发生炉煤气气化原理及净化流程

发生炉煤气气化原理及净化流程
发生炉煤气气化原理及净化流程

发生炉煤气气化原理及净化流程

气化原理

发生炉煤气是通过水蒸气和空气混合形成气化剂后流经炽热的固定燃烧床生成的。空气中所含的氧气、水蒸气与燃料中的碳反应,生成了共含有CO、CO2、H2、CH4、N2等成分的发生炉煤气。

与空气混合的蒸气提高了热效率,并降低了燃烧床的温度,从而控制了熔块的形成。蒸气与碳反应是吸热反应:C+H2O=CO+H2-Q(Q为热量,下同)

当氧气和碳反应时就放出热量:2C+O2=2CO+Q燃烧床的温度取决于气化剂的饱和温度,燃料的粒度、类型及发生炉的炉型。燃烧床的温度是非常重要的,因为对于给定的燃料和炉型,它决定着发生炉煤气的成分:在温度高的情况下,可产生大量的可燃气体。因此,重要的是既保持燃烧床高温而又不会形成熔块。形成熔块的温度取决于燃料的渣融特性,在氧气充足的情况下,还会出现两种反应:2CO+O2=2CO2+Q C+O2=CO2+Q。所以说,CO 的产生并不一定意味着任何碳燃烧都能使煤气的热值降低。另外,一些水蒸气还与CO反应,由于每体积CO转化为CO2时,同时生成了相同体积的H2:CO+H2O=CO2+H2。因此,不会有热损失。在还原层,其温度低于1200℃时,还会出现下面的快速反应:CO2+C=2CO H2O+C=CO+H2

当煤气通过还原带时,可燃气体含量迅速上升,而CO2和水蒸气含量下降。通过还原带后,一些煤气被抽出,流经底部旋风除尘器和强制风冷器,这股煤气称为“底部煤气”,其温度约为400℃左右。

在干馏层,喂入发生炉的燃料,依次被干燥、预热和碳化,生成的蒸气、焦油雾和煤气一块从顶部离开发生炉,这一部分煤气称为“顶部煤气”,其温度保持120℃左右。

现将备好的合格煤(粒度为20~40mm)通过上煤装置贮存在贮煤仓中,再按事先设定好的程序喂入炉内。煤经过干燥、预热后落到燃烧床上。

2、此时,甲段燃烧床上的温度已达1000℃以上(温度由气体反应所得)。在高温、隔绝空气的情况下,煤粒熔化,并干馏。这里对燃烧床的温度要求是比较严格的:如果温度过高,煤粒会因此而来不及熔化,不能充分反应;如果温度过低,又达不到熔化干馏的要求。而燃烧床的温度取决于气化剂的饱和温度、燃料的粒度以及探火棒的作用。

煤的“干馏”分解成轻焦油、重焦油、焦炭、煤气(焦炉气)。其中,轻焦油和煤气先从A 管流出,这部分气体为“顶部煤气”,温度大约120℃。(在“冷煤气发生炉”中,这部分气体没有先抽出,而干馏所得气体中也含有一部分CH4)

3、在“干馏层”所得的重焦油、焦炭(占干馏所得气体的大部分)由于密度比较大,就从燃烧床旁边进入乙段,其温度大约在1000℃~2000℃。在乙段底部的炉栅转动,其目的有三:一是使从甲段中流下来的气体保留在乙段;二是通过对气体剂的作用控制燃烧床的温度;三是过滤反应后的灰渣,使其落到丙段的水内,以便除去。通过顶部加入的水导流到③中,由于高温气化成水蒸气,与甲段下来的气体混合反应:C+H2O=CO+H2(在“冷煤气发生炉”中的水蒸气是直接炉外加热变成水蒸气,再鼓入炉内,这些蒸气称为“外来蒸气”)。另外,由底部的鼓风机要12KPa的压力下把空气通过B鼓进炉内,通过炉栅进入乙段。这时发生了C+CO2=2CO反应。上述两个反应同时进行,使得CO、H2的浓度大大提高,而C、H2O浓度下降。(在“冷煤气发生炉”中没有炉栅,由甲段下来的气体与“外来水蒸气”反应:C +H2O=CO+H2。同时,也发生C+CO2=2CO。这段称为“还原层”。生成的气体上浮,剩下的进入“气化层”。)由于这两个反就都是吸热反应,所以温度降至500℃左右。这部分煤气和着些重焦油、灰渣,通过侧管后,被抽到C管中,并送到洗涤装置中。(在“冷煤气发

生炉”中的导出气体的管道只有一个。炉内物质完全反应后,并着“顶部煤气”一起被抽出炉外,送到洗涤装置中。)气化剩余的灰渣通过炉栅进入④中,内有灰盆、灰犁等除渣装置,当灰渣积累到一定程度,这些装置就启动把灰渣排到炉外。在乙段生成的气体就是“底部煤气”,乙段称为“气化段”。

净化流程

发生炉形成两段独立的煤气流,即“顶部煤气”和“底部煤气”。由于两股煤气性质不同,其净化工序亦不同。“顶部煤气”流经电除焦油器,在这里95%以上的焦油从煤气中析出,暂存于除焦油器下端的贮油槽中。

“底部煤气”首先流经旋风除尘器,除去煤气中的粉尘,然后流经强制冷风器,冷却到120℃左右。此后,两股煤气混合流经洗涤冷却器,冷却到35℃~40℃,洗涤后的混合煤气流经电除轻油器,在这里除去煤气中剩余的粉尘和油类,且暂存在贮油槽中。通过伴热保持其液态,然后定期地通过输送泵将贮油槽内的油类物质送到贮油罐,最后作为焚烧燃料烧掉或由用户出售。

强制风冷器、洗涤冷却器及电除油类器在冷却除尘、净化煤气的过程中,会有相当量的酚液析出,含有部分轻质油的酚液混合液流入油水分离器进行油水分离,分离后的轻质油又流回到贮油槽,酚液则通过酚液缓冲罐后,用输送泵送到贮存罐中。通过伴热保持其液态,然后定期地通过输送泵将贮油槽内的油类物质送到贮油罐,最后作为焚烧燃料烧掉或由用户出售。由电除油类器流出的冷净煤气,其压力维持在2KPa左右,必要时,再用增压机向煤气增压到15至20KPa后,送入脱硫塔进行脱硫,脱硫后的冷净煤气直接送至用户或送入贮气柜(留待后用)。

煤气净化工艺工艺流程..

