算法复杂度分析

算法复杂度分析
算法复杂度分析

1、算法复杂度的分析方法及其运用

算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问题给各位考生进行分析。

首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。

常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。

下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。

1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 ,

h(n)=n^1.5+5000nlgn

请判断下列关系是否成立:

(1)f(n)=O(g(n))

(2)g(n)=O(f(n))

(3)h(n)=O(n^1.5)

(4)h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。

◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。

◆(2)成立。与上同理。

◆(3)成立。与上同理。

◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。

(1) i=1; k=0

while(i

{ k=k+10*i;i++;

}

解答:T(n)=n-1,T(n)=O(n),这个函数是按线性阶递增的。

(2) x=n; // n>1

while (x>=(y+1)*(y+1))

y++;

解答:T(n)=n1/2 ,T(n)=O(n1/2),最坏的情况是y=0,那么循环的次数是n1/2次,这是

一个按平方根阶递增的函数。

(3) x=91; y=100;

while(y>0)

if(x>100)

{x=x-10;y--;}

else x++;

解答:T(n)=O(1),这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n 没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数

2、算法复杂度编辑

算法复杂度,即算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。

中文名

算法复杂度

影响

效率

分类

时间复杂度和空间复杂度

关键

输入量

相关

时间复杂度

应用

数学

目录

1简介

2时间复杂度

3空间复杂度

4复杂度分析

1简介编辑

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。

算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。

2时间复杂度编辑

(1)时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。

但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,

哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法的时间复杂度是指执行算法所需要的计算工作量。

(2)时间复杂度

在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),

线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,

k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

算法的时间性能分析

(1)算法耗费的时间和语句频度

一个算法所耗费的时间=算法中每条语句的执行时间之和

每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间

算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。

若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。

求两个n阶方阵的乘积C=A×B,其算法如下:

# define n 100 // n 可根据需要定义,这里假定为100

void MatrixMultiply(int A[a],int B [n][n],int C[n][n])

{ //右边列为各语句的频度

int i ,j ,k;

(1) for(i=0; i

(2) for (j=0;j

(3) C[i][j]=0; n2

(4) for (k=0; k

(5) C[i][j]=C[i][j]+A[i][k]*B[k][j];n3

}

}

该算法中所有语句的频度之和(即算法的时间耗费)为:

T(n)=2n3+3n2+2n+1 (1.1)

分析:

语句(1)的循环控制变量i要增加到n,测试到i=n成立才会终止。故它的频度是n+1。但是它的循环体却只能执行n次。语句(2)作为语句(1)循环体内的语句应该执行n次,但语句(2)本身要执行n+1次,所以语句(2)的频度是n(n+1)。同理可得语句(3),(4)和(5)的频度分别是n2,n2(n+1)和n3。

算法MatrixMultiply的时间耗费T(n)是矩阵阶数n的函数。

(2)问题规模和算法的时间复杂度

算法求解问题的输入量称为问题的规模(Size),一般用一个整数表示。

矩阵乘积问题的规模是矩阵的阶数。

一个图论问题的规模则是图中的顶点数或边数。

一个算法的时间复杂度(Time Complexity, 也称时间复杂性)T(n)是该算法的时间耗费,是该算法所求解问题规模n的函数。当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。

算法MatrixMultiply的时间复杂度T(n)如(1.1)式所示,当n趋向无穷大时,显然有T(n)~O(n^3);

这表明,当n充分大时,T(n)和n^3之比是一个不等于零的常数。即T(n)和n^3是同阶的,或者说T(n)和n^3的数量级相同。记作T(n)=O(n^3)是算法MatrixMultiply的渐近时间复杂度。

(3)渐进时间复杂度评价算法时间性能

主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。

算法MatrixMultiply的时间复杂度一般为T(n)=O(n^3),f(n)=n^3是该算法中语句(5)的频度。下面再举例说明如何求算法的时间复杂度。

交换i和j的内容。

Temp=i;

i=j;

j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。

注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

变量计数之一:

(1) x=0;y=0;

(2) for(k-1;k<=n;k++)

(3) x++;

(4) for(i=1;i<=n;i++)

(5) for(j=1;j<=n;j++)

(6) y++;

一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n^2,所以该程序段的时间复杂度为T(n)=O(n^2)。

当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

变量计数之二:

(1) x=1;

(2) for(i=1;i<=n;i++)

(3) for(j=1;j<=i;j++)

