沙漠植物梭梭的形态结构和生理特性与抗旱性的关系

沙漠植物梭梭的形态结构和生理特性与抗旱性的关系
沙漠植物梭梭的形态结构和生理特性与抗旱性的关系

沙漠植物梭梭的形态结构和生理特性与抗旱性的关系

张毕阳

(甘肃农业大学植物学107331002339)

摘要:作为沙漠地区特有的灌木,尽管梭梭在干旱、高温、寒冷和风蚀等劣环境

中顽强生存,对外界环境压力表现出极强的适应能力,但国内外对它的抗逆机理和

育种工作的研究相对较少,而且主要集中在形态结构和生理水平上。

关键词:梭梭;抗旱性;生理特性;形态结构

引言

梭梭属植物是沙漠地区特有的超旱生、耐盐、耐风蚀植物,素有“沙漠卫士”之称,是一种优良的防风固沙植物,全球共有11种,主要分布在地中海到中亚的广大沙漠地区。其木质坚硬,火力强,是优良的薪炭材,有“荒漠活煤”之誉;其当年生枝条富含营养,是优良的牲畜饲料;还是“沙漠人参”——苁蓉的寄主。中国有梭梭和白梭梭2种。梭梭在我国主要分布在内蒙古、新疆、青海、甘肃和宁夏等省区,白梭梭仅分布于新疆北部。然而,由于人为因素和环境恶化,梭梭属植物资源受到严重破坏,已被列为国家二级保护植物。作为沙漠地区特有的灌木,尽管梭梭在干旱、高温、寒冷和风蚀等劣环境中顽强生存,对外界环境压力表现出极强的适应能力,但国内外对它的抗逆机理和育种工作的研究相对较少,而且主要集中在形态结构和生理水平上。

1梭梭生物学特性

梭梭Haloxylon ammodendron bge属藜科梭梭属,落叶灌木,耐寒暑、耐盐碱、抗风沙。小乔木,有时呈灌木状,高1~4m,树皮灰黄色,杆形扭曲;枝对生,有关节。梭梭寿命可达50年。5~6年高生长最为迅速,株高达3m以上,并开始结实,10年生进入中龄期,株高4~5m,开始大量结实;20年后生长逐步停滞,开始进入衰老期;35~40年枯顶逐渐死亡。梭梭根系发达,主根可深入地下10m,多侧根,为了能充分吸收水分,梭梭的侧根还长成上、下两层,为了有效地防止蒸发,梭梭的叶已退化成包有胶质的细长圆棍,靠绿色的嫩枝营光合作用。4月上、中旬萌发,5月下旬至6月上旬开花,其子房在干旱的夏季暂不发育,处于假休眠状态,直

至9月下旬至10月上旬果实才成熟,秋季10月中下旬同化枝部分脱落,是旱生超旱生植物。梭梭具有冬眠和夏眠的特性,喜光性很强,不耐蔽荫抗旱力极强。在气温高达43℃而地表温度高达60~70℃甚至80℃的情况下,仍能正常生长。抗盐性很强,幼树在固定半固定、土壤含盐量0.2%~0.3%的沙丘上生长良好,而在含盐量0.13%以下者反而生长不良。

2梭梭的抗逆基础理论

目前,在梭梭抗逆生理生化方面的研究还薄弱,对根部的研究更显不足。它的根、茎和枝表现出很强的抗逆特征;开花、结果和种子的发芽等也都显示出它适应干旱环境的能力,这些都急需在生理生化、细胞及解剖构造等基础理论方面加大研究。

(一)梭梭的抗逆分子机制

梭梭的同化枝具有完善的保水机制,是积累了脯氨酸、甜菜碱、无机离子等小分子物质而降低渗透势增强吸水能力,还是它的形态及内部结构特征引起的呢?植物遭受干旱胁迫的初期阶段,根部的响应对植物的生存是至关重要的,可是,对于根部感知较低土壤水势的机理,根部适应性反应的调控等知之甚少。梭梭根部是如何感知根部和干旱土壤之间的胁迫信号,进而促进根部的延长来寻着水源呢?这些都需从分子水平来解决。

然而,植物的抗逆性是数量性状,由多基因控制。从梭梭等沙漠植物的抗逆特征来看,它们的抗逆性是形态、组织结构、生理机制多方面的综合体现,不管哪方面的特征都应该有其相应的基因调控网络。因此,在开展植物的抗逆分子生物学研究时,特别是对于分子研究背景相对较少的林木,如果从一着手开始,通过差显技术或基因芯片技术获得了许多抗逆相关的基因片断后,仅从其中盲目地选定几个在模式植物中(如拟南芥等)已确定具有抗逆功能的同源基因设计引物,通过RACE或cDNA文库获得该基因的全长,则难以取得满意的研究效果。

因此,开展梭梭抗逆分子机理研究时,首先应该通过功能基因组学或蛋白质组学等手段对其整体或某一方面的特征进行研究,探索其在逆境条件下基因的调控网络,寻找调控某一抗逆特征的关键基因,从而达到挖掘利用抗逆资源物种,寻找其优良性状的基因,为农林作物的遗传改良打下基础。

3形态结构与梭梭抗旱性的关系

沙漠地区的植物为了生存,根、茎、叶和花等形态结构发生了相应的变化以适应长期、复杂的恶劣环境。

3.1根结构对沙漠环境的适应

梭梭拥有发达的根系统,主根深达3—9 m;侧根水平分布达5~10 m。因此,其能够在很大范围内吸收水分。在与外界环境的适应过程中,梭梭根的周皮变得发达,夏季可以防止根部被高温灼伤,冬季又可防止根部被冻伤,并且周皮的木栓层具有很好的隔水性,可以防止根部向沙层反渗透失水。此外,成熟的根中除了正常的维管柱外,其周围还形成了发达的异常次生维管组织,呈螺旋状排列结构,被认为是对极度干旱和极端温度的生态适应。

3.2叶结构对沙漠环境的适应

根据30种沙漠植物叶片结构的特征,将它们分为正常型、全栅型、环栅型、不规则型、退化型和禾草型,其中,退化型是极端的适应形式,环栅型是高级的适应形式。梭梭属植物的叶片属于退化型,成鳞片状,通过光合同化枝迸行光合作用。同化枝是植物在沙漠干旱条件下进化的顶极形态。梭梭同化枝表面皱褶,有2种气孔器:一种相对较小,沿棱呈突起分布;另一种较大,深陷于低凹处,形成较大的孔下室,可以造成较湿的小环境,从而抑制叶肉蒸腾水分;同时,可以减少较强光线对叶内部结构的辐射伤害。石蜡切片表明,梭梭的同化枝具有一层表皮细胞,一层皮下细胞以及呈柱形、排列整齐的栅栏细胞。栅栏细胞下为一层大而方、整齐排列的被称之为胶质细胞的细胞层。电子显微镜观察进一步显示,胶质细胞充满着泡状叶绿体,称为第2层光合细胞。

大量研究指出,植物在多种逆境因子胁迫下,普遍存在叶绿体的囊泡化现象,这是植物在细胞结构水平产生的适应性变化。梭梭的2层光合细胞在正常生长条件下,均表现出基粒片层减少,特别是类维管束鞘细胞更为典型。这可能为梭梭适应干旱环境奠定了结构基础。即使梭梭同化枝离体失水后,其结构也没有明显变化,第2层光合细胞仅表现出液泡缩小或丧失,使其遭遇水分胁迫时仍能够维持较高的光合速率。显微结构表明,梭梭薄壁贮水细胞和中央维管束占梭梭同化枝截面大部分。同时,一些小型维管束散生于贮水组织和近维管束鞘处,有利于提高水分、无机盐和有机物运输效率的功能。Dong等埔1(2000)通过细胞组织学

解剖方法研究发现,梭梭贮水薄壁组织发达,另外,栅栏组织细胞具泌盐功能,并有发育较好的盐结晶存在于细胞之间。结晶细胞的存在,有利于提高植物的保水性,维持了细胞间较低的水势,使体液水势低于土壤水势,有利于梭梭从土壤中吸收水分和保持枝条中的水分。这些研究结果显示出梭梭的同化枝具有较强的抗逆特征。