煤气净化工艺工艺流程及主要设备煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t 干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 序号指标名称单位净化前指标净化后指标 1 NH3g/m36~8 ≤0.05 2 H2S g/m35~7 ≤0.2 3 苯g/m324~40 ≤4 4 焦油g/m3≤0.02 5 萘g/m3≤0.3 4原材料及产品指标

4.1焦油——符合YB/T5075-2010 2号指标 序号指标名称质量指标 1 密度(20℃),g/cm3 1.13~1.22 2 甲苯不溶物(无水基),% ≤9 3 灰分,% ≤0.13 4 水分,% ≤4.0 5 粘度(E80) ≤4.2 6 萘含量(无水基),% ≥7.0(不作考核指标) 4.2硫酸铵—符合GB535-1995一级品 序号指标名称质量指标 1 氮N含量(以干基计),% ≥21 2 含水,% ≤0.3 3 游离酸含量,% ≤0.05 4.3粗苯—符合YB/T5022-1993 序号指标名称质量指标(溶剂用) 1 密度(20℃),g/ml ≤0.900 2 75℃前馏出量(重),% ≤3 3 180℃前馏出量(重),% ≥91% 室温(18~25℃)下目测无可见的不 4 水分: 溶解的水 4.4洗油指标 序号指标名称指标 1 密度(20℃),g/ml 1.03~~1.06 2 馏程(大气压760mmHg),%

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

50万吨年煤气化生产工艺

咸阳职业技术学院生化工程系毕业论文(设计) 50wt/年煤气化工艺设计 1.引言 煤是由古代植物转变而来的大分子有机化合物。我国煤炭储量丰富,分布面广,品种齐全。据中国第二次煤田预测资料,埋深在1000m以浅的煤炭总资源量为2.6万亿t。其中大别山—秦岭—昆仑山一线以北地区资源量约2.45万亿t,占全国总资源量的94%;其余的广大地区仅占6%左右。其中新疆、内蒙古、山西和陕西等四省区占全国资源总量的81.3%,东北三省占 1.6%,华东七省占2.8%,江南九省占1.6%。 煤气化是煤炭的一个热化学加工过程,它是以煤或煤焦原料,以氧气(空气或富氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为可燃性的气体的过程。气化时所得的可燃性气体称为煤气,所用的设备称为煤气发生炉。 煤气化技术开发较早,在20世纪20年代,世界上就有了常压固定层煤气发生炉。20世纪30年代至50年代,用于煤气化的加压固定床鲁奇炉、常压温克勒沸腾炉和常压气流床K-T炉先后实现了工业化,这批煤气化炉型一般称为第一代煤气化技术。第二代煤气化技术开发始于20世纪60年代,由于当时国际上石油和天然气资源开采及利用于制取合成气技术进步很快,大大降低了制造合成

气的投资和生产成本,导致世界上制取合成气的原料转向了天然气和石油为主,使煤气化新技术开发的进程受阻,20世纪70年代全球出现石油危机后,又促进了煤气化新技术开发工作的进程,到20世纪80年代,开发的煤气化新技术,有的实现了工业化,有的完成了示范厂的试验,具有代表性的炉型有德士古加压水煤浆气化炉、熔渣鲁奇炉、高温温克勒炉(ETIW)及干粉煤加压气化炉等。 近年来国外煤气化技术的开发和发展,有倾向于以煤粉和水煤浆为原料、以高温高压操作的气流床和流化床炉型为主的趋势。 2.煤气化过程 2.1煤气化的定义 煤与氧气或(富氧空气)发生不完全燃烧反应,生成一氧化碳和氢气的过程称为煤气化。煤气化按气化剂可分为水蒸气气化、空气(富氧空气)气化、空气—水蒸气气化和氢气气化;按操作压力分为:常压气化和加压气化。由于加压气化具有生产强度高,对燃气输配和后续化学加工具有明显的经济性等优点。所以近代气化技术十分注重加压气化技术的开发。目前,将气化压力在P>2MPa 情况下的气化,统称为加压气化技术;按残渣排出形式可分为固态排渣和液态排渣。气化残渣以固体形态排出气化炉外的称固态排渣。气化残渣以液态方式排出经急冷后变成熔渣排出气化炉外的称液态排渣;按加热方式、原料粒度、汽化程度等还有多种分类方法。常用的是按气化炉内煤料与气化剂的接触方式区分,主要有固定床气化、流化床气化、气流床气化和熔浴床床气化。 2.2 主要反应 煤的气化包括煤的热解和煤的气化反应两部分。煤在加热时会发生一系列的物理变化和化学变化。气化炉中的气化反应,是一个十分复杂的体系,这里所讨论的气化反应主要是指煤中的碳与气化剂中的氧气、水蒸汽和氢气的反应,也包括碳与反应产物之间进行的反应。 习惯上将气化反应分为三种类型:碳—氧之间的反应、水蒸汽分解反应和甲烷生产反应。 2.2.1碳—氧间的反应 碳与氧之间的反应有: C+O2=CO2(1)