(4) for(k=1;k<=j;k++)

(5) x++;

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:

则该程序段的时间复杂度为T(n)=O(n^3/6+低次项)=O(n^3)。

(4)算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:

(1)i=n-1;

(2)while(i>=0&&(A[i]!=k))

(3) i--;

(4)return i;

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:

①若A中没有与K相等的元素,则语句(3)的频度f(n)=n;

②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

3空间复杂度编辑

与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:

S(n)=O(f(n))

算法执行期间所需要的存储空间包括3个部分:

·算法程序所占的空间;

·输入的初始数据所占的存储空间;

·算法执行过程中所需要的额外空间。

在许多实际问题中,为了减少算法所占的存储空间,通常采用压缩存储技术。

复杂度分析编辑

通常一个算法的复杂度是由其输入量决定的,随着输入的增加,

复杂度

3、算法复杂度分析

一、时间复杂度

算法复杂度分为时间复杂度和空间复杂度。其作用:时间复杂度是度量算法执行的时间长短;而空间复杂度是度量算法所需存储空间的大小。任何算法运行所需要的时间几乎总是取决于他所处理的数据量,在这里我们主要说时间复杂度。对于一个给定计算机的算法程序,我们能画出运行时间的函数图。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))

分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f (n)越小,算法的时间复杂度越低,算法的效率越高。

2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1

[java]view plaincopy

1.for(i=1;i<=n;++i)

2.{

3.for(j=1;j<=n;++j)

4.{

5.c[ i ][ j ]=0; //该步骤属于基本操作执行次数:n的平方次

6.for(k=1;k<=n;++k)

7.c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作执行次数:n的三次

方次

8.}

9.}

则有T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定n 的三次方为T(n)的同数量级,则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c。则该算法的时间复杂度:T(n)=O(n^3)注:n^3即是n的3次方。

3.在pascal中比较容易理解,容易计算的方法是:看看有几重for循环,只有一重则时间复杂度为O(n),二重则为O(n^2),依此类推,如果有二分则为O(logn),二分例如快速幂、二分查找,如果一个for循环套一个二分,那么时间复杂度则为O(nlogn)。

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),对数阶O(log2n),线性阶O(n),

线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,

k次方阶O(n^k), 指数阶O(2^n) 。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

根据定义,可以归纳出基本的计算步骤

1. 计算出基本操作的执行次数T(n)

基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级

求T(n)的数量级,只要将T(n)进行如下一些操作:

忽略常量、低次幂和最高次幂的系数,令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度

当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

一个示例:

[java]view plaincopy

1.int num1, num2;

2.for(int i=0; i

3. num1 += 1;

4.for(int j=1; j<=n; j*=2){

5. num2 += num1;

6. }

7.}

分析:

1.

语句int num1, num2;的频度为1;

语句i=0;的频度为1;

语句i

语句j<=n; j*=2; num2+=num1;的频度为n*log2n;

T(n) = 2 + 4n + 3n*log2n

2.

忽略掉T(n)中的常量、低次幂和最高次幂的系数,f(n) = n*log2n

3.

lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)

= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0

所以极限等于3。T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为:

1. 找到执行次数最多的语句

2. 计算语句执行次数的数量级

3. 用大O来表示结果

继续以上述算法为例,进行分析:

1.

执行次数最多的语句为num2 += num1

2.

T(n) = n*log2n

f(n) = n*log2n

3.

// lim(T(n)/f(n)) = 1

T(n) = O(n*log2n)

二、插入排序算法的时间复杂度

现在研究一下插入排序算法的执行时间,按照习惯,输入长度LEN以下用n表示。设循环中各条语句的执行时间分别是c1、c2、c3、c4、c5这样五个常数:

[java]view plaincopy

1.void insertion_sort(void) 执行时间

2.{

3.int i, j, key;

4.for (j = 1; j < LEN; j++) {

5. key = a[j]; c1

6. i = j - 1; c2

7.while (i >= 0 && a[i] > key) {

8. a[i+1] = a[i]; c3

9. i--; c4

10. }

11. a[i+1] = key; c5

12. }

13.}

显然外层for循环的执行次数是n-1次,假设内层的while循环执行m次,则总的执行时间粗略估计是(n-1)*(c1+c2+c5+m*(c3+c4))。当然,for和while后面()括号中的赋值和条件判断的执行也需要时间,而我没有设一个常数来表示,这不影响我们的粗略估计。这里有一个问题,m不是个常数,也不取决于输入长度n,而是取决于具体的输入数据。在最好情况下,数组a的原始数据已经排好序了,while循环一次也不执行,总的执行时间是(c1+c2+c5)*n-(c1+c2+c5),可以表示成an+b的形式,是n的线性函数(Linear Function)。那么在最坏情况(Worst Case)下又如何呢?所谓最坏情况是指数组a的原始数据正好是从大到小排好序的,请读者想一想为什么这是最坏情况,然后把上式中的m替换掉算一下执行时间是多少。

