定积分的经济应用举例

微积分在生活中的应用

龙源期刊网 https://www.360docs.net/doc/9217788017.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。

1 利用定积分求原经济函数问题 在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本 C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(10 5210 5=+-+=+=+=?t t dt t (件) 3 利用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为

(完整版)定积分在经济中的应用

定积分在经济中的应用 一、由经济函数的边际,求经济函数在区间上的增量 根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分: ()()()b a R b R a R x dx '-=? (1) ()()()b a C b C a C x dx '-=? (2) ()()()b a L b L a L x dx '-=? (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润 ()I x 的改变量(增量) 。 解 首先求边际利润 ()()()0.082550.0820L x R x C x x x '''=-=-+-=-+ 所以根据式(1)、式(2)、式(3),依次求出: 300 250 (300)(250)()R R R x dx '-=?300250(0.0825)x dx =-+?=150万元 300300250250(300)(250)()C C C x dx dx '-==? ?=250万元 300 300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+??=-100万元 二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称 2 121 ()t t f t dt t t -? 为该经济函数在时间间隔21[,]t t 内的平均变化率。 例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

定积分的应用

定积分的应用

————————————————————————————————作者:————————————————————————————————日期:

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)(Λa F b F dx x f b a -=?

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)( a F b F dx x f b a -=?

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

应用数学论文---定积分在生活中的应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 定积分概述 (2) 1.1定积分的定义 (2) 1.2定积分的性质 (2) 1.3定理及方法 (3) 2定积分的应用 (4) 2.1 定积分在平面图形面积、旋转体体积、曲线弧长上的应用 (4) 2.2定积分在物理中的应用 (8) 3总结 (11) 致谢 (11) 参考文献 (11)

定积分在生活中的应用 数学与应用数学专业学生郑剑锋 指导教师徐玉梅 论文摘要:本文简要的讨论了定积分在生活中的基本应用。数学方面包括应用定积分计算平面曲线的弧长、平面图形的面积以及立体图形的体积和物理应用。 关键词:微元法定积分数列极限 The Definite Integral in Our Life of Application Student majoring in mathematics and applied mathematics Jianfeng Zheng Tutor Yumei Xu Abstract:This paper discussed the definite integral in our life of basic applications. Mathematics including application of definite integral calculation plane curve arc length, the plane figure of the area and volume of three-dimensional graph and physical applications. Key words: Micro element method definite integral sequence limit 引言 本文主要介绍了定积分在生活中的应用,定积分作为大学里很重要的一部分,在生活有广泛的应用,微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。

定积分在几何学上的应用(比赛课教案).doc

定积分在几何学上的应用 ( 比赛课教案 )

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微 积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的 价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时:

新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程 当 f(x) 0 时,积分 b y=f (x)、 f (x)dx 在几何上表示由x a a、x b 与 x 轴所围成的曲边梯形的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x) b f (x)dx 在几何上表示y f ( x)、x a、x b 与 x 轴 0时由积分 a b f ( x ) dx c f ( x ) dx b f ( x ) dx 。 所围成的曲边梯形面积的负值 a S a c 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分在实际问题中的应用

第二节 定积分在实际问题中的应用 Application of Definite Integral 教学目的: 熟练掌握求解平面图形的面积方法,并能灵活、恰当地选择积分变量;会求平行截 面面积已知的立体的体积,并能求解旋转体的体积;能够解决物理应用中变力作功、液体压力方面的问题. 内 容: 定积分几何应用;定积分在物理中的应用. 教学重点: 求解平面图形的面积;求旋转体的体积. 教学难点: 运用定积分求平面图形的面积和旋转体的体积 教学方法: 精讲:定积分的几何应用;多练:用定积分求平面图形的面积和立体的体积 教学内容: 一、定积分的几何应用 1. 平面图形的面积 设函数12(),()y f x y f x ==均在区间[,]a b 上连续,且12()(),[,]f x f x x a b ≥∈,现计算由12(),(),,y f x y f x x a x b ====所围成的平面图形的面积. 分析求解如下: (1) 如图6-3所示,该图形对应变量x 的变化区间为[,]a b ,且所求平面图形的面积S 对区间[,]a b 具有可加性. (2) 在区间[,]a b 内任取一小区间[,]x x dx +,其所对应的小曲边梯形的面积,可用以dx 为底,12()()f x f x -为高的小矩形的面积(图6-3)中阴影部分的面积)近似代替.即面积微元为 12[()()]dS f x f x dx =- (3) 所求图形的面积 22[()()]b a S f x f x dx =-? 图6-3 【例1】 求曲线x y e =,直线0,1x x ==及0y =所围成的平面图形的面积. 解 对应变量x 的变化区间为[0,1],在[0,1]内任取一小区间[,]x x dx +,其所对应小窄条的面积用以dx 为底,以()()0x x f x g x e e -=-=为高的矩形的面积近似代替,即面积微元 x dS e dx = 于是所求面积 1 10 1x x S e dx e e ===-? 【例2】 求曲线2y x =及2 2y x =-所围成的平面图形的面积.