焦炉煤气净化工艺流程的选择

焦炉煤气净化工艺流程的选择 (2011-01-24 13:14:42) 标签: 分类:焦化类 煤化工 杂谈 笑看人生 摘要:本文对我国煤气净化工艺的发展进行了回顾,提出了我国焦炉煤气净化工艺发展的方向以及选择工艺流程的原则。并推荐采用的焦炉煤气净化工艺流程以及各单元中应采用的行之有效的环保、节能技术。 1 焦炉煤气净化工艺的历史回顾 我国焦炉煤气净化发展是与炼焦工业的发展紧密相连的。建国以前,我国焦化工业几乎是一片空白。建国以来,随着炼焦工业的发展,煤气净化工艺从无到有,蓬勃发展,技术水平和装备水平得到了不断提高。概括起来,大体上经历了三个阶段。第一个阶段是从20世纪50年代末到60年代中期,我国焦化厂的焦炉煤气净化工艺主要是以50年代从原苏联引进的工艺为基础、消化翻板饱和器法生产硫铵的老流程,以当时的武钢焦化厂、包钢焦化厂、鞍钢化工总厂、太钢焦化厂、马钢焦化厂等一批大型厂为代表。但该工艺存在流程陈旧、能耗高、环保措施不健全、装备水平低等问题。主要表现在初冷采用立管冷却器,冷却效率低;硫铵装置设备庞大,煤气阻力大,产品质量差,设备腐蚀严重;没有配套建设脱硫装置,终冷系统不能闭路,对大气和水体污染严重;在粗苯蒸馏系统采用蒸汽法,不但耗用大量蒸汽,产品质量也得不到保证。第二阶段是从60年代中期至70年代末期,随着我国自行设计的58型焦炉不断推广及炭化室高5.5米焦炉的诞生,对煤气净化工艺开展了与石油、化工行业找差距进行技术革新的阶段。在广大技术人员的努力下,在此期间我们将初冷流程改为二段冷却;开发了多种油洗萘代替终冷水洗萘;研制成功了终冷水脱氰生产黄血盐,解决了终冷水的污

煤气净化工艺工艺流程..

煤气净化工艺工艺流程及主要设备 煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t 干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 序号指标名称单位净化前指标净化后指标 1 NH3g/m36~8 ≤0.05 2 H2S g/m35~7 ≤0.2 3 苯g/m324~40 ≤4 4 焦油g/m 3 ≤0.02 5 萘g/m 3 ≤0.3 4原材料及产品指标 4.1焦油——符合YB/T5075-2010 2号指标 序号指标名称质量指标 1 密度(20℃),g/cm3 1.13~1.22

序号指标名称质量指标 2 甲苯不溶物(无水基),% ≤9 3 灰分,% ≤0.13 4 水分,% ≤4.0 5 粘度(E80) ≤4.2 6 萘含量(无水基),% ≥7.0(不作考核指标)4.2硫酸铵—符合GB535-1995一级品 序号指标名称质量指标 1 氮N含量(以干基计),% ≥21 2 含水,% ≤0.3 3 游离酸含量,% ≤0.05 4.3粗苯—符合YB/T5022-1993 序号指标名称质量指标(溶剂用) 1 密度(20℃),g/ml ≤0.900 2 75℃前馏出量(重),% ≤3 3 180℃前馏出量(重),% ≥91% 4 水分:室温(18~25℃)下目测无可见的不 溶解的水 4.4洗油指标 序号指标名称指标 1 密度(20℃),g/ml 1.03~~1.06 2 馏程(大气压760mmHg),% 230℃前馏出量(容),% ≥3.0 300℃前馏出量(容),% ≥90.0 3 酚含量(容),% ≤0.5 4 萘含量(重),% ≤8 5 水分≤1.0

煤气发生炉安全评价

1 概述 评价目的 为贯彻“安全第一,预防为主”的方针,加强对危险化学品的管理,保证生产装置在劳动安全卫生方面符合国家的有关法律、法规、标准和规定,确保企业生产运行安全。 找出该单位煤气站装置中存在的主要危险、有害因素及其产生危险、危害后果的主要条件。找出煤气站存在的主要安全隐患,提出消除、预防或降低装置危险性、提高装置安全运行等级的安全对策与措施,为装置的生产运行以及日常管理提供依据,并为上级主管部门实行安全监察管理提供依据。 评价依据 国家、地方有关法规、文件 1)《中华人民共和国安全生产法》[中华人民共和国主席令(2002)第70号]; 2)《危险化学品安全管理条例》[中华人民共和国国务院令(2002)第344号]; 3)《中华人民共和国消防法》(中华人民共和国主席令第4号);4)《压力容器安全技术监察规程》[劳锅字8号(1990)]; 5)《建设项目(工程)劳动安全卫生监察规定》[原劳动部(1996)3号令]; 6)《关于建设项目(工程)劳动安全卫生综合评价有关问题的通知》

[山东省安全生产监督管理局鲁安监发(2002)28号]; 7)《山东省安全生产监督管理规定》(山东省人民政府令141号);8)《××市消防管理条例》; 9)××市人民政府办公厅关于开展工业企业煤气安全专项整治活动的通知[淄政办发电(2004)19号]; 10)《关于印发〈安全评价通则〉的通知》[安监管规划字(2003)37号]。 本项目有关技术文件、资料 1)《××峰霞陶瓷有限公司专项安全评价技术服务合同书》; 2)××峰霞陶瓷有限公司煤气站项目其他有关技术资料。 评价标准、规范、规程 1)《建筑设计防火规范》(GBJ16-87,2001修订版); 2)《工业企业总平面设计规范》(GB50187-93); 3)《发生炉煤气站设计规范》(GB50195-94); 4)《工业企业煤气安全规程》(GB6222-86); 5)《建筑抗震设计规范》(GB50011-2001); 6)《建筑物防雷设计规范》(GB50057-94,2000版); 7)《爆炸和火灾危险环境电力装置设计规范》(GB50058-92);8)《工业企业噪声控制设计规范》(GBJ87-85); 9)《噪声作业分级》(LD80-1995); 10)《有毒作业分级》(GB12331-90); 11)《职业性接触有毒物程度分级》(GB5044-85);