数组a的原始数据属于最好和最坏情况的都比较少见,如果原始数据是随机的,可称为平均情况(Average Case)。如果原始数据是随机的,那么每次循环将已排序的子序列a[1..j-1]与新插入的元素key相比较,子序列中平均都有一半的元素比key大而另一半比key小,请读者把上式中的m替换掉算一下执行时间是多少。最后的结论应该是:在最坏情况和平均情况下,总的执行时间都可以表示成an2+bn+c的形式,是n的二次函数(Quadratic Function)。

在分析算法的时间复杂度时,我们更关心最坏情况而不是最好情况,理由如下:

1. 最坏情况给出了算法执行时间的上界,我们可以确信,无论给什么输入,算法的执

行时间都不会超过这个上界,这样为比较和分析提供了便利。

2. 对于某些算法,最坏情况是最常发生的情况,例如在数据库中查找某个信息的算法,

最坏情况就是数据库中根本不存在该信息,都找遍了也没有,而某些应用场合经常

要查找一个信息在数据库中存在不存在。

3. 虽然最坏情况是一种悲观估计,但是对于很多问题,平均情况和最坏情况的时间复

杂度差不多,比如插入排序这个例子,平均情况和最坏情况的时间复杂度都是输入

长度n的二次函数。

比较两个多项式a1n+b1和a2n2+b2n+c2的值(n取正整数)可以得出结论:n的最高次指数是最主要的决定因素,常数项、低次幂项和系数都是次要的。比如100n+1和n2+1,虽然后者的系数小,当n较小时前者的值较大,但是当n>100时,后者的值就远远大于前者了。如果同一个问题可以用两种算法解决,其中一种算法的时间复杂度为线性函数,另一种算法的时间复杂度为二次函数,当问题的输入长度n足够大时,前者明显优于后者。因此我们可以用一种更粗略的方式表示算法的时间复杂度,把系数和低次幂项都省去,线性函数记作Θ(n),二次函数记作Θ(n2)。

Θ(g(n))表示和g(n)同一量级的一类函数,例如所有的二次函数f(n)都和g(n)=n2属于同一量级,都可以用Θ(n2)来表示,甚至有些不是二次函数的也和n2属于同一量级,例如2n2+3lgn。“同一量级”这个概念可以用下图来说明(该图出自[算法导论]):

图 11.2. Θ-notation

如果可以找到两个正的常数c1和c2,使得n足够大的时候(也就是n≥n0的时候)f(n)总是夹在c1g(n)和c2g(n)之间,就说f(n)和g(n)是同一量级的,f(n)就可以用Θ(g(n))来表示。

以二次函数为例,比如1/2n2-3n,要证明它是属于Θ(n2)这个集合的,我们必须确定c1、c2和n0,这些常数不随n改变,并且当n≥n0以后,c1n2≤1/2n2-3n≤c2n2总是成立的。为此我们从不等式的每一边都除以n2,得到c1≤1/2-3/n≤c2。见下图:

图 11.3. 1/2-3/n

这样就很容易看出来,无论n取多少,该函数一定小于1/2,因此c2=1/2,当n=6

时函数值为0,n>6时该函数都大于0,可以取n0=7,c1=1/14,这样当n≥n0时都有1/2-3/n≥c1。通过这个证明过程可以得出结论,当n足够大时任何an2+bn+c都夹在c1n2和c2n2之间,相对于n2项来说bn+c的影响可以忽略,a可以通过选取合适的c1、c2来补偿。

几种常见的时间复杂度函数按数量级从小到大的顺序依次是:Θ(lgn),Θ(sqrt(n)),Θ(n),Θ(nlgn),Θ(n2),Θ(n3),Θ(2n),Θ(n!)。其中,lgn通常表示以10为底n的对数,但是对于Θ-notation来说,Θ(lgn)和Θ(log2n)并无区别(想一想这是为什么),在算法分析中lgn通常表示以2为底n的对数。可是什么算法的时间复杂度里会出现lgn呢?回顾插入排序的时间复杂度分析,无非是循环体的执行时间乘以循环次数,只有加和乘运算,怎么会出来lg呢?下一节归并排序的时间复杂度里面就有lg,请读者留心lg运算是从哪出来的。