3.3花的结构对沙漠环境的适应

梭梭为自花授粉植物,随着授粉、受精和胚囊的发育,由2层萼片包被的子房,其中一层萼片消失,仅存一层萼片包被子房的发育过程。花瓣干枯后宿存于柱头的周围上部埔J,这是旱生植物的一种特征,也就是说,梭梭是一种旱生闭花授粉植物。封闭式的白花受粉,以及花粉管在由萼片包被的封闭环境中萌发,表明梭梭花粉萌发及受精过程对干旱环境的适应。在萼片包被的封闭空间内,可维持高湿的生殖生长环境,使梭梭生殖生长顺利完成。

4生理生化特征与梭梭抗旱性的关系

4.1光合特征

植物的光合作用以叶绿体为基础。通常,植物叶绿素a:b的值约为3:1;a+b的含量为1.38mg/g。由于长期忍受干旱和盐胁迫,树木的叶绿素含量相对较低,特别是小乔木和灌木,最明显的特征是a:b比例失调。zhao等[叫(1997)的研究结果显示,梭梭a:b值仅为1.2:1,a+b的含量仅为0.42 mg/g,这可能是在沙漠环境中长期进化适应的结果。梭梭的同化枝是一种高光效器官,如前所述,发达的栅栏组织及较多的气孔数目,使其光合作用效率较高,而光合效率的提高是植物抵抗干旱的一种重要因素;第2层光合细胞的存在,也使其在干旱发生时能够维持较高的光合速率。

实验证明,梭梭为C4植物,而且其光合途径不随生长季节和土壤水分条件的变化而变化,与C3植物相比,C4植物的光补偿点和CO2补偿点都比较低,而光饱和点和CO2饱和点都较高。这使得梭梭等具有C4植物特征的沙漠植物能够在高温、干旱等恶劣的环境中保持较高的光合利用效率,提高抗逆境胁迫的能力。4.2耗水量

耗水量是植物蒸腾和土壤蒸发的总和。大多数植物通过降低蒸腾速率,减少水分的丧失,提高它们在干旱环境下的抗旱性。梭梭遇到干旱时,蒸腾速率明显

降低,水分利用效率明显提高,而且,梭梭的蒸腾速率明显低于其他乔木树种,也低于同属的白梭梭。在土壤水势发生变化时,在相当一段水势下降的幅度中,梭梭的蒸腾速率基本保持平稳;当水势下降到一25.32 Bar时,蒸腾速率急剧下降,并维持在一个低水平上;然后,随着水势的进一步下降,渐次降低。这说明在遭遇严重干旱胁迫时,梭梭可能启动耐旱系统或改变耐旱途径。

4.3水分状态

植物组织中的水分包括束缚水和自由水。环境越干旱,束缚水自由水的比值越高,植物保水和抵抗干旱的能力越强。同等条件下,梭梭的束缚杉自由水的比值比油松和侧柏分别高20%和48%,这说明梭梭有很强的束缚水分和保持水分的能力。Gao等(2002)的研究也表明,梭梭同化枝的含水量在沙漠植物中是最高的。因此,梭梭能在长期的干旱中维持较长的生命。

4.4渗透物质

渗透调节是植物适应干旱、高盐等逆境的主要生理机制之一。其关键是细胞内溶质的主动积累,包括小分子有机溶质,如可溶性糖、脯氨酸以及甜菜碱等和无机溶质,如Na+,K+,cI一以及NO,等,然后引起细胞渗透势的下降,提高细胞的吸水能力或阻止水分外渗。可溶性糖和淀粉的含量以及彼此的相互转

化与环境密切相关。在干旱逆境中,梭梭可溶性糖/淀粉的比值明显提高,脯氨酸含量仅略微增高。但Jiang(2001)的研究结果表明,在渗透胁迫下,梭梭幼苗可溶性糖和脯氨酸的含量分别比对照提高了5倍和10倍,同时,脯氨酸比可溶性糖变化得更迅速、更有效。这表明2种物质在渗透胁迫下可能起到协同作用。然而,Song等(2006)在田间和温室条件下对刺毛碱蓬、梭梭和白梭梭进行的盐胁迫研究表明,尽管严重胁迫时脯氨酸的含量明显增加,可对3种植物渗透势的贡献都不到0.2%,这也说明脯氨酸可能是植物遭遇胁迫时的指示性物质或有其他保护作用。通过对可溶性糖、脯氨酸、Na+,K+,cI一以及NO,在上述3种植物中对渗透势贡献的比较表明,Na+和NO,一对刺毛碱蓬和梭梭渗透势的贡献最大,而可溶性糖对白梭梭的贡献最大。原因可能是前2种是既耐盐又抗旱的植物,与合成有机溶质相比,离子的吸收和积累需要更少的能量,因此,积累离子,特别是Na+,是它们适应高盐、干旱环境的一种适应性特征。甜菜碱也是重要的渗透调节物质,最早是在藜科植物中发现的。随着干旱胁迫时间的延长,梭

梭幼苗的甜菜碱含量明显增加。胁迫30天,其含量达21.35umoL/gFW,比对照提高了3.1倍,并且其含量与BADH活性密切相关。

4.5保护酶

在干旱条件下,植物维持细胞膜结构的能力与它的抗旱性密切相关。通常植物细胞膜受到伤害,膜透性增加,然后引起一系列的生理生化反应来抵抗逆境的伤害。对萌动初期的梭梭幼苗进行渗透胁迫处理,其电解质渗透值比未处理的低瞄]。说明梭梭种子发芽的初期即表现出抗旱特征。在幼苗生长期间,相对电导率降低,即随着幼苗同化枝相对含水量的提高,细胞膜的电解质渗透率相对降低。这表明梭梭的抗旱性一直在提高。较低的电解质渗透率与较高的保护酶活性呈一定的相关性,例如遭遇胁迫时,超氧化物歧化酶(SOD)、过氧化物(POD)和过氧化氢酶(CAT)等能清除植物体内大量的活性氧、自由基等,从而减少对细胞膜结构的伤害。Gao等(2002)对10种沙漠植物的对比研究发现,梭梭同化枝的SOD活性最高。随着幼苗的生长,SOD活性不断变化,但在整体上总SOD活性是升高的,另外,种子的SOD活性明显高于幼苗和子叶中,其活性达714.3 umol/g。Yao 等(1997)的结果也表明,在一1.5 MPa渗透胁迫下,梭梭幼苗SOD活性保持较高,然后随着胁迫加剧,活性下降,POD和CAT活性的变化趋势与SOD的基本一致。上述结果表明,高水平的SOD,POD和CAT保护酶活性能够分别清除超氧化物、过氧化物等,使电解质渗透率维持在较低水平,最终保护了膜的完整性,同时也说明梭梭在幼苗期间就对干旱有较强的适应能力。

参考文献

【1】裴英杰,郑家玲,庚红.用于玉米品种杭旱性鉴定的生理生化指标[J].华北农学报,1992,7(1),31~35.

【2】王晓星.梭梭[中国水土保持].1995,(5):34.

【3】黄振英,吴鸿,胡振海.30种新疆沙生植物的结构及其对沙漠环境的适应[植物生态学报],1997,21(6):521—530.