生产工艺流程示意图和工艺说明

AHF生产工艺流程示意图和工艺说明 干燥的萤石粉经螺旋机进入斗式提升机、卸入萤石粉储仓,再由储仓定时加入萤石计量斗,经电子秤,变频调节螺旋输送机将萤石粉定量送入反应器。 来自硫酸储槽的98%硫酸经电磁流量计、调节阀调节流量送至H2SO4吸收塔吸收尾气中的HF,而后进入洗涤塔洗涤反应气体夹带的粉尘及其夹带的重组分,然后进入混酸槽。发烟硫酸经电磁流量计、调节阀调节流量与98%硫酸配比计量后一并送至混酸槽。在混酸槽中经过混合,使SO3与98%硫酸中的水分及副反应水分充分反应,达到进料酸中水含量为零,而后进入反应器。进入反应器的萤石和硫酸严格控制配比,在加热的条件下氟化钙和硫酸进行反应。反应所需热量由通过转炉夹套的烟道气提供。烟道气来自燃烧炉由煤气燃烧产生。煤气发生炉产生的煤气经管道输送至燃烧炉。离开回转反应炉夹套的烟道气经烟道气循环风机大部分循环回燃烧炉,少量烟道气经烟囱排空。反应系统为微负压操作,炉渣干法处理。 反应生成的粗氟化氢气体,首先进入洗涤塔除去水分、硫酸和粉尘。洗涤塔出来的气体经粗冷器将其大部分水分、硫酸冷凝回洗涤塔。粗冷后的气体经HF水冷、一级冷凝器和二级冷凝器将大部分HF 冷凝,冷凝液流入粗氟化氢中间储槽;未凝气为SO2、CO2、SiF4、惰性气体及少量HF进入H2SO4吸收塔,用硫酸吸收大部分HF后进入尾气处理系统。粗HF凝液自粗HF中间储槽定量进入精馏塔,塔底为重组分物料,返回洗涤酸循环系统,塔顶HF经冷凝后进入脱气塔,从脱气塔底部得到无水氟化氢经成品冷却器冷却后进入AHF检验槽,分

析合格后进入AHF 储槽,后送至充装工序灌装槽车或钢瓶出售。从脱气塔顶排出的低沸物和部分未凝HF 气一起进入H 2SO 4吸收塔,在此大部分HF 被硫酸吸收。工艺尾气经水洗、碱洗后,除去尾气中的SiF 4及微量HF ,生成氟硅酸,废气经洗涤处理后达标排放。生产装置采用DCS 集散控制系统。 其化学反应过程如下: CaF 2+H 2SO 4?→? 2HF ↑+CaSO 4 (1) SiO 2+4HF ?→? SiF 4+2H 2O (2) SiF 4+2HF ?→ ?H 2SiF 6 (3) CaCO 3+H 2SO 4 ?→ ?CaSO 4+H 2O +CO 2 (4) ·生产采取的工艺技术主要包括7个生产装置 萤石干燥单元 萤石给料计量单元 酸给料计量单元 反应单元 精制单元 尾气回收单元 石膏处理单元 附:生产工艺流程示意图 ↓ ↓

煤气净化车间技术操作规程

煤气净化二车间岗位技术操作规程 2010年4月

目录 第一章生产交接班制度- 2 - 第二章冷鼓工段岗位操作规程- 4 - 第三章脱硫工段岗位操作规程- 26 - 第四章硫铵工段岗位操作规程- 38 - 第五章粗苯工段岗位操作规程- 55 - 第六章油库工段岗位操作规程- 70 - 第七章循环水岗位操作规程- 75 - 第八章制冷站岗位技术操作规程- 83 - 第九章岗位安全规定- 105 - 第十章电动葫芦操作规程- 109 - 第十一章制氮机操作规程113 第十二章换热站操作规程118 第十三章空压站操作规程121 第十四章生产、生活、消防水泵站操作规程124 第一章生产交接班制度 煤气净化生产是连续性很强的生产行业,为了保证连续、稳定、安全、均衡生产,特别是三班连续运行的生产岗位,必须在生产班长的统一组织下,有序地进入生产现场,进行岗位生产对口交接班。 一、交班: 1、各生产岗位应努力做好本职工作,圆满完成生产任务,并为下一班生产打好基础,做好交班准备。 2、交班前应进行一次岗位生产全面检查,稳定生产,使各项技术指标符合技术规定。 3、检查各设备运转正常,备用设备完好,且能够随时启动投入生产。 4、检查各工艺管道,水封槽排液管,确保畅通无堵塞。