除了Θ-notation之外,表示算法的时间复杂度常用的还有一种Big-O notation。我们知道插入排序在最坏情况和平均情况下时间复杂度是Θ(n2),在最好情况下是Θ(n),数量级比Θ(n2)要小,那么总结起来在各种情况下插入排序的时间复杂度是O(n2)。Θ的含义和“等于”类似,而大O的含义和“小于等于”类似。受内存管理机影响,指令的执行时间不一定是常数,但执行时间的上界(Upper Bound)肯定是常数,我们这里假设语句的执行时间是常数只是一个粗略估计。

4、算法时间复杂度分析基础

摘要

本文论述了在算法分析领域一个重要问题——时间复杂度分析的基础内容。本文将首先明确时间复杂度的意义,而后以形式化方式论述其在数学上的定义及相关推导。从而帮助大家从本质上认清这个概念。

前言

通常,对于一个给定的算法,我们要做两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。

但是很多朋友并不能清晰的理解这一概念,究其原因,主要是因为没有从数学层面上理解其本质,而是习惯于从直观理解。下面,我们就一步步走近算法时间复杂度的数学本质。

算法时间复杂度的数学意义

从数学上定义,给定算法A,如果存在函数F(n),当n=k时,F(k)表示算法A在输入规模为k的情况下的运行时间,则称F(n)为算法A的时间复杂度。

这里我们首先要明确输入规模的概念。关于输入规模,不是很好下定义,非严格的讲,输入规模是指算法A所接受输入的自然独立体的大小。例如,对于排序算法来说,输入规模一般就是待排序元素的个数,而对于求两个同型方阵乘积的算法,输入规模可以看作是单个方阵的维数。为了简单起见,在下面的讨论中,我们总是假设算法的输入规模是用大于零的整数表示的,即n=1,2,3,……,k,……

我们还知道,对于同一个算法,每次执行的时间不仅取决于输入规模,还取决于输入的特性和具体的硬件环境在某次执行时的状态。所以想要得到一个统一精确的F(n)是不可能的。为了解决这个问题,我们做一下两个说明:

1.忽略硬件及环境因素,假设每次执行时硬件条件和环境条件是完全一致的。

2.对于输入特性的差异,我们将从数学上进行精确分析并带入函数解析式。

算法时间复杂度分析示例

为了便于朋友们理解,我将不会采用教科书上惯用的快速排序、合并排序等经典示例进行分析,而是使用一个十分简单的算法作为示例。我们先来定义问题。

问题定义:

输入——此问题输入为一个有序序列,其元素个数为n,n为大于零的整数。序列中的元素为从1到n这n个整数,但其顺序为完全随机。

输出——元素n所在的位置。(第一个元素位置为1)

这个问题非常简单,下面直接给出其解决算法之一(伪代码):

LocationN(A)

{

for(int i=1;i<=n;i++)-----------------------t1

{

if(A[i] == n) ----------------------------t2

{ return i; }------------------------t3

}

}

我们来看看这个算法。其中t1、t2和t3分别表示此行代码执行一次需要的时间。

首先,输入规模n是影响算法执行时间的因素之一。在n固定的情况下,不同的输入序列也会影响其执行时间。最好情况下,n就排在序列的第一个位置,那么此时的运行时间为“t1+t2+t3”。最坏情况下,n排在序列最后一位,则运行时间为“n*t1+n*t2+t3=(t1+t2)*n+t 3”。可以看到,最好情况下运行时间是一个常数,而最坏情况下运行时间是输入规模的线性函数。那么,平均情况如何呢?

