4、等震线 教观察初中学生对于地震灾害的默写只是的理解和接受程度,决定自己的讲

1地震波

地震波 地震波 地震波是指从震源产生向四外辐射的弹性波。 分类 地震波按传播方式分为三种类型:纵波、横波和面波。 纵波、横波 纵波,又称P波,是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,它使地面发生上下振动,破坏性较弱。 横波,又称S波,是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,它使地面发生前后、左右抖动,破坏性较强。 面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 P波和S波的实际传播速度取决于岩石的密度和内在的弹性。对线弹性物质而言,当波与运行方向无关时,波速仅取决于两个弹性性质,称为弹性模量:岩石的体积模量E和剪切模量G。

面波 当P波和S波到达地球的自由面或位于层状地质构造的界面时,在一定条件下会产生其他类型地震波。这些波中最重要的是瑞利波和勒夫波。这两类波沿地球表面传播;岩石振动振幅随深度增加而逐渐减小至零。 勒夫波 勒夫波又称Q波。是地震面波中最简单的一种类型。它们是以1912年首次描述它们的勒夫的姓名命名的。是一种表面波通过切变波在表层内的多次内反射而传播。在半无限介质之上出现低速层的情况下,一种垂直于传播方向的在水平面内振动的波。 这个类型的波使岩石质点运动类似SH波,运动没有垂向位移。岩石运动在一垂直于传播方向上在水平面内从一边到另一边。虽然勒夫波不包括垂直地面运动的波,但它们在地震中可以成为最具破坏性的,因为它们常具有很大振幅,能在建筑物地基之下造成水平剪切。瑞利波 瑞利波Rayleighwave,瑞利面波具有相当不同的地面运动。 地震学中称其为R波或L波。于1885年首次由瑞利(LordRayleigh)描述,它们是地震波中最近似水波的。岩石质点向前、向上、向后和向下运动,沿波的传播方向作一垂直平面,质点在该平面内运动,描绘出一个椭圆。勒夫波和瑞利波的速度总比P波小,与S波的速度相

ANSYS地震波的输入

对于地震波的输入,可以把荷载记录作成文件,利用apdl的读取功能读入数据库中。下面的例子是自己编的一个小文件。修改一下可以更简洁。 Fini /config,nres,1000 *dim,aceX,TABLE,3000,1 *dim,aceY,TABLE,3000,1 *dim,aceZ,TABLE,3000,1 *creat,ff *vread,aceX(1,1),acex,txt,,1 (e16.6) *vread,aceX(1,0),acexTT,txt,,,1 (e16.6) ACEX(0,1)=1 *end /input,ff *creat,ff *vread,aceY(1,1),txt,,1 (e16.6) *vread,aceY(1,1),ACETT,,,1 (e17.6) ACEY(0,1)=1 *end /input,ff *creat,ff *vread,aceZ(1,1),txt,,1 (e16.6) *vread,aceZ(1,0),ACETT,,,1 (e17.6) ACEZ(0,1)=1 *end /input,ff !地震波时程记录分成了3个文件,每个文件是一列。分别记录x,y,z方向的加速度。Accett是时间记录。 这样就可以把加速度记录读取到ansys数据库中作为数组。 也可以把加速度记录作成一个文件,这样程序就简单多了。 下面是计算部分语句: /SOLU ANTYPE,trans !求解其自己选了 TM_START=0.01 TM_END=15.00 TM_INCR=0.01 *DO,TM,TM_START,TM_END,TM_INCR TIME,tm

地震勘探原理题库讲解

第一章地震波的运动学 第一节地震波的基本概念 第二节反射地震波的运动学 第三节地震折射波运动学 第二章地震波动力学的基本概念 第一节地震波的频谱分析 第二节地震波的能量分析 第三节影响地震波传播的地质因素 第四节地震记录的分辨率 第三章地震勘探野外数据的野外采集第一节野外工作方法 第二节地震勘探野外观测系统 第三节地震波的激发和接收 第四节检波器组合 第五节地震波速度的野外测定 第四章共中心点迭加法原理 第一节共中心点迭加法原理 第二节多次反射波的特点 第三节多次叠加的特性 第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素 第五章地震资料数字处理 第一节提高信噪比的数字滤波 第二节反滤波 第三节水平迭加 第四节偏移归位 第五节地震波的速度 第六章地震资料解释 第一节地震资料构造解释工作概述 第二节时间剖面的对比 第三节地震反射层位的地质解释 第四节各种地质现象在时间剖面上的特征和解释 第五节地震剖面解释中可能出现的假象