5、把岗位生产操作工具、消防器材等检查整理好,如有使用、丢失或损坏,登计说明。 6、下班前把所属设备及环境卫生搞好。 7、认真填写交班记录、生产记事和入库产品产量、质量。 8、接班者进入现场后,向接班者详细介绍本班生产情况、发生的问题及处理经过和处理结果。 9、虚心听取接班者意见,交接过程中发现问题,由交班者负责,接班者应积极配合处理。 10、接班者未到岗时,交班者应坚守岗位,保证正常生产,同时向生产班长请示予以解决,不得随意自行离岗。 11、认真完成生产交接后,并取得接班者同意,方可离岗下班。 12、下班后应积极参加班后学习和班后会。 二、接班: 1、积极参加班前学习和班前会,听取有关人员班前点名,布置任务和进行班前安全教育。 2、提前15分钟进入岗位,进行检查接班。 3、对上一班的生产、设备运行情况进行全面认真检查,发现问题及时向交班者提出,并协助处理。 4、认真检查生产工具、消防器材、必需物品是否完好整齐,发现丢失、损坏,及时提出,并做好记录。 5、查交班者执行各项规章制度情况,对违章情况进行批评教育。 6、虚心听取交班者介绍上一班的生产情况,认真审阅原始记录和交班记录。对偏离工艺技术指标现象,请交班者说明情况和原因,并征求交班者对纠正操作的建议。 7、替班者到所替工种岗位接班,应担负所替岗位工种的全部工作责任。 8、接班过程发生问题,应由交班者负责。

焦炉煤气净化工艺流程的评述

作者:范守谦时间:2008-7-8 10:25:53 焦炉煤气净化工艺流程的评述 范守谦(鞍山焦化耐火材料设计研究院) 焦炉煤气净化工艺流程的选择,主要取决于脱氨和脱硫的方法。众所周知,在炼焦过程中,煤中约有30%的硫进入焦炉煤气,95%的硫以硫化氢的形式存在。焦炉煤气中一般含有硫化氢6~8g /m3 , 氰化氢 1. 5~2g/m'。若不事先脱除,就有50%的氰化氢和10%~40%的硫化氢进入氨、苯回收系统,加剧了设备的腐蚀,还会增加外排污水中的酚、氰含量。含有硫化氢和氰化氢的煤气作为燃料燃烧时, 会生成大量SO 2和NO x 而污染大气。为了防止氨对煤气分配系统、煤气主管以及煤 气设备的腐蚀和堵塞,在煤气作为燃料使用之前必须将其脱除。20世纪70年代以前,由于焦炉煤气主要供冶金厂作工业燃料,因此,大部分焦化厂的煤气净化工艺都没有设置脱硫装置,而回收氨的装置几乎全采用半直接法饱和器生产硫铵流程。 随着国民经济的发展以及我国环保法规的不断完善和日益严格,在焦炉煤气净化工艺过程设置脱硫脱氰装置和改进脱氨工艺就势在必行。进入80年代以后,改革开放逐步深入,我国焦化行业和煤气行业相继从国外引进了多种煤气净化装置,国内科技人员在原有基础上也开发研制了新型脱硫工艺,大大推动了我国焦炉煤气净化工艺的发展。现将几种脱氨和脱硫方法作扼要介绍和论述。 1 氨的脱除 1.1 硫铵工艺 生产硫铵的工艺是焦炉煤气氨回收的传统方法,我国在20世纪60年代以前建成的大中型焦化厂均采用半直接法饱和器生产硫铵,该工艺的主要缺点是设备

腐蚀严重,硫铵质量差,煤气系统阻力大。随着宝钢一期工程的建设,我们引进了酸洗法生产硫铵工艺,该工艺由酸洗、真空蒸发结晶以及硫铵离心、干燥、包装等三部分组成。与饱和器法相比,由于将氨吸收和硫铵结晶操作分开,可获得优质大颗粒硫铵结晶。酸洗塔为空喷塔,煤气系统的阻力仅为饱和器法的1/4,可大幅度降低煤气鼓风机的电耗。采用干燥冷却机将干燥后的硫铵进一步冷却,以防结块,有利于自动包装。我院开发的酸洗法工艺也已成功地用于天津煤气二厂。随着宣钢、北焦的建设,我们还引进了间接法饱和器生产硫铵工艺,该工艺是从酸性气体中回收氨,其产品质量要比饱和器法好,但因在较高温度(100℃左右)下操作,对设备和管道材质要求高,加之饱和器尺寸并不比半直接法小,因此投资高于半直接法。鞍钢二回收还从法国引进了喷淋式饱和器以代替半直接法的饱和器。喷淋式饱和器的特点是煤气系统阻力小,设备尺寸也相应减小,硫铵质量有所提高。但是,不管采用那种生产硫铵的工艺,从经济观点分析,其共同的致命缺点是回收硫铵的收入远远不够支付其生产费用。 1.2 无水氨工艺 另一种可供选择的脱氨方法是用弗萨姆法生产无水氨。弗萨姆工艺是由美钢联开发的,它可以从焦炉煤气中吸收氨(半直接法),也可以从酸性气体中吸收氨(间接法)。 宝钢二期工程是从美国USS公司引进的从焦炉煤气中吸收氨的弗萨姆装置,焦炉煤气导入吸收塔,,体气体xn磷酸铵溶液与煤气直接接触,吸收煤气中的氨,然后经解析、精馏制取产品无水氨。该工艺主要是利用磷酸二氢铵具有选择性吸收的特点,从煤气中回收氨,并精馏制得纯度高达99. 98 %的无水氨。但由于介质具有一定的腐蚀性,且解吸、精馏操作要求在较高的压力下进行,故对设备材质要求较高。但该工艺的经济性受生产规模影响较大,规模过小时,既不经济也不易操作。 攀钢焦化厂在引进AS法脱硫的同时引进了间接法弗萨姆法无水氨装置,将脱酸塔顶的酸性气体引入间接法弗萨姆装置的吸收塔,用磷酸溶液吸收酸性气体中的氨。由于不与煤气直接接触,几乎不产生酸焦油,与半直接法相比,可大大简化分离酸焦油的处理设施。弗萨姆装置生产的无水氨纯度高,产值也较高,经济效益较好,但储运不方便。 1.3 氨分解工艺

