大跨度桥梁理论

大跨度桥梁理论
大跨度桥梁理论

一、多多罗大桥有哪些技术特点,增加中跨的可行性原因,并说明斜拉桥按目前水平可做多大?

答:

1、多多罗大桥技术特点:

①采用混合梁技术。中间墩支撑着中间梁。边跨外端采用预应力混凝土梁,通过和钢梁连接来支撑其他边跨和

中跨,从而形成混合梁体系。这些边跨设计为短小的沉重的,并且具有足够的刚度,来支撑长但轻的中跨,并维持足够的刚度。

②斜拉索在两个主塔间形成多扇面线性,在倒Y形塔顶单锚点,从而提高梁的抗扭刚度。

③塔和梁的组合形状,特殊设计的索面,以及空气动力稳定性来保证结构的独立性。

④在安装梁时水中没有设置临时墩。在悬臂前端采用运输起重机从海面上将梁体直接吊起。这个工作依赖于边

梁和塔处主梁之间的平衡。

2、增加中跨的可行性原因:

斜拉桥优点:

①当中跨达到1300m时,在经济效益和结构特点方面斜拉桥和悬索桥没有明显差异。

②当斜拉桥中跨达到1000m时,非线性影响不大。这说明常规的中跨500m斜拉桥和1000m斜拉桥相差不大。

③悬索桥需要锚碇。因此大跨度的斜拉桥比悬索桥要经济。

可行性

A建造1300米的跨径斜拉桥没有任何构造上和经济上的问题,所以可以适当增加斜拉桥的跨径.

B中间跨在1000米以下的斜拉桥的截面内力和位移没有非线性增加的趋势,这预示着传统的斜拉桥中跨达到500米的设计是可能的.

C1300米以下的悬索桥和斜拉桥的结构、经济特性没有明显的差异

①斜拉桥存在轴力。

②从500m到2000米,悬索桥的竖向弯矩大于斜拉桥。

③700m处主轴的水平弯矩二者相同,之后悬索桥较高。

④竖向挠度在1100m时二者相同,1100m以下悬索桥较高,1100m以上斜拉桥较高。

⑤700m以下二者的水平挠度相同,之后斜拉桥较高。

⑥总用钢量在1500m以下时基本相当。

3、斜拉桥按目前水平可以做多大

通过索的制作方法的改进,锚碇和挖掘方式的进步,结构分析功能的进一步提高,以及对结构体系更多的认识,实验的研究和技术的进步,以我们现在的水平,建造2000m级别的斜拉桥已经不存在技术问题。有的学者研究发现,按照现在的技术水平,修建4000m的斜拉桥也是可行的。

二、大跨度斜拉桥设计包括哪些方面,每方面各有哪些要点?

答:

1、结构体系:

①锚定方式;②混合梁的选择;③梁的截面是否符合空气动力学;④约束方法和约束条件;⑤纵向的弹性节点

支座设计;⑥塔高设计;⑦景观设计。

2、抗风设计:

①全桥模型风洞实验;②结构体系的空气动力稳定性;③包含地形的全桥模型风洞实验;④塔在施工工程中施

工机械的空气动力学稳定性;⑤索的颤动的控制。

3、抗震设计

①全桥系统的抗震;②长周期的地震的观测与分析。

4、结构极限承载力设计

①稳定性分析(整体稳定性分析、局部稳定性分析);②抗疲劳设计

5、基础设计

①持力层的选择;②抗震设计;③抗倾覆,抗滑;④基底承载力计算。

6、索塔设计:①受力分析;②景观设计

7、斜拉索设计:①斜拉索外形的美学设计;②抗弯曲疲劳研究;③PE护套上压有凹坑的斜拉索的基本特性研究

8、主梁设计:①主梁抗疲劳设计;②钢板层抗疲劳设计;③拉索锚固点的细部设计;④钢梁和混凝土梁的连接方法设计;⑤方便主梁内外检修的交通工具的设计

三、明石海峡大桥的技术特点以及从可行性研究到设计的过程。对我们有何启示?

答:

1、明石海峡大桥技术特点:

①被设计为主跨跨度最大,总长度最大的悬索桥。

②2个主墩设置在深海和高强度洋流的地方,采用下沉围堰法建造为扩大基础。通过新的抗震设计方法使所有

的基础设计为可以承受严重的地震。另外采用低热水泥,和多种混合的混凝土。

③主塔达到297m,风的作用较大。要求能够精确地控制施工过程。

④主缆采用PPWS方法施工,使用的材料为高强电镀钢丝,强度提高到1800N/mm2。

⑤大桥加劲梁为桁架式,可以不影响通航。其空气动力学稳定性经过了反复验证。

2、设计过程

①1970年前的历史:

早在19世纪80年代就有了建造跨越Seto内陆海的大桥的设想;到1889年5月,一个议员首次提出了建造内陆海大桥的方案,该方案并没有技术支持。

1940年,Chujiro Haraguchi基于对金门大桥的研究,提出建造连接Tokushima和Kobe的大桥,但二战的炮火暂停了这个计划。

1955年5月悲剧的发生导致了政府重新考虑建造方案。

在1959年,MOC开始研究,并讲他们的研究结果提供给JSCE。

在1967年,JSCE发布了工程技术的报告,并提交给MOC和JNR。

1970年7月1日,该项目通过法规正式确立。

②1970年后的历史:

初步研究:进行了抗风设计,制定了抗风标准;进行抗震设计,稳定性设计;列车走行性研究;大规模水下基础研究;海上作业平台的开发;海底开挖方法的研究;船只安全设置;社会经济研究。

施工准备

恢复施工做的准备

桥梁的设计方案从公铁两用桥变更为公路桥。

③神户地震后:

桥梁中心线有轻微的倾斜,2、3号墩之间距离和3号墩和4号桥台距离分别伸长了0.8和0.3m。1号桥台和4号桥台之间的距离扩大了1.1m,使缆的线性比设计值上升了接近1.3m。