【4】史胜青,齐力旺,孙晓梅.梭梭抗旱性相关研究性状及对今后研究的建议[世界林业研究],2006,10(5),27~32

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织和海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织和海绵组织。叶脉是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织和海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织和海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织和海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态和结构的观察 名科叶形叶序叶脉叶尖叶缘 银杏叶扇形簇生 二叉平行 叶脉叶基(楔形) 不规则 三节 状,中 间凹入 鹅掌楸 叶马褂形互生网状脉截形(叶尖) 掌状半 裂 玉簪叶椭圆形簇生 弧形平行 脉 急尖(叶尖)全缘

金钱松 叶披针形簇生 急形异短尖 (叶尖) 铁树 (复叶)羽片条 形 对生叶 序 侧出平行 脉 急尖(叶尖) 羽状全 裂 红花木倒形羽互生网状脉 急形异短尖 (叶尖) 细锯状苦楮披针形互生网状脉尾尖锯状 野生豌豆羽状复 叶 叶须卷 羽状全 裂 植物叶的形态结构与生态环境的关系 摘要:植物由于外界生态因素的影响,逐渐演化出各种各样的形态和结构来适应所生长的环境。其中影响最大的是植物生长周围水分的供应状况。因此,依照植物与水分的关系,可以将植物分为旱生植物、中生植物、水生植物。叶子是花植物的一种主要进行蒸腾的器官,所以旱生植物的叶子为了减少蒸腾,其相适应的结构产生变化。水生植物的叶浸没在水里,在结构上与旱生植物迥然不同。可见不同环境植物叶的形态结构有很大的不同和差距,即使生长在同一环境,它们克

2021年生物课《第五章第二节茎的结构》教案

生物课《第五章第二节茎的结构》教案 生物课《第五章第二节茎的结构》教案范文 1.掌握木本植物(这里指双子叶植物中的木本植物)茎的结构及各部分的主要功能,理解草本植物(这里指单子叶植物中的草本植物)茎的结构及各部分的主要功能。理解年轮形成的道理,了解草本茎倒伏的原因及防止倒伏的措施。 2.通过用显微镜观察木本植物和草本植物茎的横切装片,进一步巩固使用显微镜的技能和在显微镜下识别生物体结构的观察能力。 3.通过分析“木本茎年轮的形成”,使学生树立生命物质的发展变化观点和内、外因辩证观点。通过介绍我国科学工 ___在“抗倒伏”方面做出的贡献,弘扬他们献身科学的精神。 1.“本本植物茎的结构”是本节教学内容的重点。因为: (1)木本植物茎的结构,可作为其它植物茎结构的代表,弄清木本茎的结构,为了解其它植物的茎奠定基础。 (2)只有掌握了木本茎的结构,才能更好地理解茎的功能和年轮形成的原因。

2.对维管束概念的理解和年轮概念的理解是本节教学内容的难点。因为: (1)维管束是对茎结构整体而言,是茎的立体结构。它指的是:茎内,由韧皮部、形成层、本质部三部分合起来构成的结构。课本上维管束的图和茎的横切装片,都是一个平面的结构。如何使学生对维管束的理解形成立体概念,教师可参看教参,自制维管束教具加以说明,避免学生对维管束的理解形成片面性。 (2)年轮的形成是多年生木本植物茎的形成层在外界环境条件影响下进行周期性活动的结果。学生能够理解年轮是植物的生长线,但容易把年轮的概念与年轮线的概念混淆,造成理解上的误差。为了避免这种误解,教师在教学过程中应注意结合挂图、模型或自画板图配合相应的文字进行说明。准确地把握年轮的概念及年轮线的概念。 3. ___学生观察木本植物茎和草本植物茎结构的横切、纵切装片,也是教学内容的难点。因为:学生对茎结构的认识还只停留在书本和教师的挂图上,从显微镜下观察到的茎结构在认识上存在差距,需要有一个“重新认识”和“理论与实际相结合”的过程。教

被子植物叶的形态结构和功能

第六章被子植物叶的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物叶的发生、生长和基本结构及其相关概念。掌握叶的形态、结构、生理功能及其与生态环境间的相互关系及其在生产中的意义。 本章学习的难点和重点: 叶营养器的解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)单、双子叶植物叶的结构特点对比; (2)不同生态条件下叶结构特点分别对比,找出某些结构之间的共同点和不同点。 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 第一节、叶的形态与功能 一、叶的主要生理功能 1、进行光合作用、制造有机物 2、进行蒸腾作用和呼吸作用 3、繁殖与贮藏等 二、叶的基本形态 (一)双子叶植物叶的形态 叶:由叶片、叶柄和托叶三部分组成。—完全叶单叶 不完全叶复叶 叶片由叶尖、叶缘、叶基等部分组成。 (二)禾本科植物叶的形态 叶鞘、叶片、叶环、叶耳、叶舌 第二节、叶的解剖结构 一、双子叶植物叶片的结构 结构分为表皮、叶肉和叶脉三个基本部分。 1、表皮:由表皮细胞、气孔器和表皮毛组成,分为上表皮和下表皮,为良好的保护组织。 (1)表皮细胞:横切面为长方形,表面观为不规则的波浪状,排列紧密。细胞外壁角质层发达(上表皮的角质层比下表皮发达),或有蜡被,上有表皮毛。 (2)气孔器:由两个肾形的保卫细胞及其之间的气孔组成,一般在下表皮数目较多。 保卫细胞:内含叶绿素、淀粉粒等,细胞壁在近气孔处较厚。 气孔器—气孔:张开或关闭,控制蒸腾作用和气体的交换。 副卫细胞:或无。 (3 2、叶肉:叶肉主要由栅栏组织和海绵组织(或同化组织)组成,并常有分泌腔、含晶

植物茎的结构及其功能的观察图

植物茎的结构及其功能的观察(图) 一、实验目的 1. 了解芽的构造。 2. 了解双子叶植物茎的初生构造,次生构造及单子叶植物茎的构造。 3.认识植物茎的输导功能。 二、实验原理 芽是处于幼态而未伸展的枝、花或花序,也就是枝、花或花序尚未发育前的雏体。以后发展成枝的芽称为枝芽;发展成花或花序的芽称为花芽。枝芽的结构决定着主干和侧枝的关系与数量,也就是决定植株的长势和外貌。花芽决定着花或花序的结构和数量,并决定开花的迟早和结果的多少。茎的顶端分生组织中的初生分生组织所衍生的细胞,经过分裂、生长、分化而形成的组织,称为初生组织,由这种组织组成了茎的初生结构。双子叶植物茎和裸子植物茎的初生结构,包括表皮、皮层和维管柱三个部分,但裸子植物茎没有双子叶植物茎的那种一生只停留在初生结构中的草质茎类型。单子叶植物的茎和双子叶植物的茎在结构上有许多不同。大多数单子叶植物的茎,只有初生结构,所以结构比较简单。少数的虽有次生结构,但也和双子叶植物的茎不同。以禾本科植物的茎作为代表,说明单子叶植物茎初生结构的最显著特点。绝大多数单子叶植物的维管束由木质部和韧皮部组成,不具形成层(束中形成层)。维管束彼此很清楚地分开,一般有2 种排列方式:一种是维管束全部没有规则地分散在整个基本组织,愈向外愈多,愈向中心愈少,皮层和髓很难分辨,如玉米、高粱、甘蔗等的维管束,它们不像双子叶植物茎的初生结构,维管束形成一环,显著地把皮层和髓部分开。另一种是维管束排列较规则,一般成两圈,中央为髓。有些植物的茎,长大时,髓部破裂形成髓腔,如水稻、小麦等。维管束虽然有不同的排列方式,但维管束的结构却是相似的,都是外韧维管束,同时也是有限维管束。 双子叶植物和裸子植物茎发育到一定阶段,茎中的侧生分生组织便开始分裂、生长和分化,使茎加粗,这一过程称为次生生长,次生生长产生的次生组织组成茎的次生结构。侧生分生组织通常包括维管形成层和木栓形成层。形成层细胞的分裂包括切向分裂和径向分裂。切向分裂向形成次生木质部,加在原有木质部的外方;向外形成次生韧皮部,加在原有韧皮部的方。在形成次生结构同时,形成层细胞为扩大自身圆周还必须进行径向分裂或横分裂以适应方木质部的增粗,同时形成层的位置渐次向外推移。双子叶植物茎中次生木质部的组成包括轴向系统的导管、管胞、木纤维、木薄壁组织和径向系统的木射线。次生韧皮部同样包括轴向系统和径向系统,轴向系统由管胞、伴胞、韧皮薄壁细胞和韧皮纤维组成,有时也有石细胞;径向系统则由韧皮射线组成。韧皮射线通过形成层的原始细胞与木射线相连,合称维管射线。芽是植物地上部分的轴,主要的生理功能是支持和输导的作用。水分与矿质元素的长途运输依赖于导管和管胞;同化物的长途运输主要依赖于筛管和筛胞。 三、实验用品 (一)材料大叶黄茎尖纵切片、向日葵和玉米茎横切片、椴树茎横切片、蚕豆茎、盆栽木槿

根叶茎前植物的形态结构.