第六节反射界面空间位置的确定 第七节构造图、等厚图的绘制及地质解释 第八节水平切片的解释 一、名词解释 第一章地震波的运动学 1、波动(难度90区分度30) 2、波前(难度89区分度31) 3、波尾(难度89区 分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34) 7、波线(70 、 33) 8、射线(72 、 40) 9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、 子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47) 15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、 动校正(60、 60) 19、几何地震学(70 、 35) 第二章地震波动力学的基本概念 1、动力学(70 、 40) 2、物理地震学(71、 35) 3、频谱(50 、 50) 4、波的发散(90 、 30) 5、波散(90 、 31) 6、频散(80、 35) 7、吸收(70 、 40 ) 8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平 分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40) 第三章地震勘探野外数据的野外采集 1、规则干扰波(90、30) 2、不规则干扰波(90、30) 3、观测系统(80、35) 4、多次 覆盖(65、50) 5、共反射点道集(70、45) 6、检波器组合(90、30) 7、方向特性(75、30) 8、方向效应(90、30) 第四章共中心点迭加法原理 1、共中心点迭加(70、40) 2、水平迭加(60、40) 3、剩余时差(60、50) 第五章地震资料数字处理 1、偏移迭加(75、30) 2、平均速度(85、30) 3、均方根速度(80、30) 4、迭加 速度(70、40) 第六章地震资料解释 1、标准层(50、40) 2、绕射波(40、50) 3、剖面闭合(30、60) 4、三维地震(70、 30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30) 二、填空题 第一章 1、振动在介质中的传播就是()。(90、30) 2、在地震勘探中把入射线、过入射点的界面法线、()三者所决定的平面称为()。(70、50) 3、反射波振幅的大小决定于(),极性的正负决定于(),到达时间先后决定于()。 (40、60) 4、倾斜界面共炮点反射波时距曲线形状(),极小点坐标()。(70、40) 5、地震反射界面是指()。(70、35) 6、折射波形成的条件(),盲区半径()。(75、35) 7、射线总是()波面。(70、40) 8、地面与地下反射界面都是平面,界面以上介质为均匀介质,则地面上纵直测线观测的反 射波时距曲线为()。(65、40) 9、在V(Z)=V0+(1+βZ)连续介质中,反射界面深度为H,如果要观测到该界面的反射 波,那么入射波的最大穿透深度为()。(30、50) 10、当地面和地下反射界面为平面时,共炮点反射波时距曲线极小点处的视速度为()。(35、

地震波的定义

地震波的定义

地震波的定义 地震是地壳的一切颤动,是一种自然现象。其主要能源来自地球的内部,是由地球内部自然力冲击引起的。地壳或地幔中发生振动的地方称为震源。震源在地面上的垂直投影称为震中。震中到震源的距离称为震源深度。地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 发生原理 英文seismic wave.由地震震源发出的在地球介质中传播的弹性波。地球内 地震波 部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。地震震源发出的在地球介质中传播的弹性波。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。 概念介绍 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 传播方式 地震波按传播方式分为三种类型:纵波、横波和面波[1]。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 纵波和横波