3、启示:

①大跨度桥梁的设计和施工过程长期的、艰辛的。

②根据时代条件的不同,桥梁的设计方案可能会经过多次修改和完善。

③经济、交通、自然、以及战争等人为因素都对桥梁的设计有巨大影响。

四、大跨度桥梁设计包括

1、自然条件:

①地形地貌的影响

②风力的作用:需要按照150年重现期反算来确定抗风标准。

③地震:根据当地一定范围内地震历史来确定抗震标准。

④跨海大桥还要考虑海洋因素。浪高,流速等要考虑在内。

⑤地质条件:选择持力层,进行基础设计。

2、社会与环境因素:

①经济条件:桥的造价应小于它所带来的经济效益。

②社会条件:周边环境的规划直接影响引桥的展开方式。

③环境条件:进行环保评价,确定其对周边环境的影响。

交通(航运、车流量)状况;渔业要求;土地利用情况;城市化状况;人口数量

五、明石海峡大桥的总体设计

1、在综合考虑了海峡的宽度以及2个桥墩的位置之后,通过方案比选,讲桥梁跨度最终定为1990m,在神户地震

后变为1991m。

2、主墩最终决定设置为直接基础,具有圆形截面,采用沉箱施工法。考虑到当地海底的沙石环境,改进了挖掘和基础放置的方法。

3、边跨长度最终确定为960m,这样使得两边的锚碇容易放置。2个基础由于所处地质环境的不同,二者具有截然不同的特征。其中1号桥台是当时世界上最大的基础。

4、新的抗震设计方法的发展和应用,使明石海峡大桥经受住了神户地震的考验。

5、低热水泥的发展和广泛应用。对于不同下部结构,采用几种不同的混合方式,以达到要求的强度和质量。

6、主塔采用钢制成。阻尼器在施工当中被装到塔上,采用高强螺栓连接不同的部分。并采取相应的防腐措施。

7、主缆采用高强钢丝,每根主缆由290束,每束有127丝,钢丝采用1800N/mm2。在缆中设置除湿机,防止锈蚀。

8、采用桁架加筋梁。它具有较好的空气动力稳定性,并且便于施工。改进的施工方法由于不影响航运而在日本得到推广。

9、景观方面:强调其可靠性,前瞻性,并考虑到了光影效果。

10、该桥成为当时世界上最大跨度的悬索桥。其结构体系为三跨双角钢桁架加筋梁悬索桥,索跨为960+1991+960。

六、明石海峡大桥的技术进步体现在哪里?

答:

1、用大型边界层的风洞实验来进行抗风设计;

2、抗洋流的沉箱锚固系统:

采用停泊处的绞盘来提供巨大的拉力,通过大直径的钢丝的快速连接、沉重的下沉物和控制系统来进行快速而可靠的施工。

3、低热水泥和各种混凝土的使用:

在锚碇和墩的制作方面采用低热水泥,避免了水化热的问题。

4、主缆采用的高强钢丝,减少钢丝股数,减少主缆自重,造价更节省。

5、主缆当中使用除湿机防止锈蚀:

对现有的桥梁的缆索的所处的环境进行调查;通过流动的除湿空气来检测抗锈系统;采用了一种适用于明石海峡大桥的新防锈系统:开发了一种新的防锈系统-干燥气体注入系统。即主缆外套一个密封套,然后注入干燥气体。为了增强气密性和防止水入浸,传统的钢束外套上又加了一层橡皮套。

6、各种场地测试系统。

对挖掘以及塔的架设过程中始终通过测试系统进行监控,保证了施工精度。

结构力学 桥梁结构分析

桥梁结构分析 桥梁结构分析 摘要:设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是飞越大江和海峡特大跨度桥梁的优选形式。 关键词:梁式桥,拱式桥,悬索桥,桁架桥,斜拉桥 著名桥梁专家潘际炎说:“海洋,是孕育地球生命的产床;河流,是孕育人类文明的摇篮;而桥,则是联系人类文明的纽带。”这纽带越来越宏伟,越来越精致,越来越艺术!建国以

来中国的桥梁工程事业飞速发展。随着时代前进的步伐,人们对桥梁工程提出了更高的要求,对“适用、安全、经济、美观”的桥梁设计原则赋以更新的内容。桥梁工程无论是现在还是以后都不会停步的,它的发展前景会更广阔。通过半个学期的结构力学的学习,我对桥梁结构及他们的受力特点有了一定的认识。理论联系实际,我通过对各种结构的对比分析,进一步加深了印象,对以后的学习奠定了基础。 1.梁式桥 工程实例——洛阳桥,又称万安桥,在福建泉州市区东北郊洛阳江入海处,该桥是举世闻名的梁式海港巨型石桥,为国家重点文物保护单位,为国家重点文物保护单位。 梁式桥的主梁为主要承重构件,受力特点为主梁受弯。梁式桥的上部结构在铅垂荷载作用下,支点只产生竖向反力,支座反力较大,桥的跨中处截面弯矩很大。所以由于这种特性,梁式桥的跨度有限。简支梁桥合理最大跨径约20 米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70 米。采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。但是由于制造梁式桥的材料多为石料与混凝土,随跨度的增加其自重的增加也比较显著。因此梁式桥广泛用于中、小跨径桥梁中。 结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。随着跨度的增大,桥的内力也会急剧增大,混凝土的抗弯能力很低,较难满足强度要求。弯矩产生的正应力沿横截面高度呈三角分布,中性轴附近应力很小,没有充分利用材料的强度。 2.拱式桥 工程实例——赵州桥,坐落在河北省赵县洨河上。建于隋代,由著名匠师李春设计和建造,距今已有约1400年的历史,是当今世界上现存最早、保存最完善的古代敞肩石拱桥。1961年被国务院列为第一批全国重点文物保护单位。因赵州桥是重点文物,通车易造成损坏,所以不允许车辆通行。 拱式桥拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。从几何构造上讲,拱式结构可以分为三铰拱、两铰拱和无铰拱。分析三角拱的受力特点,在竖向荷载下,三角拱存在水平推力,因此,三角拱横截面的弯矩小于简支梁的弯矩。弯矩的降低,拱能更充分的发挥材料的作用,当跨度较大、荷载较重时,采用拱比采用梁更为经济合理。