第三章植物体的形态结构和发育 §第一节种子与幼苗 §第二节根 §第三节茎 §第四节叶 §第五节营养器官之间的相互联系 §第六节营养器官的变态(自学) 第一节种子和幼苗 一.种子的基本组成 有胚乳种子与无胚乳种子 二.种子的类型:有胚乳种子、无胚乳种子 三.种子萌发必须的外界条件:充足的水分、适当的温度、足够的氧气四.幼苗的类型:子叶出土幼苗(由下胚轴迅速伸长而成)……种子宜浅播 子叶留土幼苗………………………………种子可适当深播第二节根 一、根的生理功能:吸收、支持、合成、贮藏、繁殖 二、根的形态与结构 (一)根的形态:1定根:主根、侧根 2不定根:由茎、叶、老根、胚状体产生的根 直根系(深根性的)——裸子植物、双子叶植物的根系 须根系(浅根性的)——单子叶植物的根系 (二)根的结构 1、根尖的结构(分区)

2、双子叶植物根的初生结构 比较: 3、侧根的形成内起源 中柱鞘、侧根原基、侧根 4、双子叶植物根的次生生长和次生结构(1) 维管形成层的产生及其活动 (2) 木栓形成层的发生及其活动

三、根瘤和菌根 1、根瘤:根瘤是植物根上产生的瘤状突起,主要发生在豆科植物的根上,是土壤中的根瘤细菌侵入植物的根内形成的共生结构。根瘤细菌有生物固氮的作用。 2、菌根:高等植物与真菌形成的共生结构。如: 天麻(兰科)与蜜环菌共生 第三节茎 一、茎的生理功能:输导、支持、贮藏、合成、繁殖。 (一)茎的外形 (二)芽的类型 (三)茎的生长习性与分枝 直立茎——大多数植物 平卧茎——蒺藜、地锦 匍匐茎——狗牙根、甘薯 攀缘茎——葡萄、黄瓜 缠绕茎——牵牛 单轴分枝(总状分枝)——主干明显,以裸子植物为代表 合轴分枝——在作物和果树中普遍存在 假二叉分枝——合轴分枝的一种形式(对生叶植物的合轴分枝方式),如石竹、辣椒 分蘖——禾本科植物的分枝方式 (三)茎的结构 茎尖的分区:分生区、伸长区、成熟区

植物形态结构与功能的适应

植物形态结构与功能的适应 姓名:赵雪学号:20101920 班级:国经1005 【摘要】:提出植物形态结构与功能相适应的观点,以旱生植物为例,从旱生植物的根茎叶三方面形态结构的变化是如何与其抗旱的功能相适应的。最后对文章进行一些总结。 【关键词】:旱生植物、形态结构、功能 现存的每一种植物都具有与环境相适应的形态结构和生理功能特征[1]。植物的根、茎、叶、花、果实和种子等器官,都具有明显的适应性特征。例如,有的花花粉粒小而数量多,容易随风飘散,适应于风力传粉。有的花颜色鲜艳、气味芳香,适应于昆虫传粉。靠动物传播的果实和种子,如针草、苍耳等,其果实的表面都有刺或粘液,容易附着在动物的身体上随动物的运动而携带到其他地方去。借风传播的种子,如蒲公英、枫杨等,果实上生有毛绒绒的白色纤维或带有翅,随风飞扬。这些都体现出植物形态结构与功能的适应。 植物由于外界生态因素的影响,逐渐演化出各种各样的形态和结构来适应所生长的环境。外界的各种生态因素都有可能引起植物的形态发生变化,而其中影响最大的是植物生长周围水分的供应状况。因此,本文主要谈由于水分引起的植物的形态结构与功能的适应关系。依照植物与水分的关系,可以将植物分为陆生植物与水生植物,陆生植物又分为旱生植物、中生植物和湿生植物[2]。具体以旱生植物的适应性特征来解释其形态结构与功能的适应关系。 可适应干旱条件而正常生活的植物称为旱生植物,旱生植物的叶具有保持水分和降低蒸腾作用,其通常向着两个方向发展:一类是减小蒸腾的适应:就外型而言,一般植株矮小,根系发达,叶小而厚,蜡被和表皮毛发达,有的植物形成复表皮。就结构而言,叶的表皮细胞壁厚,角质层发达,气孔下陷或限定在气孔窝内。栅栏组织细胞层数多,甚至上下表皮内方均有栅栏组织分布。海绵组织和细胞间隙不发达,叶脉发达,可提高输水率和机械强度,如夹竹桃和松叶。这些形态上的结构特征,或是减少了蒸腾面,或是尽量是蒸腾作用迟缓进行,再加上原生质体的少水性,以及一些细胞液的高渗透压,使旱生植物具有了高度的抗旱性,来适应干旱环境[3]。

植物的形态结构变化

植物在不同环境中形态结构的变化 摘要:植物与其生长的环境是一个统一的整体,为了适应不同的逆境环境,植物在形态和结构上都发生了相应的变化,依此来保持自身正常的生命活动。本文详细阐述了植物的根茎叶在高CO2、低CO2、缺氧、高温、低温、干旱、盐因子等不同逆境下所发生的形态和结构变化。 关键词:植物;环境;变化 The plants variation of morphology and structure in different environments Abstract: The growth of the plants and their environment is a unified whole. In order to adapt to the different adversity environments, the plants have corresponding variations in morphology and structure to keep their normal life activities. This paper expounds the plants variation of morphology and structure in different environments, such as high CO2, low CO2, hypoxia, high temperature, low temperature, drought and salt factor. Key words:plants; environments;variation 植物体是一个开放体系,生存于自然环境,而自然环境不是恒定不变的,为了适应不良环境,植物在形态结构和生理上都发生了相应的变化。那么,植物面 对高CO 2、低CO 2 、高温、低温、缺氧、干旱、盐渍等不同环境会发生增氧的变化 呢? 本文讨论了在各种不良环境中植物形态和结构发生的相应变化。 1 大气 大气是植物赖以生存的物质条件,空气质量直接影响植物的生长发育。植物生长在各种各样的大气环境中,长期的大气变化使其获得了一些适应某种大气环境的相对稳定的遗传特征,其中也包括形态结构方面适应的特征。因此某种大气环境因子突然改变就必然导致植物在形态结构上出现某种变化[1]。

植物花形态结构及解剖研究

一、实验名称:植物花形态结构及解剖研究 二、实验目的 (1)识辨数种常见花卉; (2)掌握花的基本结构和常见类型; (3)掌握描述花形态结构的基本术语; 三、实验用具 3.1. 实验材料:新鲜的金鱼草花、百合花、玫瑰花、菊花、水稻花,百合子房横切片 3.2. 实验设备:WiFi光学显微镜(Motic麦克奥迪),互动光学显微镜(Motic麦克奥迪),体视显微镜,镊子,解剖针,解剖刀,载玻片,盖玻片,吸水纸,洗瓶等 3.3. 实验试剂:蒸馏水 四、实验内容 4.1. 花的各部分结构解剖 金鱼草花的观察:在体视镜下解剖金鱼草花,自内向外观察其组成。 (1)花柄(花梗):着生在茎上,支持花朵。 (2)花托:花柄顶端着生花萼、花冠、雄蕊群、雌蕊群的部分。 (3)花萼:为花的最外一轮,萼片为(绿)色,共(5)片,萼片(分离)。 (4)花冠:位于花萼内轮,花冠由(2)片(白)色的花瓣

组成,花瓣基部愈合,分离部分呈唇形,上唇(二) 裂直立,下唇(三)裂开展外曲,故称唇形花冠。花 瓣形状、大小各异,通过花的中心只有一根对称轴能 将花分成相等的两半,故属不完整花(两侧对称)。(5)雄蕊群:位于花冠的内方,共(4)枚,其中(2)枚较短,(2)枚较长,称二强雄蕊。每枚雄蕊由两部分 构成:细长的部分为花丝;顶端的囊状物称为花药。(6)雌蕊群:位于花的中央,形似一瓶装物即雌蕊。雌蕊顶端扩大部分为柱头,基部膨大部位为子房;二者之 间较细的部分为花柱。子房的基部着生于花托上,为 子房上位。用刀片将子房做若干个横切,用体视显微 镜进行观察,课间子房分为(2)室,由此可推断这 种雌蕊为(2)心皮合生的复雌蕊。 按上述内容解剖观察百合花、玫瑰花、菊花、水稻花。 4.2 百合子房结构 取百合子房横切片于显微镜下观察。百合的雌蕊是由三心皮联合而成的复雌蕊。 百合子房主要有子房壁、子房室、胎座和胚珠租车那个,横切面上可见有(6)个子房室,每室中可见(1)个胚珠(实为纵向两列)。胚珠着生处为胎座,百合胚珠着生在中轴上所以为(中轴)胚座。子房壁最外面一层的细胞叫外表皮,最内一层细胞叫内边皮,内外表皮之间为薄壁细胞;在对着