定积分在经济中的应用习题解答

定积分在经济中得应用习题解答 1.设商品的需求函数1005Q p =-(其中:Q 为需求,p 为单价)、边际成本函数 ()150.05C Q Q '=-且()012.5C = 问:当p 为什么值时?工厂的利润达到最大?试求出最大利润. 解 收益函数为 R (p ) = 100 p -5 p 2 成本函数为 0()(150.05)(0)Q C Q t dt C =-+? 21 1512.540 Q Q =-+ 由已知将Q = 100 - 5p 代入上式,得 25()501262.58C p p p = -+ 于是利润函数为 L (P )= R (p ) - C(p ) 2451501262.58 p p =- +- 令245'15004L p =-+= 12012045120,'()07727 p L ==-?<得 且 故当1207 p = 时利润达到最大,且最大利润 max L (1207)=23.12. 2. 某厂生产的某一产品的边际成本函数 ()231833C Q Q Q '=-+ 且当产量为3个单位时,成本为55个单位,求: (1) 成本函数与平均成本函数; (2) 当产量由2个单位增加到10个单位时,成本的增量是多少? 解 (1) 因为 20()(31833)Q C Q Q Q d Q =-+? 32933Q Q Q C =-++ 由已知当产量Q 为3时,成本为55,代入上式得C = 10, 于是 成本函数为

32()93310C Q Q Q Q =-++ 平均成本函数为 2()10()933C Q C Q Q Q Q Q ==-++ (2) 当产量由2个单位增至10个单位时,成本的增量是 ?C (Q ) = C (10) – C (2) = 392. 3. 已知生产某产品的固定成本为6万元,边际收益与边际成本(单位:万元/百台)分 别为 '()338R Q Q =-,2()31836C Q Q Q '=-+ (1) 求当产量由1百台增加到4百台时,总收益与总成本各增加多少? (2) 求产量为多少时, 总利润最大? (3) 求最大总利润时的总收益、总成本、总利润. 解 (1)由公式得总收益与总成本的增量为 4 1(338)39Q dQ -=?(万元) 421(31836)36Q Q dQ -+=? (万元) (2)由极值存在的必要条件: 边际收益'()R Q =边际成本()C Q ' 即 338Q -=231836Q Q -+ 解得121,33 Q Q ==,又由极值存在的充分条件: "()(338)'8R Q Q =-=-,2()"(31836)'618C Q Q Q Q =-+=- 显然,3Q =满足充分条件,即获得最大总利润的产量是3Q =百台. (3) 由公式得最大总利润总收益与总成本 3 0(338)63Q dQ -=? (万元) 320(31836)60Q Q dQ -+=? (万元) 所以

定积分在几何中的应用

1.7.1 定积分在几何中的应用 主讲:XXXX 卞志业 教学目标: 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 教学重难点: 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 教学过程: 一、复习回顾 1.微积分基本定理是什么? 学生回答:若函数f(x)在区间[a,b]上连续, ,这就是微积分基本定理,又叫牛顿—莱布尼茨公式。 2.定积分的几何意义是什么? 学生回答: x=a 、x=b 与 x 轴所围成的曲边梯形的面积。 需要注意的是:当f(x)≤0时,由y=f (x)、x=a 、x=b 与 x 轴所围成的曲边梯形位于 x 轴的下方。 ,那么并且)()(x f x F ='? -=b a a F b F dx x f )()()( 当f (x )≥0时,积分dx x f b a )(?在几何上表示由y =f (x )、 a b y f (x) ()b a S f x dx =?即:O x y x y O a b y f (x) ()b a S f x dx =-?即:

二、例题讲解 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 【分析】从图像中可以看出:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==?=??及,所以两曲线的交点为 (0,0)、(1,1), 面积S=S曲边梯形OABC-S曲边梯形OABD 1 1 2 xdx x dx =-? ? 【点评】 求两曲线围成的平面图形面积的一般步骤: (1)画草图,求出曲线的交点坐标; (2)将曲边形面积转化为曲边梯形面积; (3)确定被积函数及积分区间; (4)计算定积分,求出面积。 例2计算由直线y 2x = 曲线y x 4,=-以及x 轴所围图形的面积S. 【分析】 1 2 332x = 1 0331x -= = 323 1-31 4 x y O 8 4 2 2 B x y 2=4 -=x y S 2 S 1 S 2 S 1 4 y O 8 4 2 2 A ? ? ? ?????-+= +=??442122844 21dx x dx x s s s A: 4 42 1 28 21??-= -=? dx x s s s B:

定积分的几何应用举例

第5节 定积分的几何应用举例(考点) 定积分的应用就是要用定积分计算某个量A : ()b a A f x dx =? 可见,量A 分布在区间[,]a b 上。在实际应用时,要求我们把[,]a b 和 ()f x 找出来。 [,]x a b ?∈,考虑 ()()x a A x f t dt =? ()A x 是A 在[,]a x 上的分布。 让x 有增量x ?使[,]x x a b +?∈。 ()()()A dA dx f x dx dx ?=+=+ A ?是A 在[][](),,x x x x x x +?+?或上的分布。 因此,用积分计算量A 的步骤如下: (1) 找到A 的分布区间[,]a b ; (2) ,[,]x x dx a b ?+∈,把A 在[][](),,x x dx x dx x ++或上的分布 量A ?计算成如下式子 ()()A f x dx dx ?=+即()dA f x dx = (3)算出定积分 ()b a A f x dx =? 以上步骤称为定积分应用的微元法。

5.1 平面图形的面积 5.1.1.直角坐标系中 连续曲线(),(),,y f x y g x x a x b ====所围图形的面积A 。 A 分布在[,]a b 区间上;,[,]x x dx a b ?+∈,在区间[,]x x dx +部分的面积()()()A f x g x dx dx ?=-+;所以 ()()b a A f x g x dx =-? 当()0,()0f x g x ≥≡时 ()b a A f x dx =? 【例5.1】 求由曲线e x y ,e x y 以及直线1x 围成的图形面积. 解、面积A 分布在[0,1]区间上;,[0,1]x x dx ?+∈, 在区间[,]x x dx +部分的面积()()x x A e e dx dx -?=-+;所以 ()1 1 1 2x x x x A e e dx e e e e ---??=-=+=+-?? ? 【例5.2】 求由曲线2 y x , 20x y 所围成图形的面积A . 解1 积; ,x x ?图5.1 y = 2

最新定积分在几何中的应用

定积分在几何中的应 用

1.7定积分的简单应用1.7.1定积分在几何中的应用双基达标(限时20分钟) 1.由y=1 x,x=1,x=2,y=0所围成的平面图形的面积为 (). A.ln 2 B.ln 2-1 C.1+ln 2 D.2ln 2 解析画出曲线y=1 x(x>0)及直线x=1,x=2,y=0, 则所求面积S为如图所示阴影部分面积. =ln 2-ln 1=ln 2.故选A. 答案 A 2.在下面所给图形的面积S及相应表达式中,正确的有 ().

A .①③ B .②③ C .①④ D .③④ 答案 D 3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为 ( ). A.163 B.83 C.43 D.23 解析 画出曲线y =x 2和直线y =2x ,则所求面积S 为图中阴影部分的面积.

解方程组????? y =2x ,y =x 2,得????? x =0,y =0或????? x =2, y =4. ∴A (2,4),O (0,0). =4-? ????83-0=4 3.故选C. 答案 C 4.由曲线y =2x 2,及x =0,x =3,y =0所围成图形的面积为________. 解析 由题意画草图: 答案 18 5.直线x =π2,x =3π 2,y =0及曲线y =cos x 所围成图形的面积________. 解析 由题意画草图:

由图形面积为 答案 2 6.求由曲线y =x 3及直线y =2x 所围成的图形面积. 解 由??? y =x 3,y =2x , 解得x 1=0,x 2=2,x 3=- 2. 交点为(-2,-22),(0,0),(2,22). 所求面积S 为: 综合提高 (限时25分钟) 7.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为 ( ).