大跨度钢桁架结构桥梁架设方案

1、工程概况 XX桥梁工程是连接场内左、右岸低线的跨黄河下承式简支钢桁梁桥,总重204t,桥轴线距离下游围堰中心线55m,采用1x84m装配式组合钢桁梁桥,单车道净宽4m,桥梁全长97m,桥面设计高程为2615m,左岸接30m道路与后期临时施工道路衔接,右岸桥头接100m道路与右岸低线公路相接。 本工程的内容包括装配式组合钢桁梁材料运输(从积石峡水电站运输至羊曲水电站施工场地,约460公里)、架设安装、钢桥的检测及荷载试验。 2、工程施工重点、难点及措施 2.1工程施工重点难点 2.1.1 钢桥自重达到204T,跨度84m,安装时最大悬臂长度达到60m,梁端变形大,导梁结构选择困难,同时给牵引端桥台布置及顶落梁施工带来较大的困难,是本工程的一个难点。 2.1.2桥位两侧施工场地狭窄,地形高差大,主桥钢梁的进场、组拼、存放及施工较困难,是本工程另一个难点。 2.1.3钢梁宽跨比小,对钢梁架设的横向稳定也带来了较大的影响。如何保证钢梁架设横向稳定及精度是本工程的一个重点。 2.1.4大型跨河钢结构施工、悬臂长、临空工作面多,确保钢结构架设的施工安全,是本工程的又一个重点。 2.2解决措施 2.2.1因钢桥跨度大,拖拉时钢桥和导梁悬臂长度过长,为减小施工难度,保证施工安全,在两岸桥台靠河侧12m处各设置一道临时施工栈柱,以减小钢梁拖拉施工时悬臂长度,从而满足施工要求。 2.2.2为保证钢桥进场、组拼、存放及施工要求,采用拖拉法进行安装,在左岸进行组拼,钢桥主桁架根据其结构进行预拼,每榀在组拼平台旁预拼成小单元后直接组装。 2.2.3采用导梁、滑道及全程测量监控的手段,确保钢梁安装的稳定性及精度要求。导梁、滑道均在临时场地制作成型后现场组装,施工过程中利用现有的测量设备,加大测量频次保证安装精度,从而满足设计要求。 2.2.4两岸施工面使用标准防护栏杆进行封闭,一方面避免闲杂非施工人员、

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

大跨度桥梁的发展趋势

大跨度桥梁的发展趋势 随着人类交往的日益增加,人类文明成果更快更广泛的传播,加快了桥梁技术的进步,19世纪钢筋混领土的发明应用,使桥梁技术产生的革命性的飞跃,综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。 在中国国道主干线同江至三亚就有5个跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。 大跨度桥梁向更长、更大、更柔的方向发展 1、研究大跨度桥梁在气动、地震和行车动力作用下其结构的安 全和稳定性,拟将截面做成适应气动要求的各种流线型加劲梁,以增大特大跨度桥梁的刚度。 2、采用以斜缆为主的空间网状承重体系;采用悬索加斜拉的混合体系。 3、采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。 新材料的开发和应用 新材料应具有高强、高弹模、轻质的特点,研究超高强硅粉和聚合物混凝土、高强双相钢丝纤维增强混凝土、纤维塑料等一系列材

料取代目前桥梁用的钢和混凝土。 在设计阶段采用高度发展的计算机 计算机作为辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。桥梁建成交付费用 使用后将通过自动监测和管理系统保证桥梁的安全和正常运行,一旦发生故障或损伤,将自动报告损伤部位和养护对策。 大型深水基础工程 目前世界桥梁基础尚未超过100米深海基础工程,下一步须进行100—300米深海基础的实践。 重视桥梁美学及环境保护 桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥等这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。宏伟壮观的澳大利亚悉尼港桥与现代化别具一格的悉尼歌剧院融为一体,成为今日悉尼的象征。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。

超大跨径桥梁结构健康监测关键技术

《超大跨径桥梁结构健康监测关键技术》 2017年度湖南省科技进步奖项目公示材料 一、项目名称:超大跨径桥梁结构健康监测关键技术 二、项目简介 桥梁是公路交通的重要节点,而超大跨径桥梁由于结构形式与结构安全的重要性,成为交通线路的重中之中。大桥在投入使用后,不可避免地会受到外界因素(自然灾害、外荷载等)的影响,造成结构安全隐患,最终影响社会经济发展和人民生命财产的安全。 超大跨径桥梁结构健康监测关键技术主要以矮寨特大悬索桥(吉茶高速公路控制性工程,创造了最大峡谷跨径、塔梁完全分离结构设计、轨索滑移法架梁以及岩锚吊索结构四项世界第一)为工程依托,在课题组累积的前期研究基础之上,从监测系统整体效能优化设计、健康监测元器件开发、结构损伤分析与评估等方面开展了深入系统的研究,主要内容及创新点包括: (1)针对桥梁健康监测与评估系统功能划分不明确、系统框架不完全等问题,结合现代计算机通信技术,提出了基于网格的超大跨径桥梁结构健康监测系统。对桥梁结构健康监测系统中评估分析模块效率低、系统间存在信息孤岛等问题进行了优化,最终实现健康监测系统评估功能共享。 (2)针对超大跨径桥梁监测任务点繁多,数据量大等问题,以K-L信息距离为理论基础,提出了K-L信息距离准则。利用该准则研究了超大跨径桥梁传感器优化布置方法,达到用最少测点监测桥梁全面状态的目的。 (3)研究了超大跨径桥梁有限元模型修正方法,提出了基于径向基函数的桥梁有限元模型修正方法,避免了传统的矩阵型和参数型模型修正中修正目标众多、监测自由度与有限元模型自由度不匹配的问题。 (4)根据桥梁的损伤机理与车匀速过桥时与桥梁的耦合特性,提出了基于动能能量比和小波包能量比边缘算子的桥梁结构损伤识别方法。 (5)提出了基于健康监测系统的桥梁拉索疲劳寿命预测方法,研发了低功耗便携式索力在线监测设备等桥梁结构监测元器件。 (6)研发了超大跨径桥梁结构健康监测综合系统,编制了《湖