问题定义说输入序列完全随机,即n出现在1...n这n个位置上是等可能的,即概率均为1/n。而平均情况下的执行次数即为执行次数的数学期望,其解为:

E

= p(n=1)*1+p(n=2)*2+...+p(n=n)*n

= (1/n)*(1+2+...+n)

= (1/n)*((n/2)*(1+n))

= (n+1)/2

即在平均情况下for循环要执行(n+1)/2次,则平均运行时间为“(t1+t2)*(n+1)/2+t3”。

由此我们得出分析结论:

t1+t2+t3 <= F(n) <= (t1+t2)*n+t3,在平均情况下F(n) = (t1+t2)*(n+1)/2+t3

算法的渐近时间复杂度

以上分析,我们对算法的时间复杂度F(n)进行了精确分析。但是,很多时候,我们不需要进行如此精确的分析,原因有下:

1.在较复杂的算法中,进行精确分析是非常复杂的。

2.实际上,大多数时候我们并不关心F(n)的精确度量,而只是关心其量级。

基于此,提出渐近时间复杂度的概念。在正式给出渐近时间复杂度之前,要先给出几个数学定义:

定义一:Θ(g(n))={f(n) | 如果存在正常数c1、c2和正整数n0,使得当n>=n0时,0

定义二:Ο(g(n))={f(n) | 如果存在正常数c和正整数n0,使得当n>=n0时,0< =f(n)<=cg(n)恒成立}

定义三:Ω(g(n))={f(n) | 如果存在正常数c和正整数n0,使得当n>=n0时,0< =cg(n)<=f(n)恒成立}

可以看到,三个定义其实都定义了一个函数集合,只不过集合中的函数需要满足的条件不同。有了以上定义,就可以定义渐近时间复杂度了。

不过这里还有个问题:F(n)不是确定的,他是在一个范围内变动的,那么我们关心哪个F(n)呢?一般我们在分析算法时,使用最坏情况下的F(n)来评价算法效率,原因有如下两点:

1.如果知道了最坏情况,我们就可以保证算法在任何时候都不能比这个情况更坏了。

2.很多时候,算法运行发生最坏情况的概率还是很大的,如查找问题中待查元素不存在的情况。且在很多时候,平均情况的渐近时间复杂度和最坏情况的渐近时间复杂度是一个量级的。

于是给出如下定义:设F(n)为算法A在最坏情况下F(n),则如果F(n)属于Θ(g(n)),则说算法A的渐近时间复杂度为g(n),且g(n)为F(n)的渐近确界。

还是以上面的例子为例,则在上面定义中F(n) = (t1+t2)*n+t3。则F(n)的渐近确界为n,其证明如下:

证明:

设c1=t1+t2,c2=t1+t2+t3,n0=2

又因为t1,t2,t3均大于0

则,当n>n0时,0

所以F(n)属于Θ(n)

所以n是F(n)的渐近确界

证毕

在实际应用中,我们一般都是使用渐近时间复杂度代替实际时间复杂度来进行算法效率分析。一般认为,一个渐近复杂度为n的算法要优于渐近复杂度为n^2的算法。注意,这并不是说渐近复杂度为n的算法在任何情况下都一定更高效,而是说在输入规模足够大后(大于临界条件n0),则前一个算法的最坏情况总是好于后一个算法的最坏情况。事实证明,在实践中这种分析是合理且有效的。

类似的,还可以给出算法时间复杂度的上确界和下确界:

设F(n)为算法A在最坏情况下F(n),则如果F(n)属于Ο(g(n)),则说算法A的渐近时间复杂度上限为g(n),且g(n)为F(n)的渐近上确界。

设F(n)为算法A在最坏情况下F(n),则如果F(n)属于Ω(g(n)),则说算法A的渐近时间复杂度下限为g(n),且g(n)为F(n)的渐近下确界。

这里一定要注意,由于我们是以F(n)最坏情况分析的,所以,我们可以100%保证在输入规模超过临界条件n0时,算法的运行时间一定不会高于渐近上确界,但是并不能100%保证算法运行时间不会低于渐近下确界,而只能100%保证算法的最坏运行时间不会低于渐近下确界。

总结

算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。在以上分析中,我们只讨论了“紧确界”,其实在实际中渐近确界还分为“紧确界”和“非紧确界”,有兴趣的朋友可以查阅相关资料。