焦炉煤气净化工艺的有关思考

龙源期刊网 https://www.360docs.net/doc/9216354303.html, 焦炉煤气净化工艺的有关思考 作者:郭晓林 来源:《中国化工贸易·中旬刊》2018年第07期 摘要:焦炉煤气装置主要包括煤气脱苯、煤气脱硫、煤气脱氮等几个环节,不同工序具 有不同的施工工艺。在全球环保法规日益严格的背景下,以往煤气净化技术弊端逐渐凸显。而焦炉煤气中含有的HCN、H2S及其他燃烧后废料对大气也造成了严重的影响。因此本文根据现阶段焦炉煤气净化主要工序特点,对焦炉煤气净化工艺进行了优化分析,以便为焦化工业的可持续发展提供有效地借鉴。 关键词:煤炉;煤气;净化 某焦化厂主要包括4座4.2m焦炉、1座6.2m焦炉,其设计煤气处理能力为 125000Nm3/h。随着该焦化企业生产规模拓展,在2017年建成投产后,年度设计生产能力由 以往的210万t焦炭上升到300万t焦炭,同时焦炉煤气总发生量也由以往的120000Nm3/h上升到150000Nm3/h。这种情况下,实际生产系统指标就出现不匹配风险。本文对该焦化企业焦炉煤气净化工艺进行了优化分析。 1 焦炉煤气净化工艺主要工序 ①焦炉煤气脱氮:在焦炉干馏环节,大多数氮可转化为以氨根离子为基础的含氮化合物,在煤气粗提取环节也存在6-8g/m3的氮。由于氨具有腐蚀性质,因此在实际处理过程中,需要采用氨水焦油分离装置将其分层分离。 ②焦炉煤气脱苯:焦炉中煤气脱苯主要依据理论脱苯标准,依次通过冷冻、吸附、洗涤等工序进行处理。在焦化工业生产过程中,依据焦油来源共分为石油洗油洗苯、焦油洗油洗苯两种类型。在粗焦油加工系统的大规模焦化企业,大多选择自产焦油洗油洗涤模式。 ③焦炉煤气脱硫:在焦炉煤气中存在着少量的硫化氢及氰化氢气体。现阶段我国煤气脱硫方式主要包括干式氧化、湿式吸收、湿式氧化等几种类型。其中干式氧化主要采用氧化铁箱法,整体使用较普遍。 2 焦炉煤气净化工艺的改进 2.1 环保技术 焦炉煤气净化工艺根据净煤气质量指标及焦化产业市场标准,具有不同的工艺流程。而系统工艺改进则是通过物料流、能源流、信息流、资金流等各个环节设计控制及优化组织,结合环保技术的合理应用,实现过程分析优化。

焦炉荒煤气净化工艺

焦炉荒煤气净化工艺 焦炉荒煤气中一般含硫化氢为4~8 g/m3、含氨为4~9 g/m3、含氰化氢为0.5~1.5 g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人身均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOx)。二氧化硫(SO2)与氮氧化物(NOx)都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外在冶金工厂,高质量钢材的轧制,对其使用的燃气含硫也有较高的要求。随着科学技术的进步和焦化工业的发展,产生了众多各具特色的煤气脱硫洗氨净化工艺。 HPF 法脱硫属湿式催化氧化法脱硫工艺,是PDS 脱硫工艺的改进工艺,两者的区别在于所使用的催化剂略有差异:前者使用对苯二酚加PDS 及硫酸亚铁的复合催化剂(HPF),后者使用PDS 催化剂。HPF 催化剂在脱硫和再生过程中均有催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF 为催化剂的湿式氧化脱硫。煤气中的H2S 等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为硫。HPF 法脱硫选择使用HPF(醌钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。 HPF 法脱硫工艺置于喷淋式饱和器法生产硫铵的工艺之后。从鼓风冷凝工段来的温度约55 ℃的煤气,首先进入直接式预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至30~35 ℃;然后进入脱硫塔。 工艺特点 (1)以氨为碱源、HPF 为催化剂的焦炉煤气脱硫脱氰新工艺,具有较高的脱硫脱氰效率(脱硫效率99%,脱氰效率80%),而且流程短,不需外加碱,催化剂用量小,脱硫废液处理简单,操作费用低,一次性投资省。 (2)硫磺收率一般为60%,硫损失约为40%,其废液量约为300~500 kg/(103m3·h),废液回兑至配煤中,对焦碳的质量有一定的影响。 (3)硫膏产品质量不理想,外观多为暗灰色,纯度90%左右,产品销售难度大。若后续能再配置硫膏生产硫酸的工艺,硫酸用于硫铵生产,则HPF工艺不失为一种完善的工艺。

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

煤气净化车间工艺流程

1.煤气净化车间 3.1概述 本煤气净化车间是与年产2×96万吨冶金焦的焦炉配套的,煤气处理量为115590 m3/h。其组成为:冷凝鼓风工段、脱硫工段、硫铵工段(含剩余氨水蒸氨装置)、终冷洗苯工段、粗苯蒸馏工段、油库工段。 3.2设计基础数据 3.2.1 净化前煤气中杂质含量 杂质成分NH3H2S HCN 苯 含量g/m3 6 6 1.5 34 3.2.2净化后煤气中杂质含量 杂质成分焦油NH3H2S HCN 苯萘含量g/m30.05 0.05 0.02 0.3 4 0.3 3.2.3产品产率 焦油 3.5%(对干煤) 硫铵0.84%(对干煤) 粗苯 1.0%(对干煤) 3.2.4焦油——符合YB/T5075-93 密度(20?C) 1.15~1.21g/cm3 甲苯不溶物(无水基) 3.5~7% 灰分不大于0.13% 水分不大于4.0%