大跨度桥梁考核作业详解

2016级大跨度桥梁考查题(每题10分,共100分) 一、简述悬索桥中主缆无应力索长的计算思路和方法? 答:悬索桥中、边跨中,各索股由索夹紧箍成一条主缆, 因而,通过求解主缆中线再 求索股的无应力长度。但是,悬索桥不同于其他的桥型,其主缆线形并不能由设计者人为确定,而需根据成桥状 态的受力而定。所以,先确定成桥状态主缆各控制点(IP 点和锚点)的位置、矢跨比和主缆的截面几何形状参数、材料参数等,再采取解析迭代法,确定主缆的线形,并求解主缆的缆力和主缆中线的有、无应力长度,然后进一步求解包括锚跨在内的索股长度。 主缆自由悬挂状态下,索型为悬链线。取中跨曲线最低点 为坐标原点,则对称悬链线方程为: 式中:c=H/q ;H 为索力水平投影;q 为主缆每延米重。 主缆自重引起的弹性伸长量为: 主缆无应力长度为: 210S S S S ?-?-= 根据成桥状态主缆的几何线型、桥面线型,求得各吊索的

有应力长度,扣除弹性伸长量,即得吊索无应力长度。 二、简述悬索桥中主索鞍为何要设置边跨方向的预偏? 答:在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态,此时的偏移量或偏转量就是索鞍的预偏量。 悬索桥桥塔设计的合理成桥状态是塔顶没有偏位,塔底没有弯矩,此时塔顶相邻跨主缆水平分力相等。在空缆状态,由于桥塔相邻跨主缆的无应力长度不同,导致相邻跨主缆水平分力不等。此时,若索鞍仍保持在成桥位置,会使主塔承受较大的不平衡力,需要通过桥塔自身变形来平衡。然而在实际情况中,靠主塔变形改变跨度,减小不平衡力是不现实的,需要通过索鞍的偏移或偏转来调整各跨主缆的张力,使相邻跨主缆在索鞍处保持平衡状态。 三、简述主缆和吊索的安全系数一般如何设计取值?

大跨度桥梁

大跨度桥梁 1.大跨度桥梁现状及未来发展趋势 1.1斜拉桥 斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。它以其跨越能力大,结构新颖而成为现在桥梁工程中发展最快,最具有竞争力的桥型之一。 斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。 斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。 中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 今后斜拉桥的体系多以漂浮式或半漂浮为主。半漂浮式可用柔性墩或在塔上设水平拉索阻止桥面过分的漂浮,所有这些都是为了抵抗温度变形及地震。 斜拉桥的发展趋势主要表现在如下几个方面: 1)桥面继续轻型化,跨径继续增大,中小跨径也具有竞争力 2)塔架构的多样化 3)多跨多塔斜拉桥 1.2悬索桥 悬索桥是特大跨径桥梁的主要形式之一,除苏通大桥、香港昂船洲大桥这两座斜拉桥以外,其它的跨径超过1000m以上的都是悬索桥。如用自重轻、强度很大的碳纤维作主缆理论上其极限跨径可超过8000m。 迄今为止世界上已出现三个悬索桥大国,即美国、英国与日本。全球各类悬索桥的总数已超过100座。 美国在悬索桥的发展上花了将近100年的时间,技术上日趋成熟,为全球悬索桥的发展奠定了基础,并首先使悬索桥成为跨越千米以上的唯一桥型。美国的悬索桥由于出现较早,在风格上有与其时代相适应的特色,主要有一下各点: (1)主缆采用AS法架设。 (2)加劲梁采用非连续的钢桁梁,适应双层桥面,并在桥塔处设有伸缩缝。 (3)桥塔采用铆接或栓接钢结构。 (4)吊索采用竖直的4股骑跨式。 (5)索夹分为左右两半,在其上下采用水平高强螺栓紧固。 (6)鞍座采用大型铸钢件。 (7)桥面板采用RC构件。 英国的悬索桥由于出现较晚些,顾自成流派。其主要特点如下: (1)采用流线型扁平钢箱梁作为加劲梁。 (2)早期采用铰接斜吊索。 (3)索夹分为上下两半,在其两侧采用垂直于主缆的高强螺栓紧固。 (4)桥塔采用焊接钢结构或钢筋混凝土结构。

桥梁钢结构基础知识..-共23页

桥梁钢结构基础知识讲座 一、常用钢材 1、结构钢牌号说明,对应标准GB221-2019《钢铁产品牌号表示方法》。 如:Q345qC Q-屈服强度; 345-屈服强度345MPa(当δ≤16mm时,其屈服强度大小与牌号数值相同。板厚增加,强度降低,例如Q345C钢,当δ>63mm时,其屈服强度只有315MPa); q-桥梁用结构钢; C-质量等级为C级。 钢材质量等级共有A、B、C、D、E 5个级别,A级最低,E级最高,主要表现在钢中有害杂质S、P含量的多少,耐冲击温度的高低。如: A KV(纵向)Q345A、B级钢,+20℃,34J; A KV(纵向)Q345C级钢,0℃,34J; A KV(纵向)Q345D级钢,—20℃,34J; A KV(纵向)Q345E级钢,-40℃,34J。 2、结构钢的屈强比 即钢材的屈服强度与抗拉强度之比,σs/σ b 屈强比越小,强度储备越大,结构越安全可靠;屈强比越大,强度储备越小,结构越不安全可靠。一般屈强比不超过0.8。一般,钢