好了,本文就到这里了,希望本文内容能对各位有所帮助。

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

算法复杂度分析

算法复杂度分析 算法与程序设计2010-08-30 20:47:10 阅读13 评论0 字号:大中小 订阅 首先接触" 算法复杂度"这个术语是在数据结构这门课程中。数据结构主要是讲如何在计算机中存储.组织数据,对于相同的存储.组织数据方式,往往又有不同的实现方式(即算法)。对于精心实现的算法,往往可以带来更高的运行和存储上的效率,而评价一个实现方式(算法)是否高效就是通过" 算法复杂度"来评定的。目前算法的评定主要是从时间和空间上来评定,毕竟我们对计算机关心的一个是运行时间,另一个就是消耗的存储空间。从时间上评定算法的优劣称为"时间复杂度",自然,从空间上评定算法的优劣就称为"空间复杂度"。 一.时间复杂度: 一个算法执行所用的时间,理论上讲是不能通过计算得出来的,因为它受多方面的影响,比如说不同的硬件,相同的算法在不同的硬件机器上执行,所消耗的时间是不同的。即使是在同一台机器上,一个算法在不同的时间执行,所消耗的时间也是不同的(当某个时刻计算机系统待处理的任务比较多时,这个时刻算法执行消耗的时间相对于计算机系统待处理任务较少时,所用的时间可能会多些)。我们使用"时间复杂度"并不是为了计算算法执行所消耗的时间,而是用于评定不同的算法之间在时间成本上,那个消耗的时间理论上少些,那个多些。背后的原理是这样的:如果有两个算法A,B,假如它们实现的功能都是在一个相同长度的数组内查找符合条件的一个元素位置。经过"时间复杂度"的评定,算法A 在时间成本上比算法B消耗的时间要少。那么在实际运行中算法A的执行应该会比算法B快。请注意我使用了"应该"这个词语,毕竟任何情况都有特殊的时候,不是吗?但毕竟特殊的情况属于少数,大多数情况下还是正常的。所以请不要认为"算法复杂度"是属于理论的东西,没有什么实际的意义。它在评定算法优劣上占有非常重要的地位。 讨论时间复杂度时,不得依次说明下面几个术语所表达的意思,当对这些术语背后表达的意思明白过后,"时间复杂度"也自然而然的明白了。 1.算法消耗时间. 一个算法执行所消耗的时间= 算法中所有语句执行的时间之和。 如果我们独立机器的软,硬件。假定语句执行一次所消耗的时间一样,并把语

算法的时间复杂性

算法的时间复杂度计算 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0;(一次) for(i=1;i<=n;i++) (n次) for(j=1;j<=n;j++) (n^2次) sum++;(n^2次) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

算法的含义及算法复杂度分析方法

算法的含义 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。 特征 一个算法应该具有以下六个重要的特征: 算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。 1、有限性 算法的有穷性是指算法必须能在执行有限个步骤之后终止; 2、确切性 算法的每一步骤必须有确切的定义; 3、输入 一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件; 4、输出一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的; 算法复杂度分析 通常一个算法的复杂度是由其输入量决定的,随着输入的增加,复杂度越大。一个算法的评价主要从时间复杂度和空间复杂度来考虑。 方法: 时间复杂度 (1)算法耗费的时间和语句频度 一个算法所耗费的时间=算法中每条语句的执行时间之和 每条语句的执行时间=语句的执行次数(即频度(Frequency Count))×语句执行一次所需时间算法转换为程序后,每条语句执行一次所需的时间取决于机器的指令性能、速度以及编译所产生的代码质量等难以确定的因素。 若要独立于机器的软、硬件系统来分析算法的时间耗费,则设每条语句执行一次所需的时间均是单位时间,一个算法的时间耗费就是该算法中所有语句的频度之和。 (2)问题规模和算法的时间复杂度 算法求解问题的输入量称为问题的规模(Size),一般用一个整数表示。 矩阵乘积问题的规模是矩阵的阶数。 一个图论问题的规模则是图中的顶点数或边数。 一个算法的时间复杂度(Time Complexity, 也称时间复杂性)T(n)是该算法的时间耗费,是该算法所求解问题规模n的函数。当问题的规模n趋向无穷大时,时间复杂度T(n)的数量级(阶)称为算法的渐进时间复杂度。 (3)渐进时间复杂度评价算法时间性能 主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。 空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 算法执行期间所需要的存储空间包括3个部分: ·算法程序所占的空间;

最大公约数的三种算法复杂度分析时间计算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) {

r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

算法的时间复杂度计算

for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,

下面我们就这个问题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn 请判断下列关系是否成立: (1)f(n)=O(g(n)) (2)g(n)=O(f(n)) (3)h(n)=O(n^1.5) (4)h(n)=O(nlgn) 这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,

算法的时间复杂度

算法的时间复杂度 Prepared on 22 November 2020

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶 O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^+5000nlgn 请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^ (4) h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤Cf(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i