经济数学基础——定积分在经济学中的应用

河北省高等教育自学考试 定积分在经济学中的 应用 ——定积分在经济学中的应用 地市:沧州市 专业:投资管理 姓名:郭梦帆 准考证号:1 身份证号: 联系电话:

内容摘要 经济数学基础本着基础教学为专业服务及注重应用、培养能力的原则,根据微积分、线性代数、概率统计的基本知识逻辑,以知识介绍为重点,详略得当;叙述上力求简明、通俗,又不失科学性。 关键词: 定积分微分经济学边际函数投资 经济数学基础知识点 1、一元函数极值 设函数f(x)在X0的一个邻域内有定义,若对于该邻域内异于X0的X 恒有:f(x)f(X0),则f(X0)称为函数的极小值,称X0为极小值点.函数的极大值、极小值统称为函数的极值.极大值点、极小值点统称为函数的极值点。 极值反映函数的局部性态,就是一个局部概念.极大值不一定大于极小值,极大(小)值不一定就是区间上的最大(小)值,但就极值点附近的范围来说极大(小)值就就是最大(小)值;区间上的极值点 可能有若干个。 2、二元函数极值 设函数Z=f(x, y)在点(x0,y0)的邻域内有定义,对于该邻域内异 于(x0,y0)的点,如果都有f(x, y)f(x0,y0),则称f(x, y)为函数Z=f(x, y)的极小值;极大值与极小值统称为二元函数Z=(x, y)的极值;使二元函数Z=(x, y)取得极大值的点或者极小值的点 f(x0,y0),称为极大值点或者极小值点;极大值点与极小值点统称为极值点. 求多元函数的极值,一般可以利用偏导数来解决.与一元函数类似,可以利用函数的极大值、极小值求解函数的最大值、最小值,但就是由于自变量个数的增加,应特别注意概念中的一些变化与计算.对于二元以上的函数极值问题可类似的加以解决,如可以将二元 函数极值问题的理论推广到多元函数的情形,以及利用泰勒公式 推导出判断多元函数极值存在的充分条件、极值不存在的必要条

定积分在经济学中的应用

论文题目 定 积 分 在 经 济 学 中 的 应 用 系别:数学系 专业:数学与应用数学 学号:2007101208 姓名:卢欢

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。

1 利用定积分求原经济函数问题 在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(100000 2 +-+ ? =x x x x 2_ 3|]1007[10000++ =x x x 100710000 2 3 +-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ? '= 5 )( 650 )150200()600400(|)640()1220(10 52 10 5 =+-+=+=+= ? t t dt t (件) 3 用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为

1.7.1定积分在几何中的应用(教学设计)

1.7.1定积分在几何中的应用(教学设计) 教学目标: 知识与技能目标: 通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法。 过程与方法目标: 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 情感、态度与价值观目标: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;探究过程中对学生进行数学美育的渗透,用哲学的观点指导学生自主探究。 教学重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点:如何恰当选择积分变量和确定被积函数。 教学过程: 一、复习回顾: 复习定积分的概念、定积分的计算、定积分的几何意义. 二、师生互动,新课讲解: 问题1:(1).计算 dx x ? --2 2 2 4 (2).计算 s i n x d x π π -? 解:(1) 222 2 22 1 4?=-? -πdx x (2) 0sin =?- π πdx x 问题2:用定积分表示阴影部分面积

解:图1 选择X 为积分变量,曲边梯形面积为 图2 选择Y 为积分变量,曲边梯形面积为 问题3:探究由曲线所围平面图形的面积解答思路 例1(课本P56例1).计算由曲线2x y =与 x y =2 所围图形的面积. 分析:找到图形----画图得到曲边形. 1、曲边形面积解法----转化为曲边梯形,做出辅助线. 2、定积分表示曲边梯形面积----确定积分区间、被积函数. 3、计算定积分. 解:作出草图,所求面积为图中阴影部分的面积. 解方程组?? ???==22 x y x y 得到交点横坐标为 0=x 及1=x dx x f dx x f s b a b a ??-=)()(21dy y g b a ?)(1=s dy y g b a ? )(2 -

相关文档
最新文档