现象介绍 我们最熟悉的波动是观察到的水波。当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。这个波列是水波附近的水的颗粒运动造成的。然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。这样,水波携带石击打破的水面的能量向池边运移并在岸边激起浪花。地震运动与此相当类似。我们感受到的摇动就是由地震波的能量产生的弹性 岩石的震动。 假设一弹性体,如岩石,受到打击,会产生两类弹性波从源向外传播。第一类波的物理特性恰如声波。声波,乃至超声波,都是在空气里由交替的挤压(推)和扩张(拉)而传递。因为液体、气体和固体岩石一样能够被压缩,同样类型的波能在水体如海洋和湖泊及固体地球中穿过。在地震时,这种类型的波从断裂处以同等速度向所有方向外传,交替地挤压和拉张它们穿过的岩石,其颗粒在这些波传播的方向上向前和向后运动,换句话说,这些颗粒的运动是垂直于波前的。向前和向后的位移量称为振幅。在地震学中,这种类型的波叫P波,即纵波(图2.1),它是首先到达的波。 地震P波(纵波)和S波(横波)运行时弹性岩石运动的形态 弹性岩石与空气有所不同,空气可受压缩但不能剪切,而弹性物质通过使物体剪切和扭动,可以允许第二类波传播。地震产生这种第二个到达的波叫S 波,即横波。在S波通过时,岩石的表现与在P波传播过程中的表现相当不同。因为S波涉及剪切而不是挤压,使岩石颗粒的运动横过运移方向(图2.1)。这些岩石运动可在一垂直向或水平面里,它们与光波的横向运动相似。P和S波同时存在使地震波列成为具有独特的性质组合,使之不同于光波或声波的物理表现。因为液体或气体内不可能发生剪切运动,S波不能在它们中传播。P和S波这种截然不同的性质可被用来探测地球深部流体带的存在(见第6章)。 相关性质 带偏光眼镜以减弱散射光的人可能熟悉光的偏振现象,只有S波具有偏振现象。只有那些在某个特定平面里横向振动(上下、水平等)的那些光波能穿过偏光透镜。传过的光波称之为平面偏振光。太阳光穿过大气是没有偏振的,即没有光波振动的优选的横方向。然而晶体的折射或通过特殊制造的塑料如偏光眼镜,可使非偏振光成为平面偏振光。 当S波穿过地球时,他们遇到构造不连续界面时会发生折射或反射,并使其振动方向发生偏振。当发生偏振的S波的岩石颗粒仅在水平面中运动时,称为SH波。当岩石颗粒在包含波传播方向的垂直平面里运动时,这种S波称为SV

Midas地震波的选取方法

地震波的选取方法 建筑抗震设计规范(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间要符合规定。 频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期Tg值应接近或相同。特征周期Tg值的计算方法见下面公式(1)、(2)、(3)。 加速度有效峰值按建筑抗震设计规范(GB 50011-2001)中的表5.1.2-2采用。地震波的加速度有效峰值的计算方法见下面公式(1)及下面说明。 持续时间的概念不是指地震波数据中总的时间长度。持时T d的定义可分为两大类,一类是以地震动幅值的绝对值来定义的绝对持时,即指地震地面加速度值大于某值的时间总和,即绝对值|a(t)|>k*g的时间总和,k常取为0.05;另一类为以相对值定义的相对持时,即最先与最后一个k*a max之间的时段长度,k一般取0.3~0.5。不论实际的强震记录还是人工模拟波形,一般持续时间取结构基本周期的5~10倍。 说明: 有效峰值加速度 EPA=Sa/2.5 (1) 有效峰值速度 EPV=Sv/2.5 (2) 特征周期 Tg = 2π*EPV/EPA(3) 1978年美国ATC-3规范中将阻尼比为5%的加速度反应谱取周期为0.1-0.5秒之间的值平均为Sa,将阻尼比为5%的速度反应谱取周期为0.5-2秒之间的值平均为Sv(或取1s附近的平均速度反应谱),上面公式中常数2.5为0.05组尼比加速度反应谱的平均放大系数。 上述方法使用的是将频段固定的方法来求EPA和EPV,1990年的《中国地震烈度区划图》采用了不固定频段的方法分析各条反应谱确定其相应的平台频段。具体做法是:在对数坐标系中同时做出绝对加速度反应谱和拟速度反应谱,找出加速度反应谱平台段的起始周期T0和结束周期T1,然后在拟速度反应谱上选定平台段,其起始周期为T1(即加速度反应谱平台段的结束周期T1),结束周期为T2,将加速度反应谱在T0至T1之间的谱值求平均得Sa,拟速度反应谱在T1至T2之间的谱值求平均得Sv(注:生成谱的时候一定要用对数谱),加速度反应谱和拟速度反应谱在平台段的放大系数采用2.5,按公式(1)、(2)、(3)求得EPA、EPV、Tg。 在MIDAS程序中提供将地震波转换为绝对加速度反应谱和拟速度反应谱的功能(工具>地震波数据生成器,生成后保存为SGS文件),用户可利用保存的SGS文件(文本格式文件)根据上面所述方法计算Sv、Sa、Tg=Sv/Sa。通过Tg值可判断该地震波是否适合当地场地和地震设计分组,然后将抗震规范中表5.1.2-2中的EPA值与Sa相比求出调整系数(即放大系数),将其代入到地震波调整系数中。将地震波转换为绝对加速度反应谱和拟速度反应谱时注意周期范围要到6秒(建筑抗震规范规定)。 建筑抗震设计规范5.1.2条中规定,采用时程分析方法时,应按照场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。所谓“在统计意义上相符”指的是,其平均影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在各周期点上相差不大于20%。 在MIDAS程序中,可选取两组实际强震记录生成两个SGS文件(调整Sa后的),然后将一组人