算法时间复杂度计算示例

算法时间复杂度计算示 例 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基本计算步骤? 示例一:? (1) int num1, num2; (2) for(int i=0; i

数据结构时间复杂度的计算

数据结构时间复杂度的计算 for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++; 它的时间复杂度是多少? 自己计算了一下,数学公式忘得差不多了,郁闷; (1)时间复杂性是什么? 时间复杂性就是原子操作数,最里面的循环每次执行j次,中间循环每次执行 a[i]=1+2+3+...+i=i*(i+1)/2次,所以总的时间复杂性=a[1]+...+a[i]+..+a[n]; a[1]+...+a[i]+..+a[n] =1+(1+2)+(1+2+3)+...+(1+2+3+...+n) =1*n+2*(n-1)+3*(n-2)+...+n*(n-(n-1)) =n+2n+3n+...+n*n-(2*1+3*2+4*3+...+n*(n-1)) =n(1+2+...+n)-(2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)) =n(n(n+1))/2-[(2*2+3*3+...+n*n)-(2+3+4+...+n)] =n(n(n+1))/2-[(1*1+2*2+3*3+...+n*n)-(1+2+3+4+...+n)] =n(n(n+1))/2-n(n+1)(2n+1)/6+n(n+1)/2 所以最后结果是O(n^3)。 【转】时间复杂度的计算 算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多同学复习起来无从下手,下面我们就这个问 题给各位考生进行分析。 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中 频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。

最大公约数的三种算法复杂度分析时间计算

理工大学信息工程与自动化学院学生实验报告 (2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 一、上机目的及容 1.上机容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。

根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; r=m%n; } return n; } 根据代码辗转相除得到欧几里得的O(n)= log n 方法三: int f3(int m,int n) { int i=2,j=0,h=0; int a[N],b[N],c[N]; while(i

排序算法时间复杂度比较

排序算法比较 主要内容: 1)利用随机函数产生10000个随机整数,对这些数进行多种方法排序。 2)至少采用4种方法实现上述问题求解(可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序),并把排序后的结功能果保存在不同的文件里。 3)给出该排序算法统计每一种排序方法的性能(以运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 程序的主要功能: 1.随机数在排序函数作用下进行排序 2.程序给出随机数排序所用的时间。 算法及时间复杂度 (一)各个排序是算法思想: (1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。 (2)冒泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的

关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。 (3)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。 (4)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。 时间复杂度分析 排序算法最差时间时间复杂度是否稳定? 插入排序O(n2) O(n2) 稳定冒泡排序O(n2) O(n2) 稳定快速排序O(n2) O(n*log n) 不稳定 2 选择排序O(n2) O(n2) 稳定

给出以下算法的时间复杂度

第1章绪论 1、填空题 1.常见的数据结构有_________结构,_________结构,_________结构等三种。 2.常见的存储结构有_________结构,_________结构等两种。 3.数据的基本单位是_________,它在计算机中是作为一个整体来处理的。 4.数据结构中的结构是指数据间的逻辑关系,常见的结构可分为两大类,_________和_________。 2、应用题 1、给出以下算法的时间复杂度. void fun(int n) { int i=1,k=100; while(i

while(inext=p->next; p->next=s; (B)p->next=s; s->next=p->next;

算法的时间复杂度和空间复杂度-总结

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。 算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。而度量一个程序的执行时间通常有两种方法。 一、事后统计的方法 这种方法可行,但不是一个好的方法。该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。 二、事前分析估算的方法 因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。因此人们常常采用事前分析估算的方法。 在编写程序前,依据统计方法对算法进行估算。一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素: (1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。 一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。 1、时间复杂度 (1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 (2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

算法时间复杂度计算示例

基本计算步骤 示例一: (1) int num1, num2; (2) for(int i=0; i

如何计算时间复杂度

如何计算时间复杂度 求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数的数量级; 只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 ⑶ 用大Ο记号表示算法的时间性能。 将基本语句执行次数的数量级放入大Ο记号中。 如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++; 第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为 Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环 语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和 Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。 这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

算法时间复杂度

算法时间复杂度 The final edition was revised on December 14th, 2020.