粘度(E80) 不大于4 3.2.5硫磺: 含硫≥90% 3.2.6硫铵——符合GB535-1995 氮(N)含量(以干基计)≥21.0% 水分(H2O)含量≤0.3% 游离酸H2SO4含量≤0.05% 3.2.7粗苯——符合YB/T5022-93 外观黄色透明液体 密度(20?C) 0.871~0.900g/cm3馏程: 180℃前馏出量(重)不小于93% 水分室温(18~25℃)下目测无可见的不溶解的水 3.3煤气净化工艺流程、特点及主要操作指标 3.3.1冷凝鼓风工段 a)工艺流程 来自焦炉~80?C的荒煤气,与焦油和氨水沿吸煤气管道流至气液分离器,气液分离后的荒煤气由分离器上部出来,进入四台并联操作的横管初冷器上部,在此用32?C的循环水将煤气冷却至~35?C;由横管初冷器下部排出的煤气,进入直冷塔下部,用直冷塔循环水喷洒煤气,将煤气冷却至~22?C;由直冷塔上部排出的煤气,进入三台并联操作的电捕焦油器,捕集煤气中夹带的焦油,再由煤气鼓风机压

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。

高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,后直冷的“间直冷工艺”对焦炉煤气进行冷却。间直冷工艺的优点在于煤气在通过直冷塔冷却的同时,可对煤气中夹带的煤粉进行洗涤、净化,使去后续装置的煤气更加洁净;缺点是工艺流程较长,运行费用高,脱萘效果差,一般需单独设置后续脱萘装置。 焦炉煤气的排送 焦炉煤气的排送由煤气鼓风机完成。从焦炉来的荒煤气经初冷工艺冷凝冷却后,通常经电捕焦油器(当电捕设在负压侧)进入煤气鼓风机,由煤气鼓风机加压后,送至后续装置。 目前,国内焦化厂煤气鼓风机较多采用电动离心式煤气鼓风机,其流量调节通常采用液力偶合器调速、电机变频调速或鼓风机前导向技术完成上述三种煤气鼓风机流量调节技术均可根据煤气输送负荷的变化,对煤气流量进行自动调节、降低鼓风机的电能消耗、降低运行费用;其中,变频技术由于技术成熟,节能效果显著,在工业生产中应用广泛,因此值得广泛采用。 除电动煤气鼓风机外,蒸汽透平驱动的煤气鼓风机在国内外煤气排送工艺中也常采用。由于同电动鼓风机相比,汽动鼓风机具有能源利用率更高,更加节能

延迟焦化工艺流程

延迟焦化 1. 延迟焦化工艺流程: 本装置的原料为温度90℃的减压渣油,由罐区泵送入装置原料油缓冲罐,然后由原料泵输送至柴油原料油换热器,加热到135℃左右进入蜡油原料油换热器,加热至160℃左右进入焦化炉对流段,加热至305℃进入焦化分馏塔脱过热段,在此与来自焦炭塔顶的热油气接触换热。原料油与来自焦炭塔油气中被凝的循环油一起流入塔底,在380~390℃温度下,用辐射泵抽出打入焦化炉辐射段,快速升温至495~500℃,经四通阀进入焦碳塔底部。 循环油和减压渣油中蜡油以上馏分在焦碳塔内由于高温和长时间停留而发生裂解、缩合等一系列的焦化反应,反应的高温油气自塔顶流出进入分馏塔下部与原料油直接换热后,冷凝出循环油馏份;其余大量油气上升经五层分馏洗涤板,在控制蜡油集油箱下蒸发段温度的条件下,上升进入集油箱以上分馏段,进行分馏。从下往上分馏出蜡油、柴油、石脑油(顶油)和富气。 分馏塔蜡油集油箱的蜡油在343℃温度下,自流至蜡油汽提塔,经过热蒸汽汽提后蜡油自蜡油泵抽出,去吸收稳定为稳定塔重沸器提供热源后降温至258℃左右,再为解吸塔重沸器提供热源后降温至242℃左右,进入蜡油原料油换热器与原料油换热,蜡油温度降至210℃,后分成三部分:一部分分两路作为蜡油回流返回分馏塔,一路作为下回流控制分馏塔蒸发段温度和循环比,一路作为上回流取中段热;一部分回焦化炉对流段入口以平衡大循环比条件下的对流段热负荷及对流出口温度;另一部分进水箱式蜡油冷却器降温至90℃,一路作为急冷油控制焦炭塔油气线温度,少量蜡油作为产品出装置。 柴油自分馏塔由柴油泵抽出,仅柴油原料油换热器、柴油富吸收油换热器后一部分返回分馏塔作柴油回流,另一部分去柴油空冷器冷却至55℃后,再去柴油水冷器冷却至40℃后分两路:一路出装置;另一路去吸收稳定单元的再吸收塔作吸收剂。由吸收稳定单元返回的富吸收油经柴油富吸收油换热器换热后也返回分馏塔。 分馏塔顶油气经分馏塔顶空冷器,分馏塔顶水冷器冷却到40℃,流入分馏塔顶气液分离罐,焦化石脑油由石脑油泵抽出送往吸收稳定单元。焦化富气经压缩机入口分液罐分液后,进入富气压缩机。 焦炭塔吹汽、冷焦产生的大量蒸汽及少量油气,进入接触冷却塔下部,塔顶部打入冷却后的重油,洗涤下来自焦炭塔顶大量油气中的中的重质油,进入接触冷却塔底泵抽出后经接触冷却塔底油及甩油水冷器冷却后送往接触冷却塔顶或送出装置。塔顶流出的大量水蒸气经接触冷却塔顶空冷器、接触冷却塔顶水冷器冷却到40℃进入接触冷却塔顶气液分离罐,分出的轻污油由污油泵送出装置,污水由污水泵送至焦池,不凝气排入火炬烧掉。甩油经甩油罐及甩油冷却器冷却后出装置。 2. 吸收稳定工艺流程: 从焦化来的富气经富气压缩机升压至1.4Mpa,然后经焦化富气空冷器冷却,冷却后与来自解吸塔的轻组份一起进入富气水冷器,冷却到40℃后进入气液分离罐,分离出的富气进入吸收塔;从石脑油(顶油)泵来的粗石脑油进入吸收塔上段作吸收剂。从稳定塔来的稳定石脑油打入塔顶部与塔底气体逆流接触,富气中的C3、C4组分大部分被吸收下来。吸收塔设中段回流,从吸收塔顶出来带少量吸收剂的贫气自压进入再吸收塔底部,再吸收塔