材的强度等级越高,屈强比越大,反之,越小。 3、碳素结构钢 对应标准GB/T700-2019,有4个强度等级: Q195(不分级); Q215(A、B级); Q235(A、B、C、D级); Q275(A、B、C、D级)。 用的比较多的是Q235C钢,相当于过去的A3钢。 4、低合金高强度结构钢 对应标准GB/T1591-2019, 有8个强度等级: Q345(A、B、C、D、E级); Q390(A、B、C、D、E级); Q420(A、B、C、D、E级); Q460(C、D、E级); Q500(C、D、E级); Q550(C、D、E级); Q620(C、D、E级); Q690(C、D、E级)。 过去的16Mn相当于Q345的A、B级。 与GB/T1591-1994对照,新标准增加了Q500、Q550、Q620、Q690强度等级,取消了Q295强度等级。 5、桥梁用结构钢

城市大跨度桥梁施工的要点分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.城市大跨度桥梁施工的要点分析正式版

城市大跨度桥梁施工的要点分析正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 摘要:随着城市经济的快速发展,大跨度桥梁在城市当中越来越多的出现,但是大跨度桥梁的施工技术要求高、难度大,对施工过程中的质量控制和管理提出了更高的要求,在施工过程中需要做好几何、应力、稳定和影响因素控制,但是大跨度桥梁本身就有很多种,这无疑增加了施工技术难度。本文根据已有的研究资料详细论述了大跨度桥梁施工过程中应该注意的一些问题,在详细分析影响其施工质量因素的基础上,提出了一些施工质量方面的对策建议,以期能够提高城市大跨度

桥梁的施工水平。 关键词:大跨度;桥梁;施工 1.影响大跨度桥梁施工质量的因素分析 从实践的角度来看,影响大跨度桥梁施工质量的因素有很多,这些因素主要表现在施工材料、技术管理、设备运行等方面上,在大型桥梁施工过程当中应该在做好施工质量控制与过程管理的基础上,要针对影响施工质量的一些重点因素,采取专门的施工管理措施,保障桥梁施工的各个重点控制部分的施工质量,保证整个施工过程中桥梁的质量都处于良好的控制状况。在大型桥梁施工当中,目前应力混凝土结构箱梁与灌注桩是桥梁施工应用最为

大跨度桥梁的发展趋势调研报告范本

大跨度桥梁的发展趋势调研报告

大跨度桥梁的发展趋势调研报告 前言: 根据《公路桥梁设计规范》规定:单跨跨径大于40m即为大桥,一般认为单跨跨径大于100m的桥梁即为大跨度桥梁。随着世界经济的快速发展,大跨径桥梁的建设在20世纪末进入了一个高潮时期。众所周知,大跨径桥梁建设反映了一个国家的综合实力和科学技术的发展水平。近百年来。特别是本世纪30年代以来,世界上大跨径桥梁建设发展十分迅速。不同桥型大跨径桥梁的发展,日益被各国桥梁界人士所关注。中国进入90年代以来,出现了建造大跨径桥梁的高潮。进入21世纪的中国必将迎来更大规模的大跨径桥梁建设时期。随着中国城市建设和高等级公路、道路建设的发展,修建大跨径城市桥梁也将成为必然的趋势。城市大跨径桥梁,除考虑运输、航运、地理、地质、水文、环境等因素外,还有区别于跨越一般江河大跨径桥梁的特殊因素。因此应研究城市大跨径桥梁的特点和发展趋势,积极探索中国城市大跨径桥梁发展的有效途径,以推动桥梁建设事业的更大发展。 关键词:大跨度桥梁结构形式跨度历史现状发展 1.大跨度桥梁类型

大跨度桥梁在现今世界发展十分迅速。桥梁的发展史就是桥梁跨度不断增长的历史,也是桥型不断丰富的历史。大跨度桥梁可分为:斜拉桥、悬索桥、连续钢构、连续梁桥和拱桥。 1.1板式桥 板式桥(如图1.1)是公路桥梁中量大、面广的常见桥型,它构造简单、受力明确,能够采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。特别是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而能够减低路堤填土高度,少占耕地和节省土方工程量。 实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其它材料。 钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径

钢结构桥梁的入门精选

钢结构桥梁的入门级别 小跨度与大跨度钢箱梁 建国以来长江上几座里程牌式钢桥,高瞻远瞩,胸怀大志,入门开始 武汉长江大桥(128m 跨度,3 号钢Q240) 南京长江大桥(160m跨度,16M nq Q345) 九江长江大桥(216m 跨度,15MnVNq Q420) 芜湖长江大桥(312m跨度,14MnNbq Q345) 天兴洲长江大桥(504m 跨度,14MnNbq Q345) 一、桥梁用钢牌号 1 、Q235qD Q345qD Q370qD Q420QD 第一个Q 为屈服拼音第一个字母,屈服之意; 数字235表示屈服强度(是一个应力数值), 数字后q 为桥梁第一个拼音q, 表示为桥梁用结构钢;最后一个大写字母 D 为钢材等级, 钢材等级之分有A、B、C、D、E5个等级,A不做冲击功要求,B表示常温20。冲击功,C 为0°冲击功,D表示-20。是冲击功,E为-40独冲击功要求.冲击功与钢材韧性相关, Q345qE 联合起来意为:屈服强度为345MPa应力的桥梁用钢,-40。有冲击功要求,一般不小于47J.钢材安全系数一般取为,那么Q345钢材容许应力为345/=,规范中采用中345 为屈服强度,抗拉强度更大,一般为容许应力的倍,所以Q345 抗拉强度为200*=500MPa, 规范中取值510MPa. 抗剪容许应力为基本容许应力的倍,局部承压为基本容许应力的倍,规范中Q345 钢材抗剪容许应力120MPa, 局部承压容许应力为300MPa. 钢结构桥梁的设计方法