实验一算法的时间复杂度 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对算法分析基础知识的理解。 二、实验内容: 掌握算法分析的基本方法,并结合具体的问题深入认识算法的时间复杂度分析。三、实验题 定义一个足够大的整型数组,并分别用起泡排序、简单选择排序、快速排序和归并排序对数组中的数据进行排序(按从小到大的顺序排序),记录每种算法的实际耗时,并结合数据结构中的知识对算法的时间复杂度分析进行说明。实验数据分两种情况: 1、数组中的数据随机生成; 2、数组中的数据已经是非递减有序。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序 #include #include<> #include<> using namespace std; void SelectSort(int r[ ], int n) { int i; int j; int index; int temp; for (i=0; i

最大公约数的三种算法复杂度分析时间计算

, 昆明理工大学信息工程与自动化学院学生实验报告 ( 2011 —2012 学年第 1 学期) 课程名称:算法设计与分析开课实验室:信自楼机房444 2011 年10月 12日 ! 一、上机目的及内容 1.上机内容 求两个自然数m和n的最大公约数。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 ? 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)至少设计出三个版本的求最大公约数算法; (2)对所设计的算法采用大O符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。

三、所用仪器、材料(设备名称、型号、规格等或使用软件) & 1台PC及VISUAL C++软件 四、实验方法、步骤(或:程序代码或操作过程) 实验采用三种方法求最大公约数 1、连续整数检测法。 2、欧几里得算法 @ 3、分解质因数算法 根据实现提示写代码并分析代码的时间复杂度: 方法一: int f1(int m,int n) { int t; if(m>n)t=n; else t=m; - while(t) { if(m%t==0&&n%t==0)break; else t=t-1; } return t; } 根据代码考虑最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2; ! 方法二:int f2(int m,int n) { int r; r=m%n; while(r!=0) { m=n; n=r; — r=m%n; } return n;

实验1-算法的时间复杂性分析

实验报告封面 课程名称:算法分析课程代码: SH3001 任课老师:陈坚强实验指导老师: 陈坚强 实验报告名称:算法的时间复杂性分析 学生姓名: 学号: 教学班: 递交日期: 签收人: 我申明,本报告内的实验已按要求完成,报告完全是由我个人完成,并没有抄袭行为。我已经保留了这份实验报告的副本。 申明人(签名): 实验报告评语与评分: 评阅老师签名:

实验一算法的时间复杂性分析 一、实验目的 1.掌握算法的计算复杂性概念。 2.掌握算法渐近复杂性的数学表述。 3.掌握用C++语言描述算法的方法。 4.实现具体的编程与上机实验,验证算法的时间复杂性函数。 二、实验环境 Windows XP以上版本的操作系统,Visual C++ 6.0 / VS 2005/2008/2010版编程环境。 三、实验内容 1、求下列函数的渐近表达式 (1)3n2+10n o( n2) (2) n2/10+2n o( n2) (3)21+1/n o( ) (4)10 log3n o(n) 2、分析下面算法属于什么功能,并求算法的时间复杂性函数 int factorial(int n) { if (n == 0) return 1; return n*factorial(n-1); } n的阶乘 3、算法实现题,要求写出问题的分析过程,然后上机实现算法

统计数字问题: (1)、问题描述 一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9) (2)、算法设计 给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2, (9) 提示: 1、POW函数 原型:float pow(float X,int Y); 头文件:#include 功能:计算x的y次幂。 2、int weishu(int n); //求位数 int zuigao(int n); //求最高位的数字 int f(int n); //所有n位数中0-9出现的相同次数

数据结构算法时间复杂度的计算

时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O 是数量级的符号),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

渐进时间复杂度的计算

时间复杂度计算 首先了解一下几个概念。一个是时间复杂度,一个是渐近时间复杂度。前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 1. 大O表示法 定义 设一个程序的时间复杂度用一个函数 T(n) 来表示,对于一个查找算法,如下: int seqsearch( int a[], const int n, const int x) { int i = 0; for (; a[i] != x && i < n ; i++ ); if ( i == n) return -1; else return i; } 这个程序是将输入的数值顺序地与数组中地元素逐个比较,找出与之相等地元素。 在第一个元素就找到需要比较一次,在第二个元素找到需要比较2次,……,在第n个元素找到需要比较n次。对于有n个元素的数组,如果每个元素被找到的概率相等,那么查找成功的平均比较次数为: f(n) = 1/n (n + (n-1) + (n-2) + ... + 1) = (n+1)/2 = O(n) 这就是传说中的大O函数的原始定义。 用大O来表述 要全面分析一个算法,需要考虑算法在最坏和最好的情况下的时间代价,和在平

相关文档
最新文档