煤气发生炉制气方案

发生炉制气方案 发生炉煤气在我国作为燃气较为普遍,其原因是一次性投资少,工艺流程简单、操作方便、原料供应广泛、操作安全,热值为1200~1400大卡/Nm3,适应于建材行业(玻璃、地板砖、陶瓷)作燃气热源。采用发生炉煤气为炉窑提供补充热源,便于炉窑温度控制,可有效提高产品的成品率。 1.原料要求 发生炉对原料的适应性比较广,一般可采用焦炭、无烟煤、不粘煤或弱粘煤。本方案考虑环境及污水治理问题,推荐选择无烟煤或焦炭为原料。对原料的品质要求如下: 原料粒度:无烟煤6~75mm,焦碳6~75mm 灰份:<25% 机构强度≥65% 热稳定性≥65% 灰熔点ST>1250℃。 2.工艺流程及主要气化指标 本设计采用Φ3.3m发生炉二台(一开一备)。图1示出了发生炉制气工艺流程方框图。 煤(焦)通过连续加料方式加入到气化炉内,炽热的煤(焦)与外来加入的蒸汽、空气在气化炉内发生气化反应,生成粗煤气,经除尘器除去较大颗粒的飞灰,再经洗涤箱、洗涤塔、洗涤除去细灰和部分焦油,使粗煤气温度降至45℃,再经焦碳过滤器、电辅焦油器除去剩余焦油,

经气体压缩机加压,送去窑炉作净燃气使用。 图1 发生炉主要技术指标: 干煤气主要成份% CO2CO H2CH4N2 5~7 24~30 14~18 1~3 48~53 产气量Nm3/h 5800~7800 煤气热值大卡/Nm3 1200~1400 煤(焦)消耗kg/h 1600~3000 最气化指标取决于原料品质。

3.主要设备一览表 设备名称台数备注 上煤机 1 料仓 1 自动加料器1+1 与气化炉相配空气鼓风机1+1 发生炉1+1 Φ3.3m 凉水塔 1 旋风除尘1+1 洗涤箱1+1 洗涤塔 1 焦碳过滤器1+1 电辅焦油器 1 气体压缩机1+1 污水池 1 澄清池 1 污水泵1+1 循环泵1+1 软水泵1+1 汽包 1

荒煤气脱硫系统

荒煤气脱硫系统 作者:来源:发表时间:2014-8-3 点击:14 工程概述 本项目为新疆金盛镁业镁合金循环经济工业园兰炭项目兰炭尾气(低温干馏煤气) 脱硫工程,工艺技术方案的选择是本着保证产品质量的前提下力求技术水平适度先进合 理、稳妥可靠,降低劳动强度,节约投资,合理布局,减少工程造价,实现环境污染总 量控制,做好洁净生产,以减少对环境污染。本工程设备的选型及设计遵照技术先进、 稳妥可靠、操作方便节能降耗的原则。 脱硫及硫回收 工艺技术方案的选择 脱硫分干法脱硫和湿法脱硫两种,干法脱硫主要以氧化铁、活性炭为主。湿法脱硫主要以栲胶法、改良ADA法、PDS法、HPF法、KCA法及几种催化剂复合法。 干法脱硫的工艺简单,脱硫精度高,当要求煤气净化度较高或煤气处理量较小时采用,但设备笨重,脱硫效率不稳定,随着催化剂使用时间的延长,脱硫能力不断降低,脱硫剂用量大,二次处理困难,对于失效(硫饱和)的脱硫剂,再生成本高,操作难度大,废弃处理,会造成二次污染;脱硫剂更换频繁,劳动强度大,并且容易造成煤气中毒;占地面积大。湿法脱硫具有处理能力大,操作弹性大,脱硫与再生都能连续化,劳动强度小,能回收硫膏(硫磺)等优点,但工艺较复杂,操作费用较高,由于本工程处理煤气量较大,故选用湿法脱硫工艺。 本方案选用以碱源脱除兰炭尾气中的硫化氢的湿式氧化喷射再生脱硫工艺。湿式氧化喷射再生脱硫工艺,是焦化工业目前推行的焦化煤气脱硫新工艺,具有节约能源、工艺顺畅、脱硫效率高、操作平稳等特点。湿法脱硫的催化剂多种多样,各有优缺点,本方案选用我公司研发生产的ISS-J焦炉煤气专用脱硫剂,与我公司的脱硫装置相配套,该催化剂不但能脱除H2S,还能脱除HCN和部分有机硫,具有脱硫效率高、副盐生成少,硫磺回收率高、废液排放量小,不堵塔、脱硫液对设备腐蚀小等优点,得到了广大用户的认可。

相关文档
最新文档