公路钢结构桥梁设计规范2015 没出来之前,公路钢结构桥梁仍然采用容许应力法 设计:各项荷载系数为1,荷载组合下外力应力只要小于容许应力200MPa 即可.现在新出钢桥规范为了与混凝土统一采用两个极限状态设计法一致,钢结构桥梁也采用了极限 状态设计法,以Q345qD 钢为例说明问题的实质性: 1) 容许应力法 外荷载组合系数:1x恒载+1x活载+1x其它可变活载 荷载组合下的应力小于规范中的容许应力200MPa (345/=203) 2) 极限状态法 外荷载组合系数:恒载+活载+其它可变活载 综合起来极限状态法相比于容许应力法荷载综合系数采用了荷载组合下的应力小于规范中的容许应力275MPa 所以极限状态法相当于外荷载系数乘了个的数值,相对于容许应力法中的容许应力相应同时乘以的数值,本质一样,游戏而已. 三、钢结构桥梁几个主体问题钢结构核心问题为强度、稳定、疲劳 1) 强度 受拉杆件或者弯矩中的受拉部位:应力小于容许应力即可,假如为螺栓连接,计算应力时采用净面积计算 2) 稳定 稳定问题转为强度模式控制,只不过将容许的压应力转换为容许应力x小于1的一个数字,此数字结合杆件的计算长度与杆件回转半径相结合的长细比,如下表

大跨度桥梁结构理论专题研究之一--每人任选一题

大跨度桥梁结构理论专题研究之一?1.桥梁结构的可靠度研究(可选任一类桥梁,如梁、拱、索桥等) ?2.大跨桥梁的结构静、动力分析(可选任一类桥梁,如梁、拱、索桥等) ?3.桥梁结构全寿命耐久性设计的主要理论和方法及应用 ?4.钢桥的疲劳分析与试验研究及应用 ?5.新型材料在大跨桥梁中的应用 ?6.大跨桥梁检测与质量评定技术研究(可选任一类桥梁,如梁、拱、索桥等)7.大跨斜拉桥施工智能监控研究(悬臂灌注,悬臂拼装) ?8.大跨拱桥施工智能监控研究(悬臂拼装,转体施工) ?9.大跨桥梁健康监测与评估(可选任一类桥梁,如梁、拱、索桥等) ?10.钢桥合理刚度与冲击系数研究(高速铁路300km/h) ?11.局部稳定与整体稳定分析 ?12.高速铁路车桥共振的危险性分析研究(可选任一类桥梁,如梁、拱、索桥等) ?13.大跨度桥梁抗震设计减震隔震桥研究(可选任一类桥梁,如梁、拱、索桥等) ?14.斜拉桥拉索的风雨振与制减震措施研究 ?15.钢桥长效防腐涂装技术研究, ?16.大跨度桥梁深水基础工程的设计施工技术与监测分析研究 ?17. 国内外钢桥规范的对比研究(荷载与荷载谱的不同,抗弯构件,拉压构件,稳定,疲劳等; 中国,日本,美国,欧洲,俄罗斯) ?18. 自选与大跨桥相关的科研课题 ?19. 自列题目做一篇大跨桥梁的论文---与导师的研究方向相同或不同均可以。 课程报告要求: ?1、PPT文件,可报告10分钟左右,并负责研讨回答问题。 ?每人做一篇课题研究的报告,希望有一定深度;在课堂上交流! ?2、大跨度桥梁专题研究书面报告---上交老师和学校留存记分! ?书面打印稿格式要求(word 文档A4纸,空白左边2.5cm,上下右均为2cm;1.25倍行间距); 字体要求: 报告大标题: 宋体2 号字 第一层次标题: 宋体小 3 号字 第二层次标题: 宋体 4 号字 第三层次标题: 宋体小4 号字 正文字体: 宋体 5 号字 标题:排序号: 1. 1.1, 1.2,… 1.1.1, 1.1.2 ,… 1) 2),…; (1),(2),.. ①,②,… 提交给老师电子版WORD和书面打印稿(书面打印稿上交学院研究生科---计入课程成绩)雷老师的电子邮箱: jqlei@https://www.360docs.net/doc/9217303273.html,, 电子版WORD 请发送这个邮箱.

大型桥梁及施工外文翻译--大跨度桥梁

Large Span Bridge 1.Suspension Bridge The suspension bridge is currently the only solution in excess of 600 m, and is regarded as competitive for down to 300. The world’s longest bridge at present is the Verrazano Narrows bridge in New York. Another modern example is the Severn Bridge in England. The components of a suspension bridge are: (a) flexible cables, (b) towers, (c) anchorages, (d) suspenders, (e) deck and ,(f) stiffening trusses. The cable normally consists of parallel wires of high tensile steel individually spun at site and bound into one unit .Each wire is galvanized and the cable is cover with a protective coating. The wire for the cable should be cold-drawn and not of the heat-treated variety. Special attention should be paid to aesthetics in the design of the rowers. The tower is high and is flexible enough to permit their analysis as hinged at both ends. The cable is anchored securely anchored to very solid anchorage blocks at both ends. The suspenders transfer the load form the deck to the cable. They are made up of high tensile wires and are normally vertical. The deck is usually orthotropic with stiffened steel plate, ribs or troughs,floor beam, etc. Stiffening trusses, pinned at the towers, are providing. The stiffening system serves to control aerodynamic movements and to limit the local angle changes in the deck. If the stiffening system is inadequate, torsional oscillations due to wind might result in the collapse of the structure, as illustrated in the tragic failure in 1940 of the first Tacoma Narrows Bridge. The side span to main span ratio varies from 0.17 to 0.50 .The span to depth ratio for the stiffening truss in existing bridge lies between 85 and 100 for spans up to 1,000m and rises rather steeply to 177. The ratio of span to width of deck for existing bridges ranges from 20 to 56. The aerodynamic stability will have be to be investigated thoroughly by detailed analysis as well as wind tunnel tests on models. 2.The cable-stayed bridge During the past decade cable-stayed bridges have found wide application, s\especially in Western Europe, and to a lesser extent in other parts of the world. The renewal of the cable-stayed system in modern bridge engineering was due to the tendency of bridge engineering in Europe, primarily Germany, to obtain optimum structural performance from material which was in short supply-during the post-war years. Cable-stayed bridges are constructed along a structural system which comprises an