植物叶的形态结构与环境关系

植物叶的形态结构的比较 棉花叶横切(禾本科):有维管束延伸层,栅栏组织为圆柱形细胞,海绵组织细胞不规则排列,间隙发达。 松树叶横切(裸子植物):有树脂道,叶肉部分化成栅栏组织与海绵组织,有一圈内形成层,有气孔。 夹竹桃叶横切(旱生):表皮由2至3层细胞组成复表皮,排列紧密,外被厚的角质层,下表皮有下陷的气孔窝结构,气孔窝内的表皮细胞常特化成表皮毛,叶肉细胞分化成栅栏组织与海绵组织。叶脉就是叶肉中的维管组织 眼子菜叶横切(水生):表皮细胞壁薄,细胞内含叶绿体,外壁没有角质层,不具气孔,叶肉细胞不分化成多层的栅栏组织与海绵组织,细胞间隙发达或分化成大型的气室。

玉米叶横切(C4):表皮细胞较小,形状较规则,上表皮两个维管束之间有几个大型的薄壁细胞,没有栅栏组织与海绵组织的分化,叶肉细胞小排列紧密,细胞间隙较小,内含叶绿体,维管束鞘为大型单层薄壁细胞,内涵较大的叶绿体,与毗邻的叶肉细胞组成“花环形”结构,为C4植物所特有。 水稻叶横切(C3):表皮细胞较大,细胞疏松排列,叶肉细胞有栅栏组织与海绵组织的分化,含有正常的叶绿体,维管束较小,维管束鞘细胞没有叶绿体。 植物叶的形态与结构的观察 名科 叶形 叶序 叶脉 叶尖 叶缘 银杏叶 扇形 簇生 二叉平行 叶脉 叶基(楔形) 不规则三节 状,中间凹入 鹅掌楸 叶 马褂形 互生 网状脉 截形(叶尖) 掌状半 裂 玉簪叶 椭圆形 簇生 弧形平行脉 急尖(叶尖) 全缘 金钱松 叶 披针形 簇生 急形异短尖(叶尖) 铁树(复叶) 羽片条形 对生叶序 侧出平行脉 急尖(叶尖) 羽状全 裂 红花木 倒形羽 互生 网状脉 急形异短尖(叶尖) 细锯状 苦楮 披针形 互生 网状脉 尾尖 锯状 野生豌豆 羽状复 叶 叶须卷 羽状全 裂

茎的形态结构和功能

茎的形态结构和功能 一教学目的 1.了解芽的种类,理解叶芽的结构及叶芽发育。理解顶芽发育与侧芽发育的关系。 2.掌握木本植物茎的结构和各部分结构的主要功能。 3.理解草本植物茎的结构和各部分结构的主要功能。 4.知道年轮形成的道理。 二重点和难点 1.教学重点木本植物茎与草本植物茎的主要结构、功能和区别。 2.教学难点木本植物、草本植物维管束的结构、功能和区别;年轮的形成。 三教学过程 课前准备:带有各种类型芽的枝条,一段树木的茎。 茎的形态 让学生看一张有树的图 问:上图植物的哪些部位是茎? 答:主茎和侧枝

问:茎上着生有什么? 答:茎上着生叶,在叶腋处有侧芽。 然后引出节和节间的概念。 节:着生叶和侧芽的部位称为节 节间:两个节之间称为节间 问:树为什么会长高?和茎有关吗?和茎的哪一部分有关呢?答:和茎的顶端有关 介绍茎尖结构 茎尖:茎的顶端 看小资料顶端优势的应用 问:植物的主茎从哪里来的?或者说主茎是由哪一部分发育来的?答:种子的胚芽发育成植物的主茎 问:树有侧枝,那么侧枝又是如何产生的呢? 答:主茎上侧芽发育成侧枝。 小结:植物的茎是由芽发育而来的。 给学生看带有芽的枝条 问:长在枝条上的芽一样吗? 答:不一样。 问:有什么区别吗? 芽的分类 按位置来分,分为顶芽和侧芽。 按性质来分:分为叶芽、花芽、混合芽

茎的结构和功能 问:为什么一棵小树苗经过几年的生长,能长成粗壮的参天大树呢?树的顶端这么高,它又是如何吸收到营养物质的? 双子叶植物茎的结构:从外到内依次是 (1)表皮——由许多层形态、结构不同的细胞组成,主要起保护作用。 (2)皮层:位于表皮和维管组织之间,由多层薄壁细胞组成。 (3)维管组织:在皮层和髓之间,包括韧皮部、木质部和维管形成层。 (4)髓:由薄壁细胞构成,有贮藏营养物质的作用。 具体介绍维管组织: 韧皮部:其中有筛管和韧度纤维,筛管由许多活的管状细胞上下连接而成,在上下相连的横壁上有许多小孔,叫做筛孔。细胞质通过筛孔彼此相通。茎里的筛管与根和叶里的筛管相通连,是运输有机物的通道(功能)。(展示相应的图片) 韧皮纤维是又细又长的死细胞,细胞的壁厚,有弹性。韧皮纤维起支持作用。 木质部:主要有导管和木纤维。 导管的形态、结构,与根和叶里的导管相同。(看导管类型的图片)导管是运输水分和无机盐的通道。导管和筛管都属于输导组织。木纤维是又细又长的死细胞,细胞的壁厚,没有弹性,有很强的支持力。木本植物茎之所以坚硬,主要是木纤维的作用。

植物茎形态结构与功能的适应--宋姗姗

植物茎的形态结构与功能的适应 姓名:宋姗姗学号:20121070219 学院:生命科学学院专业:园艺 【摘要】:提出植物形态结构与功能相适应的观点,以旱生植物为例,从旱生植物的茎方面的形态结构的变化来解释植物是如何与抗旱的功能相适应的。最后对文章进行一些总结。 现存的每一种植物都具有与环境相适应的形态结构和生理功能特征[1]。植物的根、茎、叶、花、果实和种子等器官,都具有明显的适应性特征。 植物由于外界生态因素的影响,逐渐演化出各种各样的形态和结构来适应所生长的环境。外界的各种生态因素都有可能引起植物的形态发生变化,而其中影响最大的是植物生长周围水分的供应状况。因此,本文主要谈由于水分引起的植物的形态结构与功能的适应关系。依照植物与水分的关系,可以将植物分为陆生植物与水生植物,陆生植物又分为旱生植物、中生植物和湿生植物[2]。具体以旱生植物的适应性特征来解释其形态结构与功能的适应关系。 可适应干旱条件而正常生活的植物称为旱生植物,,一般在严重缺水和强烈光照下生长的植物,植株往往变得粗壮矮化。地上气生部分发育出种种防止过分失水的结构,而地下根系则深入土层,或者形成了储水的地下器官。另一方面,茎干上的叶子变小或丧失以后,幼枝或幼茎就替代了叶子的作用,在它们的皮层细胞或其他组织中可具有丰富的叶绿体,进行光合作用。 旱生植物的形态和结构的变化,可从茎方面表现出来[4]: 茎是地上的重要部分,经受干旱的影响,远比根部显著,也比较容易观察,它们在形态解剖上的变化是: 沙漠里生长的多年生植物的叶子往往非常退化,幼枝代替了叶子的功能,例如各种梭梭(Haloxylon spp. )和沙拐枣(Calligonum spp. ),茎上已不发育出叶片(或有一些非常退化的鳞片叶,),却在幼小的绿色枝条上进行光合作用,形成所谓同化茎。有的这些枝条以后也可能脱落。有些沙漠植物的枝条,在干旱季节可以及时枯死,以减少水分的蒸发,同时使植物体内需水的程度减到最低限度,但是一到雨季,它们又能够迅速长出新的枝条。 沙生植物,特别是沙生灌木,常可看到的一种特征,就是形成分裂的茎。例如一种蒿(Artemisia herba- alba),骆驼蓬(Peganum harmala)和一种霸王(Zygophyllum dumosum)的茎部都可以裂开成几部分。分裂形成的几个分开部分,由于所遇到的小生境的条件可能不同,因此,有的干死了,而有的却可能存活下来,继续生长。 旱生植物的皮层和中柱的比率较大,茎中的皮层要比中生植物的宽,而维管束则较紧密,