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

地震波数据生成器SGSw

地震波数据生成器 除了程序提供的30多条实测地震波,一些复杂超限工程在做时程分析时往往需要利用当地安评报告的地震波数据生成自己的时程函数,具体的转换过程是被经常提到的一个问题。 相关命令 工具〉地震波数据生成器... 问题解答 midas提供地震波数据生成器这个专门的工具用于生成自己的时程函数,具体操作步骤如下: 1)打开已安装midas软件的文件夹,找到Dbase文件夹,用记事本打开其中任何 一个后缀为dbs的文件;

2)将安评报告的实测地震波数据完全按上述dbs文件的格式输入后另存,修改后 缀txt为dbs; 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Record;

4)点击Import,导入第2)步中生成的dbs文件,同时可修改地震波三要素中的 有效峰值和持时,保存为一个sgs文件; 5)midas软件中添加时程函数时,导入第4)步生成的sgs文件即可。 相关知识 时程分析往往作为多遇地震的补充计算手段,规范中要求每条时程曲线计算底部剪力结

果不应小于振型分解反应谱法相应结果的65% ,多条时程曲线计算所得底部剪力结果平均值不应小于振型分解反应谱法计算结果的80%。所以选择合适的波很重要,地震波数据生成器还提供时程函数到反应谱的转换,可以和反应谱分析中地震影响系数曲线进行大致的比较,对结果的正确性给予一定的保证。 具体操作步骤如下: 1)同上。 2)同上。 3)打开地震波数据生成器,执行菜单操作Generete-Earthquake Response Spectra;

4)点击Import,导入第2)步中生成的dbs文件,可选择生成多种形式的反应谱,如绝对加速度、相对速度、相对位移等,保存为sgs文件; 5)和时程函数一样,也可以在定义反应谱函数的时候导入第4)步生成的sgs文件。

新输入地震波

[结构分析] 地震波输入的问题 三向输入简化后的单向输入 首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01 -0.413893E-02 -0.168195E+00 0.261523E+01 -0.574753E-02 -0.157890E+00 0.809014E-01 -0.731227E-02 -0.152996E+00 0.119975E+01 -0.876865E-02 -0.138102E+00 0.130902E+01 -0.101067E-01 -0.131582E+00 0.143611E+00 ....................... 然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据: 0.100000E-01 0.200000E-01 0.300000E-01 0.400000E-01 0.500000E-01 0.600000E-01 ....................... 编写如下的命令流文件,并命名为acce.inp *dim,ACCEXYZ,TABLE,2000,3 !01行 *vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行 (3e16.6) !03行 *vread,ACCEXYZ(1,0),time,txt !04行 (e16.6) !05行 ACCEXYZ(0,1)=1 !06行 ACCEXYZ(0,2)=2 !07行,同上 ACCEXYZ(0,3)=3 !08行,同上 finish /SOLU ANTYPE,trans btime=0.01 !定义计算起始时间 etime=15.00 !定义计算结束时间 dtime=0.01 !定义计算时间步长 *DO,itime,btime,etime,dtime time,itime AUTOTS,0 NSUBST,1, , ,1 KBC,1

相关文档
最新文档