大跨度桥梁结构计算书

大跨度桥梁结构计算书

大跨度桥梁结构计算书 1 结构概况 该桥为双薄壁墩刚构桥,主梁采用变高度箱梁,该桥跨径为85+130+85m。桥梁的结构形式如下: 图1.1 桥梁结构形式 2技术标准和设计参数 2.1计算依据 1、交通部《公路桥涵设计通用规范》(JTJ 021-89); 2、交通部《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85); 3、交通部《公路桥涵设计通用规范》(JTG D60-2004); 4、交通部《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004); 2.2设计技术条件 公路等级:公路Ⅰ级。 2.3 主要设计参数 桥梁结构所承受的荷载(或作用)包括结构自重、预应力、混凝土收缩徐变、支座强迫位移(按沉降量按1.0cm考虑)、活载、结构整体升降温和温度梯度等。上部结构设计计算取用的有关参数如下: 1、结构重力:混凝土容重取26KN/m3 2、二期恒载:包括桥面铺装、栏杆等 二期恒载的总荷载为:60.8 KN/m 3、收缩徐变影响力:按04设计规范取用,天数3650天 4、基础变位影响力:不均匀沉降按1.0cm计 5、相对湿度 70% 6、纵向预应力锚下控制应力 1395MPa 7、孔道偏差系数 0.0015 8、一端锚具回缩 0.006m 9、钢束松弛率 0.3 10、预应力孔道摩擦系数 0.17

11、施加预应力混凝土强度≥90% 12、温度荷载 整体温差+20℃、-20℃ 温度梯度:按04规范取值,即14.0℃—5℃—0℃,反温差为上述值的-0.5倍。 3 有限元模型 3.1单元和截面的建立 该桥有限元模型共106个单元,101个节点。具体模型如下图。 图3.1.1 消隐模式的全桥模型 图3.1.2 全桥模型 3.2边界条件 该桥支座采用固结形式。

大跨度桥梁习题集整理后

1.什么事缆索承重桥梁?典型的缆索承重桥型有哪些? 答:如果受拉构件——缆索是桥梁荷载的主要承担构件之一,并使桥梁跨越构件成为多点弹性支承结构而增加跨越能力,这类桥梁就称为缆索承载桥梁。缆索承载桥梁主要用于跨度在300以上的大跨度桥梁,目前典型的缆索承重桥型有悬索桥和斜拉桥。 知识点补充:桥梁跨越的主要承力结构是由抗弯刚度很小的几乎只能受拉的构件组成,具有抗弯刚度的梁被等间距或不等间距的受拉构件竖向或斜向悬吊,在桥梁结构活载作用下,成为具有多点弹性支撑的结构。这类桥梁结构中,受拉构件被称为缆索或斜拉索,支撑受拉构件的结构被称为桥塔。这类桥梁可统一称为缆索承重桥梁。 2.简述缆索材料、梁、塔和吊索的演变过程。 答:缆索材料: 梁: 塔: 吊索: 3.空中编缆技术是谁发明的?首次在哪座桥上使用?是谁将其机械化并将其发展为现代化施工技术的? 答:空中编缆技术是由法国工程师路易斯维卡在1830年发明。 首次用于在1834年建成的位于瑞士弗里堡柴林根大桥(由约瑟夫·查理设计) 约翰·奥古斯塔斯·罗勃林将其机械化并将其发展为现代化施工技术。 4.预制平行索股架编缆技术是谁发明的?首次在那座桥上使用的? 答:预制平行索股架编缆技术是由杰克逊·L·德基发明。 首次在1969年美国在罗德岛修建的克莱本佩尔新港大桥。 5.历史上的首座现代悬索桥结构是何年谁发明的?首座永久性铁丝缆悬索桥是哪座?何年谁发明的? 答:历史上首座现代悬索桥结构是1801年美国修建的雅各布溪桥,由詹姆斯·芬利发明。 首座永久性铁丝缆悬索桥是由美国人乔赛亚·怀特和厄斯金修建的斯库尔基尔瀑布蜘蛛桥。 眼链杆技术是由英国工程师塞缪尔·布朗发明的。 6.简述缆索承重桥梁发展各历史时期的特点,悬索桥建设出现过几次建造高潮?各自发生的场地在哪里?简述美式悬索桥、英式悬索桥、日式悬索桥各自的特点。 答:缆索承重桥梁发展各历史时期的特点:1.中国古代缆索承载梁桥的特点是:无加劲梁,竹索、柳索或者铁链缆索上直接铺木板满足行人和马车的使用,不设桥塔而是直接锚固或者采用刚性桥塔。 2.在18世纪中叶到十九世纪中叶,缆索承载桥梁结构已经演变为现代桥梁结构,与中国古代相比:具有浅加劲或者加劲梁;缆索材料从铁链改进为眼链杆或者铁丝,眼链杆缆悬索桥技术已经由英国发展成熟;采用刚性桥塔,圬工砌体结构。在计算理论方面,知道1823年才有了无加劲梁的悬索计算理论,在1858年才有了有加劲梁的悬索桥计算理论。 3.在19世纪中叶至20世纪三十年代以前这段时间,所建桥梁以斜拉——悬索组合体系为主,通过美国工程师和学者研究,钢缆索材料、制作、架设、防护技术已经成熟;悬索桥计算理论已经发展到较精确的挠度理论;在缆索承载桥梁中,悬索桥已可以在较精确的理论和成熟的专利技术指导下进行建造。 悬索桥建设出现四次高潮,分别在美国,欧洲,日本,中国。 美式悬索桥的特点:1.主缆采用空中编缆法;2.加劲梁采用非连续体系的钢桁梁,并在塔处设吊拉支承及伸缩缝,适应双层桥面;3.桥塔采用铆接或栓接钢结构;4.吊索采用竖直4股骑跨式钢丝绳;5索夹分左右两块,在其上下采用水平高强螺栓紧固;6.鞍座采用大型铸