被子植物茎的形态结构和功能

第五章被子植物茎的形态结构和功能 本章学习的目的和要求: 通过本章内容的学习,要求同学们了解被子植物茎的发生、生长和基本结构及其相关概念。掌握茎的形态、结构、生理功能及其与生态环境间的相互关系。 本章学习的难点和重点: 茎解剖结构特征的层次性、差异性及其同一性; 本章教学与学习的方法: 多媒体教学(自制课件) 讲授与板书相结合 提问 学习本章,在理解教材时建议用两种学习方法: 1.联系观点:(1)与植物的有关组织相联系,初生结构与次生结构相联系; (2)形态结构特点与功能相联系。 2.对比方法:(1)根与茎结构特点的对比; (2)双子叶植物与单子叶植物的根、茎结构特点分别对比,找出某些结构之间的共同点和不同点。 本章板书内容(见讲稿黑体字) 本章讲授内容如下: 第一节茎的主要生理功能 茎是植物体内物质输导的主要通道;正常的茎都生长在地面上,下部连着根,上部支持着叶、花和果实,故茎地输导和机诫支持作用是主要功能;茎也有贮藏和繁殖地功能;绿色幼茎还能进行光合作用。 第二节、茎的基本形态和分枝 茎分节和节间两部分。着生叶和芽的茎称为枝条,分长枝和短枝(花枝)。木本植物的枝条上有叶痕、叶迹、皮孔、芽鳞痕等。 一、芽及其类型 1、芽的基本结构(叶芽的结构) 芽是未发育的枝条、花和花序的原始体,是茎尖中央的幼嫩部分。芽中央为幼嫩的茎尖,茎尖上部节和节间的距离极近,界线不明显,周围有叶原基、腋芽原基和幼叶,中央是生长锥。 生长锥 叶叶原基 芽腋芽原基叶芽 结芽轴 构叶原基————幼叶 和幼叶—————叶枝条 发腋芽原基———侧芽 育芽轴—————茎 2 按芽生长位置、性质、结构和生理状态可将芽分为下列几种类型: (1)定芽和不定芽 (2)叶芽和花芽、混合芽

叶的形态与结构

第七章叶的形态与结构 第一节叶的发生组成和叶序 叶是先于根发育出现的结构,是植物光合作用制造养分的重要场所,是植物重要的营养器官之一。本章主要讲述叶的形态、结构特征及其与功能间的相互关系。 第一节叶的发生、组成与叶序 一、叶的发生与生长 (一)叶的发生与生长 1.叶的发生 叶由叶原基生长分化而来。当芽形成和生长时,在茎的生长锥的亚顶端,周缘分生组织区的外层细胞不断分裂,形成侧生的突起。这些突起是叶分化发育的起点,因而被称为叶原基。叶原基是一团原分生组织细胞,将朝着长、宽、厚三个方向进一步生长,逐渐形成具有叶片、叶柄、托叶等结构雏形的幼叶,最终发育成为成熟叶。叶的这种起源发育方式称为外起源(图7-1)。 2.叶的生长 由叶原基发育成叶的过程包括顶端生长、边缘生长和居间生长三个阶段。 叶原基形成后,首先进行顶端生长,不断伸长,成为圆柱状的结构,称为叶轴。叶轴是尚未分化的叶柄和叶片。具有托叶的植物,叶原基上部形成叶轴;叶原基基部的细胞分裂较上部快,且发育较早,分化成为托叶,包围着上部叶轴,起到保护作用。具有叶鞘的植物(如禾本科),叶原基基部生长活跃,侧向延伸可以包围整个茎端分生组织。在叶轴伸长的同时,叶轴两侧边缘的细胞开始分裂,进行边缘生长(边缘生长进行一段时间后,顶端生长停止)。叶轴的边缘生长,使叶轴变宽,形成具有背腹性的、扁平的叶片雏形;如果是复叶,则通过边缘生长形成多数小叶片。没有进行边缘生长的叶轴基部分化为叶柄,当幼叶叶片展开时叶

柄才随之迅速伸长(图7-2)。 当幼叶由芽内逐渐伸出、展开时,边缘生长逐渐停止,整个叶片进入居间生长,最后发育成熟。大多数幼叶叶片的生长基本上是等速生长,但有些幼叶各部分细胞的生长速度并非完全一致,因而在叶的生长过程中,便出现了不同的叶缘、叶形等。叶片在不断增大的同时,伴随着内部组织的分化成熟。 在边缘生长时期,叶轴两侧的边缘分生组织经垂周分裂产生原表皮,将来发育成为表皮;近边缘分生组织平周分裂和垂周分裂交替进行,形成了基本分生组织和原形成层。在一种植物中叶肉的层数基本是恒定的,是由平周分裂决定的。在各层形成后,细胞停止了平周分裂,只进行垂周分裂,增大叶片面积,但不增加叶片厚度。 一般说来,叶的生长期是有限的,这和具有形成层的无限生长的根、茎不同。叶在短期内生长达一定大小后,生长即停止。但有些单子叶植物的叶的基部保留着居间分生组织,可以有较长期的居间生长。如禾本科植物的叶鞘可以随节间生长而伸长,葱、韭菜等剪去上部叶片,叶仍可继续生长(即割一茬又长一茬),就是由于叶基部居间分生组织活动的结果。 3.叶的发育、生长与调控 叶是植物进行光合作用的器官。不同物种叶的大小、颜色、形状差别非常大,同一植物在不同阶段其叶形也可能完全不同。 (二)叶在植物系统进化与个体发育中的地位和意义 二、叶的生理功能和利用 (一)叶的生理功能 (二)叶的利用 (三)叶序 三、叶的形态多样性

植物叶的形态结构与环境的关系

植物叶的形态结构与环境的关系 刘新秦 (西北大学生命科学学院,2004级生物科学专业)依据各类植物与水的关系,把其分为陆生植物与水生植物,陆生植物又分为旱生植物,中生植物和湿生植物. 可适应干旱条件而正常生活的植物称为旱生植物.旱生植物的叶具有保持水分和降低蒸腾作用,其通常向着两个方向发展: 一类是减小蒸腾的适应:就外型而言,一般植株矮小,根系发达,叶小而厚,蜡被和表皮毛发达,有的植物形成复表皮.就结构而言,叶的表皮细胞壁厚,角质层发达.气孔下陷或限定在气孔窝内.栅栏组织细胞层数多,甚至上下表皮内方均有栅栏组织分布.海绵组织和细胞间隙不发达.叶脉发达,可提高输水率和机械强度,如夹竹桃和松叶.这些形态上的结构特征,或是减少了蒸腾面,或是尽量是蒸腾作用迟缓进行,再加上原生质体的少水性,以及一些细胞液的高渗透压,使旱生植物具有了高度的抗旱性,来适应干旱环境; 夹竹桃黄花夹竹桃黄花夹竹桃叶 夹竹桃叶切片图 另一类为肉质叶片,叶片肥厚多汁,叶肉中有发达的储水组织薄壁组职,保水力强.这些植物的细胞,能保持大量水份,水的消耗也少,因此可耐干旱.如芦荟,景天,龙舌兰等. 芦荟白景天翡翠景天金边龙舌兰 水生植物的整个植株生在水中,因此,可以获得充分的水分和溶于水中的营养物质,但它们的叶--尤其是沉水叶,不怕缺水,而因为水中溶解的空气少,光线为散射光叶绿体,,如何解决获得它所需要的气体和阳光成为所要面对的问题.适应这种生态环境的水生植物,通常叶片较薄,叶面无气孔和表皮毛(浮水叶仅在上表皮有气孔),表皮细胞具叶绿体,可营吸收,光合作用和气体交换的功能表皮细胞所含的叶绿体,对于光的吸收是极为有利的,因此,沉水叶的表皮不仅是保护组织,也是吸收组织和同化组织(光合组织).叶肉不发达,无栅栏组织和海绵组织的分化,形成发达的通气系统.机械组织和维管组织退化,导管不发达.胞间隙特别发达,形成通气组织,即具大液泡间隙的薄壁组织.有些水生植物中具气生叶或漂浮叶,后者仅上表皮有气孔,叶肉中也句发达的通气系统.如芦竹、石菖蒲、芦荻和水生美人蕉等。 芦竹石菖蒲芦荻水生美人蕉水生植物在分类群上由多个植物门类组成,包括非维管束植物,如大型藻类和苔藓类管束植物,其中被子植物占绝大多数,典型的水生植物多为被子植物中的单个叶纲. 水生植物有挺水、浮叶、沉水等生活型,以下将做详细介绍: 湿地植物(包括挺水型、浮叶型)-- 生长在浅水湿地,其根系发达且深,下部淹没水中或在陆地上全部暴露在空气中均可生长,可形成净化带,对地表径流流入湖中的水起过滤作用,阻拦、吸收、转化可能进入水体的有机质及营养盐,有利于水体自净,防止水体的富营养化。 挺水型:挺水植物指根生底质中、茎直立、一般植株高大,根部生活在水中,植物大部分挺出水面.光合作用组织气生的植物生活型,主要为单子叶植物. 黄鸢尾水竹 浮叶型:根生浮叶植物是一面叶气生的水生植物活型。一般茎细弱不能直立,根状茎发达,有根在水下泥中,不会随风漂移。 萍莲草荇菜 沉水植物--生长在湖底,整个植物浸没水下,多为观叶植物,能防止底泥的再悬浮而影