大跨度桥梁作业2

一、简述桥梁的分类及主要特点 按用途分类:公路桥、城市桥、铁路桥、公铁两用桥、人行桥、管道桥、机场跑道桥等; 按材料分类:木桥、石桥、混凝土桥、钢桥、组合桥与复合桥、圬工桥等; 按跨径分类:特大桥、大桥、中桥、小桥、涵洞; 按平面形状分类:正桥、斜桥、曲线桥; 按结构类型分类:梁桥、拱桥、悬索桥、斜拉桥、刚构桥等。 1、梁桥 在竖向荷载作用下无水平反力,以受弯为主; 梁内产生的弯矩最大,需要抗弯能力强的材料来建造; 简支桥梁结构简单,施工方便,对地基承载力要求也不高,适用跨径在50m以下; 跨径较大时可修建悬臂式获连续式梁桥。 2、拱桥 跨越能力较大,外形美观; 在竖向荷载作用下,墩台将承受水平推力; 与同跨径梁相比,拱的弯矩和挠度小得多; 可用抗压能力强的圬工材料和钢筋混凝土等来建造。 3、刚构桥 主要承重结构是梁和柱整体结合在一起的刚架结构,梁和柱的连接处具有很大刚性; 受力特点介于梁与拱之间,竖向作用下,梁部主要受弯,柱脚处也有水平反力; 跨中正弯矩小于梁桥,跨中建筑高度可较小。 4、斜拉桥 由承压的塔、受拉的索与受压弯的梁体组合而成; 主梁截面较小,跨越能力大; 刚度大,抗风能力较好; 自锚体系,在大跨径桥梁中造价较低; 可用悬臂施工工艺,施工不妨碍通航。 5、悬索桥 由桥塔、锚碇、缆索、吊杆、加劲梁及索鞍等主要部分组成; 主缆具有非常合理的受力形式,截面设计容易; 结构自重较轻,能以较小的建筑高度跨越特大跨度,经济跨径在500m以上; 桥塔承受缆索传来的各种荷载及梁支承在塔身上的反力,并将其传递到下部墩及基础; 悬索为柔性结构,刚度小,易产生较大的挠曲变形; 在风荷载等动荷载作用下易产生振动。 二、悬索桥、斜拉桥、大跨度拱桥的组成构件有哪些?三种桥的受力特点如何? 有何本质区别? 1、组成构件 悬索桥:主缆、加劲梁、塔柱、吊杆、锚碇、索鞍等; 斜拉桥:主梁、索塔、斜拉索; 大跨拱桥:主拱圈、拱座、墩台、拱上建筑。

大跨度桥梁

《大跨度桥梁》复习思考题 一、解释概念 1. 组合梁斜拉桥; 2. 混合梁斜拉桥; 3. 漂浮体系; 4. 平行钢丝索; 5. 成桥预拱度 6. 猫道; 7. 双链式悬索桥; 8. 垂跨比; 9. 索的重力刚度;10. 斜拉桥合理成桥状态11. 合理施工状态;12. 结构失稳;13. 斜拉索涡激共振;14. 斜拉索风雨振; 15. 斜拉索参数共振;16. 矮塔斜拉桥。 二、填空题 1. 已建成大跨度悬索桥垂跨比大致在范围。 2. 主缆拉力最大处一般在。 3. 锚碇形式有和两种。 4. 主缆常规防护方法主要采用。 5. 锚碇前面锚固法的锚固系统主要有和系统。 6. 按作用不同,索鞍可分为、和三种常见形式。 7. 按不同制作方式,主索鞍分为、、和四种。 8. 吊索与主缆的连接可采用和两种形式。 9. 索塔的作用是锚固或支承,并将传递给下部结构。 10. 索塔的支承体系包括,,和。 11. 根据航空管理要求,飞行区内高度超过米的建筑物应设置不中断照明的。 12. 斜拉桥结构分析中的非线性包括和。 13. 从试验得知,小于度的扭角可以使钢丝的弹性模量和疲劳性能不受折减。 14. 试制的索股应进行如下试验:、、。 15. 主缆的成形方法有和两种。 16. 大跨度悬索桥先导索施工方法一般有、、及 等方法。 17. 隧道式锚碇在隧道开挖时,宜用开挖,锚洞支护施工应遵循 的原则。 18. 混凝土桥塔的施工方法一般可选择、和等。 19. 猫道设计线形应与线形保持一致。 20. 通常通过或措施来提高猫道抗风稳定性。 三、论述题 1. 论述斜拉桥结构受力特点。 2. 斜拉桥在边跨增设辅助墩的优点是什么? 3. 斜拉索与混凝土梁的锚固形式有哪几种? 4. 斜拉桥钢索塔与混凝土索塔相比总体来说有哪些特点? 5. 斜拉桥的设计步骤。 6. 增大悬索桥主缆重力刚度的措施。 7. 斜拉桥静力分析的基本过程的步骤。 8. 斜拉桥中的几何非线性包括哪些方面。 9. 自锚式悬索桥的结构受力特点是什么?它有哪些优点?

相关文档
最新文档