叶的形态结构和生理.

第三节叶的形态结构与生理 一、选择题; 1、下列哪一说法是错误的 A、绿叶只含叶绿素 B、绿叶只有在光下才能制造淀粉 C、绿叶时刻发生呼吸作用 D、绿叶的上表面一侧产生氧气多 2、从物质变化来说,光合作用的实质是 A、把废物变成有用物 B、把无机物变成有机物 C、使气态物变成另一气态物 D、气态物变成固态物 3、移栽树木时,人们常要去掉几片叶,这样做是为了 A、减轻重量 B、降低呼吸作用 C、减少光合作用 D、减少水分蒸发 4、活的植物体在白天 A、只进行光合作用 B、只进行呼吸作用 C、只进行光合作用与蒸腾作用 D、光合、呼吸与蒸腾同时进行 5、植物进行呼吸作用的时间是 A、只在白天 B、白天和黑夜 C、只在黑夜 D、只在光下 6、植物体进行呼吸作用的部位是 A、只在种子中 B、只在叶片内 C、只在根系中 D、在植物体的各个器官中 二、填充题: 1、叶片的结构一般包括、、三部分,叶绿体较集中的部位是部分的组织。 2、叶片的表皮主要起作用,表皮上有一种气体和水分出入的通道叫,它的开闭,由控制。 3 4、光合作用中的能量转化过程是指光能转变为储存在里的能量;光合作用中的物质转化过程是指简单的转变成复杂的,并且释放出。 5、如果自然界中的森林大面积的减少,那么,大气中的就会不断的增多, 就会不断的减少。 6、植物在光合作用中吸收利用的气体是,在呼吸作用中吸收利用的气体是;植物在光合作用中释放的气体是,在呼吸作用中释放的气体是。 7、植物在光合作用中有机物,在呼吸作用中有机物。 一、分析说明题: 1、有一位科学家曾经把一棵2.5千克重的柳树苗栽种道一只木桶里,桶里的土壤事先称了重量。在这以后,他只给树苗浇纯净的雨水。5年以后,柳树长大了,重量增加了80多千克,而土壤却只减少了不足100克,你从这个实验里可以得出什么结论? 2、把两段绿色枝条按图中装置分别放在甲、乙两个玻璃罩内。在甲玻璃罩内放清水,以

植物茎的结构及其功能的观察图

植物茎得结构及其功能得观察(图) 一、实验目得 1、了解芽得构造。 2、了解双子叶植物茎得初生构造,次生构造及单子叶植物茎得构造。 3.认识植物茎得输导功能。 二、实验原理 芽就是处于幼态而未伸展得枝、花或花序,也就就是枝、花或花序尚未发育前得雏体。以后发展成枝得芽称为枝芽;发展成花或花序得芽称为花芽。枝芽得结构决定着主干与侧枝得关系与数量,也就就是决定植株得长势与外貌。花芽决定着花或花序得结构与数量,并决定开花得迟早与结果得多少。茎得顶端分生组织中得初生分生组织所衍生得细胞,经过分裂、生长、分化而形成得组织,称为初生组织,由这种组织组成了茎得初生结构。双子叶植物茎与裸子植物茎得初生结构,包括表皮、皮层与维管柱三个部分,但裸子植物茎没有双子叶植物茎得那种一生只停留在初生结构中得草质茎类型。单子叶植物得茎与双子叶植物得茎在结构上有许多不同。大多数单子叶植物得茎,只有初生结构,所以结构比较简单。少数得虽有次生结构,但也与双子叶植物得茎不同。以禾本科植物得茎作为代表,说明单子叶植物茎初生结构得最显著特点。绝大多数单子叶植物得维管束由木质部与韧皮部组成,不具形成层(束中形成层)。维管束彼此很清楚地分开,一般有2 种排列方式:一种就是维管束全部没有规则地分散在整个基本组织内,愈向外愈多,愈向中心愈少,皮层与髓很难分辨,如玉米、高粱、甘蔗等得维管束,它们不像双子叶植物茎得初生结构内,维管束形成一环,显著地把皮层与髓部分开。另一种就是维管束排列较规则,一般成两圈,中央为髓。有些植物得茎,长大时,髓部破裂形成髓腔,如水稻、小麦等。维管束虽然有不同得排列方式,但维管束得结构却就是相似得,都就是外韧维管束,同时也就是有限维管束。 双子叶植物与裸子植物茎发育到一定阶段,茎中得侧生分生组织便开始分裂、生长与分化,使茎加粗,这一过程称为次生生长,次生生长产生得次生组织组成茎得次生结构。侧生分生组织通常包括维管形成层与木栓形成层。形成层细胞得分裂包括切向分裂与径向分裂。切向分裂向内形成次生木质部,加在原有木质部得外方;向外形成次生韧皮部,加在原有韧皮部得内方。在形成次生结构同时,形成层细胞为扩大自身圆周还必须进行径向分裂或横分裂以适应内方木质部得增粗,同时形成层得位置渐次向外推移。双子叶植物茎中次生木质部得组成包括轴向系统得导管、管胞、木纤维、木薄壁组织与径向系统得木射线。次生韧皮部同样包括轴向系统与径向系统,轴向系统由管胞、伴胞、韧皮薄壁细胞与韧皮纤维组成,有时也有石细胞;径向系统则由韧皮射线组成。韧皮射线通过形成层得原始细胞与木射线相连,合称维管射线。芽就是植物地上部分得轴,主要得生理功能就是支持与输导得作用。水分与矿质元素得长途运输依赖于导管与管胞;同化物得长途运输主要依赖于筛管与筛胞。 三、实验用品 (一)材料大叶黄杨茎尖纵切片、向日葵与玉米茎横切片、椴树茎横切片、蚕豆茎、盆栽木槿

叶的形态、结构和生理

第三节 叶的形态结构与生理 一、选择题; 1、下列哪一说法是错误的 A 、绿叶只含叶绿素 B 、绿叶只有在光下才能制造淀粉 C 、绿叶时刻发生呼吸作用 D 、绿叶的上表面一侧产生氧气多 2、从物质变化来说,光合作用的实质是 A 、把废物变成有用物 B 、把无机物变成有机物 C 、使气态物变成另一气态物 D 、气态物变成固态物 3、移栽树木时,人们常要去掉几片叶,这样做是为了 A 、减轻重量 B 、降低呼吸作用 C 、减少光合作用 D 、减少水分蒸发 4、活的植物体在白天 A 、只进行光合作用 B 、只进行呼吸作用 C 、只进行光合作用与蒸腾作用 D 、光合、呼吸与蒸腾同时进行 5、植物进行呼吸作用的时间是 A 、只在白天 B 、白天和黑夜 C 、只在黑夜 D 、只在光下 6、植物体进行呼吸作用的部位是 A 、只在种子中 B 、只在叶片内 C 、只在根系中 D 、在植物体的各个器官中 二、填充题: 1、叶片的结构一般包括 、 、 三部分,叶绿体较集中的部位是 部分的 组织。 2、叶片的表皮主要起 作用,表皮上有一种气体和水分出入的通道叫 ,它的开闭,由 控制。 3 (储存能量) 4、光合作用中的能量转化过程是指光能转变为储存在 里的能量;光合作用中的物质转化过程是指简单的 转变成复杂的 ,并且释放出 。 5、如果自然界中的森林大面积的减少,那么,大气中的 就会不断的增多, 就会不断的减少。 6、植物在光合作用中吸收利用的气体是 ,在呼吸作用中吸收利用的气体是 ;植物在光合作用中释放的气体是 ,在呼吸作用中释放的气体是 。 7、植物在光合作用中 有机物,在呼吸作用中 有机物。 一、分析说明题: 1、有一位科学家曾经把一棵2.5千克重的柳树苗栽种道一只木桶里,桶里的土壤事先称了重量。在这以后,他只给树苗浇纯净的雨水。5年以后,柳树长大了,重量增加了80多千克,而土壤却只减少了不足100克,你从这个实验里可以得出什么结论? 2、把两段绿色枝条按图中装置分别放在甲、乙两个玻璃罩内。在甲玻璃罩内放清水,以玻璃罩内放氢氧化钠溶液(氢氧化钠可以吸收二氧化碳)。把它们放在黑暗中一天,然后

植物茎的结构及其功能的观察图

植物茎的结构及其功能的观察(图) 一、实验目的 1、了解芽的构造。 2、了解双子叶植物茎的初生构造,次生构造及单子叶植物茎的构造。 3.认识植物茎的输导功能。 二、实验原理 芽就是处于幼态而未伸展的枝、花或花序,也就就是枝、花或花序尚未发育前的雏体。以后发展成枝的芽称为枝芽;发展成花或花序的芽称为花芽。枝芽的结构决定着主干与侧枝的关系与数量,也就就是决定植株的长势与外貌。花芽决定着花或花序的结构与数量,并决定开花的迟早与结果的多少。茎的顶端分生组织中的初生分生组织所衍生的细胞,经过分裂、生长、分化而形成的组织,称为初生组织,由这种组织组成了茎的初生结构。双子叶植物茎与裸子植物茎的初生结构,包括表皮、皮层与维管柱三个部分,但裸子植物茎没有双子叶植物茎的那种一生只停留在初生结构中的草质茎类型。单子叶植物的茎与双子叶植物的茎在结构上有许多不同。大多数单子叶植物的茎,只有初生结构,所以结构比较简单。少数的虽有次生结构,但也与双子叶植物的茎不同。以禾本科植物的茎作为代表,说明单子叶植物茎初生结构的最显著特点。绝大多数单子叶植物的维管束由木质部与韧皮部组成,不具形成层(束中形成层)。维管束彼此很清楚地分开,一般有2 种排列方式:一种就是维管束全部没有规则地分散在整个基本组织内,愈向外愈多,愈向中心愈少,皮层与髓很难分辨,如玉米、高粱、甘蔗等的维管束,它们不像双子叶植物茎的初生结构内,维管束形成一环,显著地把皮层与髓部分开。另一种就是维管束排列较规则,一般成两圈,中央为髓。有些植物的茎,长大时,髓部破裂形成髓腔,如水稻、小麦等。维管束虽然有不同的排列方式,但维管束的结构却就是相似的,都就是外韧维管束,同时也就是有限维管束。 双子叶植物与裸子植物茎发育到一定阶段,茎中的侧生分生组织便开始分裂、生长与分化,使茎加粗,这一过程称为次生生长,次生生长产生的次生组织组成茎的次生结构。侧生分生组织通常包括维管形成层与木栓形成层。形成层细胞的分裂包括切向分裂与径向分裂。切向分裂向内形成次生木质部,加在原有木质部的外方;向外形成次生韧皮部,加在原有韧皮部的内方。在形成次生结构同时,形成层细胞为扩大自身圆周还必须进行径向分裂或横分裂以适应内方木质部的增粗,同时形成层的位置渐次向外推移。双子叶植物茎中次生木质部的组成包括轴向系统的导管、管胞、木纤维、木薄壁组织与径向系统的木射线。次生韧皮部同样包括轴向系统与径向系统,轴向系统由管胞、伴胞、韧皮薄壁细胞与韧皮纤维组成,有时也有石细胞;径向系统则由韧皮射线组成。韧皮射线通过形成层的原始细胞与木射线相连,合称维管射线。芽就是植物地上部分的轴,主要的生理功能就是支持与输导的作用。水分与矿质元素的长途运输依赖于导管与管胞;同化物的长途运输主要依赖于筛管与筛胞。 三、实验用品 (一)材料大叶黄杨茎尖纵切片、向日葵与玉米茎横切片、椴树茎横切片、蚕豆茎、盆栽木槿

植物叶的形态结构与环境的关系.

植物叶的形态结构与环境的关系 依据各类植物与水的关系 , 把其分为陆生植物与水生植物 , 陆生植物又分为旱生植物 , 中生植物和湿生植物 . 可适应干旱条件而正常生活的植物称为旱生植物 . 旱生植物的叶具有保持水分和降低蒸腾作用 , 其通常向着两个方向发展 : 一类是减小蒸腾的适应 :就外型而言 , 一般植株矮小 , 根系发达 , 叶小而厚 , 蜡被和表皮毛发达 , 有的植物形成复表皮 . 就结构而言 , 叶的表皮细胞壁厚 , 角质层发达 . 气孔下陷或限定在气孔窝内 . 栅栏组织细胞层数多 , 甚至上下表皮内方均有栅栏组织分布 . 海绵组织和细胞间隙不发达 . 叶脉发达 , 可提高输水率和机械强度 , 如夹竹桃和松叶 . 这些形态上的结构特征 , 或是减少了蒸腾面 , 或是尽量是蒸腾作用迟缓进行 , 再加上原生质体的少水性 , 以及一些细胞液的高渗透压 , 使旱生植物具有了高度的抗旱性 , 来适应干旱环境 ;

夹竹桃黄花夹竹桃黄花夹竹桃叶 夹竹桃叶切片图另一类为肉质叶片 , 叶片肥厚多汁 , 叶肉中有发达的储水组织薄壁组职 , 保水力强 . 这些植物的细胞 , 能保持大量水份 , 水的消耗也少 , 因此可耐干旱 . 如芦荟 , 景天 , 龙舌兰等 . 芦荟白景天翡翠景天金边龙舌兰

水生植物的整个植株生在水中 , 因此 , 可以获得充分的水分和溶于水中的营养物质 , 但它们的叶 --尤其是沉水叶 , 不怕缺水 , 而因为水中溶解的空气少 , 光线为散射光叶绿体, , 如何解决获得它所需要的气体和阳光成为所要面对的问题 . 适应这种生态环境的水生植物 , 通常叶片较薄 , 叶面无气孔和表皮毛 (浮水叶仅在上表皮有气孔 , 表皮细胞具叶绿体 , 可营吸收 , 光合作用和气体交换的功能表皮细胞所含的叶绿体 , 对于光的吸收是极为有利的 , 因此 , 沉水叶的表皮不仅是保护组织 , 也是吸收组织和同化组织 (光合组织 . 叶肉不发达 , 无栅栏组织和海绵组织的分化 , 形成发达的通气系统 . 机械组织和维管组织退化 , 导管不发达 . 胞间隙特别发达 , 形成通气组织 , 即具大液泡间隙的薄壁组织 . 有些水生植物中具气生叶或漂浮叶 , 后者仅上表皮有气孔 , 叶肉中也句发达的通气系统 . 如芦竹、石菖蒲、芦荻和水生美人蕉等。 芦竹石菖蒲芦荻水生美人蕉

相关文档
最新文档